SIGNAL V4 — INRIA version:; Reference Manual
(revised working version)

Loic BESNARD ! Thierry GAUTIER? Paul LE GUERNIC®

April 1, 2020

ICNRS, Univ. Rennes, INRIA, IRISA, France — e-mdibic.Besnard@irisa.fr
2INRIA, Univ. Rennes, CNRS, IRISA, France — e-mdihierry.Gautier@inria.fr
3INRIA, Univ. Rennes, CNRS, IRISA, France

Abstract

SIGNAL is a synchronized data ow language designed for progrargmaal-time systems. AISNAL
program de nes both data and control processing, from agysif equations, the variables of the system
are signals. These equations can be organized as sub-sy&ieprocesses). A signal is a sequence
of values which has a clock associated with; this clock spedhe instants at which the values are
available.

This reference manual de nes the syntax and the semantitedNRIA version of the 8NAL V4
language. The original of cial de nition of the @NAL V4 language was published in French in june
1994. Itis available at the following address:
ftp://ftp.irisa.fr/local/signal/publis/research_reports/PI1832-94:v4_manual.ps.gz
It was de ned together with Francois oNT, from TNI, then Geensoft and Dassault Systétes
Some of the evolutions described in this document have beerd too in cooperation with Francois
DuPONT. However, the &NAL version implemented by TNI in the tools Sildex and RT-Builde
slightly different in some aspects from the version desatihere.

The de nition of the SGNAL version described in this manual is subject to evolutiohss (partly)
implemented in the INRIA BLYCHRONY environment. Consult the following site:
http://polychrony.inria.fr

1Dassault Systemes. Technopble Brest-Iroise, 120 rue Resédtes, F-29280 Plouzané, France.

ftp://ftp.irisa.fr/local/signal/publis/research_reports/PI832-94:v4_manual.ps.gz
http://polychrony.inria.fr

Main evolutions of this document

From version dated March 1, 2010 to the present one:

addition of new classes of process models: procedure, whialspecial case of action (cf.
sectionX|-1.3, p. 186), and automaton (cf. sectioXl-1.6, p. 187), and addition of some
precisions in the de nition of functions and nodes;

addition of guarded processes (cf. sechii+-6, p. 140);

modi ed description of theick of a process (cf. sectiovill-5, p. 138);

modi ed de nition of the choice process (cf. sectiMil-7, p. 14D);

addition of a new syntax for clock extraction from a conditief. sectionVI-5, p. 120);

a distinction is made between external and virtual objettges (cf. sectiorV-7, p. 86),
constants (cf. sectiow—8, p. 88), process models (cf. sectiotl-1, p. 183); virtual objects
may be rede ned in a given context (cf. sectigh-1, p. 207);

modi ed de nitions of theafter andfrom counters (cf. sectiokI-4.5, p.118).
addition of some pragmas (cf. sectigih-7, p. 198).

From version dated March 7, 2008 to version dated March 1, 20%

addition of an assertion process, applying on constragitssgctionVIl-8, p. 145); asser-
tions on a Boolean signal, that were previously describeatimsic processes, are moved in
this new section andssert becomes a reserved word;

addition of some pragmas (cf. sectigih-7, p. 198).

From version dated June 19, 2006 to version dated March 7, 280

explicit declaration of shared variables for signals delneing partial de nitions (cf. sec-
tion V=10, p. 90);

addition and renaming of some pragmas (cf. secdb#v, p. 198).

From version dated April 8, 2005 to version dated June 19, 2@

possibility to have directives in model types (cf. sectiir8, p.204);

addition of the intrinsic processin_clock (cf. sectionXIll-1, p. 2117);
addition of intrinsic processes for af ne clock relatiorgs. (sectionXlll-2, p. 211).

From version dated March 31, 2004 to version dated April 8, 205:

more detailed description, with examples, of the intrinmiocessassert

From version dated December 18, 2002 to version dated Marchl32004:

precisions related to spatial processing (cf. chal@ep. 157) and addition of the prede ned
functionindices (cf. sectionlX-10, p. 166).

Table of contents

A

INTRODUCTION

Introduction

-1 Main features of the language.,
-1.1 Signals.
-1.2 Events. e
-1.3 Models e
-1.4 Modules.

[-2 Model of sequences e

-3 Staticsemantics. e
-3.1 Causality e
-3.2 Explicitde nitions

-4 Subjectofthereference

-5 Formofthe presentation.

Lexical units

-1 Characters. e e
I-1.1 Setsofcharacters
I-1.2 Encodings of characters.

-2 Vocabulary.
[I=2.1 Names. e e e
[I-2.2 Booleanconstantvalues.
[I-2.3 Integerconstantvalues
I-2.4 Realconstantvalues.
[I-2.5 Characterconstantvalues.
[I-2.6 String constantvalue.
[I=2.7 Comments e e

-3 Reserved words. e

B THE KERNEL LANGUAGE

-1
-2
-3

Semantic model of traces
SYNtax e e e
Congurations e e e e
Traces e
MI-3.1 Denition e e
1I-3.2 Partial observation ofatrace
MI-3.3 Prexorderontraces.

13

15
15
15
16
16
16
16
16
17
17
17
18

21
21
21
24
25
25
25
26
26
26
27
27
27

6 TABLE OF CONTENTS
I-3.4 Productoftraces. i 35
I-3.5 Reducedtrace 35
=4 Flows. e 37
lI-4.1 Equivalenceoftraces, 37
I-4.2 Partial ow e 38
I-4.3 Flow-equivalence. 38
HI-5 ProCesses i i i e e e e 38
MI-5.1 Denition 38
[lI-5.2 Partial observation ofaprocess. 39
I-5.3 Compositionof processes. i i 39
I-5.4 OrderonproCesSSES v v v i i it et e e e e e 40
-6 Semantics of basiCIBNAL terms. 41
6.1 Declarations. e 41
[I-6.2 MONOChronous ProcessSes. v v v v v v v i e e et e 41
2-a Static monochronous processes. 42
2-b Dynamic monochronous processes: thedelay. 42
I-6.3 Polychronous processes. 42
3-a Sub-signals. 42
3-b Mergingofsignals., 43
I-6.4 Composition of processes., 43
I-6.5 Restriction. 43
llI=7 Compositesignals. e 43
M=7.1 Tuples. e 44
HI=7.2 Arrays e e e e e e e 46
I-8 Classes of processes. i i i i e e e e 52
I-8.1 lterations of functions 52
[I-8.2 ENdoChronous proCessSes v v v v v v v i i et e e e 52
[I-8.3 Deterministic processes.« v v v i v i i 52
[I-8.4 Reactive proCesSeS. v v v v i i i e e e e 53
I-9 Composition properties. o e e e 54
11-9.1 Asynchronous composition of processes 54
I-9.2 Flow-invariance. 54
I-9.3 Endo-isochrony. 54
[I-10 Clock system and implementation relation. 55
lI-11 Transformation of programs 56
v Calculus of synchronizations and dependences 57
IV=1 Clocks e e e 57
IV=1.1 Clock homomorphism 57
l-a Monochronous denitions. 58
1-b Polychronous denitions 58
1-c Hiding e 58
1-d Composition 58
IV=1.2 Verication e 58
IV=-1.3 Clockcalculus. 59
3-a Monochronous de nitions. 59
3-b Polychronous denitions. 59

3-¢c Hiding 59

TABLE OF CONTENTS 7

3-d Composition 59
3-e Static and dynamic clock calculus. 60
IV=2 Contextclock e 60
IV=3 Dependences i i e e 61
IV=-3.1 Formal de nition of dependences. 62
IV=3.2 Implicitdependences. 63
2-a Monochronous de nitions. 63
2-b Polychronous denitions. 63
IV=3.3 Microautomata. 64
3-a Denition of microautomata 64
3-b Construction of basic micro automata. 65
C THE SIGNALS 69
\% Domains of values of the signals 71
V-1 Scalartypes. e e 71
V=1.1 Synchronizationtypes. 72
V=1.2 Integertypes e e e e e 72
V=1.3 Realtypes. e 73
V=14 Complextypes. e 74
V=15 Charactertype 75
V=1.6 Stringtype e 75
V-2 External types. e 75
V-3 Enumerated types. e 76
V-4 Array types. e e e e e e 77
V-5 Tuple types. 78
V-6 Structure of the setoftypes L 80
V=6.1 Setoftypes. e 80
V=6.2 Orderontypes i i i e 81
V=6.3 CONVErSIONS. o v et 83
3-a Conversions between comparabletypes. 83
3-b Conversions toward the domain “Synchronization-type”. . . . 84
3-c Conversions toward the domain “Integer-type”. 84
3-d Conversions toward the domain “Real-type’ 85
3-e Conversions toward the domain “Complex-type”. 85
3-f Conversions toward the typebaracter andstring 85
3-g Conversionsofarrays. 86
3-h Conversions oftuples. 86
V-7 Denotation oftypes. e 86
V-8 Declarations of constantidentiers 88
V-9 Declarations of sequence identiers. 89
V=10 Declarations of sharedvariables 90
V-11 Declarations of state variables. 91

8 TABLE OF CONTENTS
VI Expressions on signals 93
VI-1 Systemsof equationsonsignals 93
VI-1.1 Elementaryequations. 93
l-a Equation ofde nitionofasignal 94
1-b Equation of multiple de nition of signals. 95
1-c Equation of partial de nition ofasignal 96
1-d Equation of partial de nition of a state variable. 97
1l-e Equation of partial multiple de nition. 98
VI-1.2 Invocationofamodel 99
2-a Macro-expansionofamodel. 100
2-b Positional macro-expansion ofamodel. 101
2-c Callofamodel. 102
2-d Expressions of type conversion 102
VI-1.3 Nesting of expressionsonsignals 104
VI-2 Elementary expressions e e 107
VI=2.1 Constant expressions e 107
VI-2.2 Occurrence of signal or tuple identier. 108
VI-2.3 Occurrence of statevariable 108
VI=3 DynamiCc eXpresSionS. v v v i e e e e e e e 109
VI-3.1 Initialization expression o 110
VI-3.2 Simpledelay 110
VI-3.3 Slidingwindow e 111
VI-3.4 Generalizeddelay 113
VI—4 Polychronous expressions. v v i i i e e e e e e 114
VI-4.1L Merging o o e e 114
VI-4.2 EXxtraction. e 115
VI-4.3 Memorization. 116
VI-4.4 Variableclocksignal 117
VI-45 Counters. 118
VI-4.6 Other properties of polychronous expressions 119
VI-5 Constraints and expressionsonclocks. 120
VI-5.1 Expressionsonclocksignals. 120
l-a Clockofasignal. 120
1-b Clockextraction 121
1-c Emptyclock 121
VI-5.2 Operators of clock lattice 122
VI-5.3 Relationsonclocks. 123
VI-6 Identityequations. e 125
VI-7 Boolean synchronous expressions v 125
VI-7.1 ExpressionsonBooleans. 126
l-a Negation. e 126
1-b Operators of Boolean lattice 126
VI-7.2 Booleanrelations. 127
VI-8 Synchronous expressions onnumericsignals. 129
VI-8.1 Binary expressions onnumericsignals 130
VI-8.2 Unaryoperators i e 131
VI-9 Synchronous condition. 132

TABLE OF CONTENTS 9

VIl Expressions on processes 135
VII-1 Elementary proCeSSES v v v i v i i e e e e 135
VII=2 Composition e e e e e e 135
VIIL3 Hiding e e e e e 136
VIl-4 Con ning with local declarations. 137
VII-5 Labelled processes. 138
VII-6 Guarded proCesses. i v i i e e e e e 140
VII=7 ChoiCe PrOCESSES. . . .« v v v i e e e e e e e e e e e 141
VII=8 ASSErtion ProCESSES. v v v i vt e e e e e e e e e e e e 145

VII-8.1 Assertions of clockrelations. 146
VII-8.2 Assertions of identity equations. 147
VII-8.3 Assertion onBooleansignal. 148

D THE COMPOSITE SIGNALS 151

VIl Tuples of signals 153
VIII-1 Constant eXpressions. o e 153
VIII-2 Enumeration of tuple elements. 153
VIII-3 Denotationof eld 154
VIll-4 Destructuration oftuple. 154
VIII-5 Equation of de nition of tuple component. 155

IX Spatial processing 157
IX-1 Dimensions of arrays and bounded values. 158
IX—=2 Constant eXpressions. e e e e e e e e e 159
IX=3 Enumeration. 159
IX—=4 Concatenation. e 160
IX=5 Repetition e e e 160
IX=6 Denitionofindex 161
IX=7 Arrayelement. e e e 162

IX—=7.1 Accesswithoutrecovery. 162

IX=7.2 Accesswithrecovery. e 163

IX-8 Extractionofsub-array. e 163
IX—=9 Arrayrestructuration e e 164
IX=10 Generalizedindices. 166
IX—-11 Extended syntax of equations ofdenition 167
IX=12 Cartesianproduct. 168
IX=13 lterations of processes. e 168
IX—=14 Sequentialdenition. e 174
IX=15 Sequential enumeration e 174
IX=16 OperatorsonmatriCes v v i i 176
IX=16.1 Transposition. e 176
IX=16.2 Matrix products. e 176

2-a Productofmatrices 177

2-b Matrix—vector product. L oL 177

2-c Vector—matrix product. L o 178

2-d Scalarproduct. 178

10 TABLE OF CONTENTS
X Extensions of the operators 179
X-1 Rulesofextension 179
X-2 Examples e 180
E THE MODULARITY 181
XI Models of processes 183
XI-1 Classesof processmodels. 183
XI=1.1 ProCesses. o i i 185
XI=1.2 ACtions 186
XI-1.3 Procedures 186
XI=1.4 Nodes. e 186
XI-1.5 Functions 187
XI=1.6 Automata 187
XI-2 Local declarations of aprocessmodel, 191
Xl-3 Declarationsof labels. 192
XI-4 References to signals with extended visibility 192
XI-5 Interface ofamodel. 193
XI-6 Graphofamodel 195
XI-6.1 Specicationof properties. 0. 196
XI-6.2 Dependences. e 196
XI=7 Directives e 198
XI-8 Modelsastypesand parameters 204
Xl Modules 207
Xll-1 Declarationanduseofmodules. 207
Xl Intrinsic processes 211
XllI-1 Minimalclock 211
Xlll-2 Afnetransformations. 211
XII=3 “Lefttrue” process. o i i i i i e e e e 214
Xlll-4 Mathematical functions. 214
XIlI-5 Complexfunctions. e 215
XllI-6 Input-output functions. 216
F ANNEX 217
XIV Grammar of the SIGNAL language 219
XIV=1 Lexicalunits 219
XIV=1.1 Characters e 219
XIV=1.2 Vocabulary e 221
XIV=2 Domains of values ofthesignals. 223
XIV=2.1 Scalartypes. e 223
XIV=2.2 Externaltypes. 224
XIV=2.3 Enumeratedtypes e e 225
XIV=2.4 Array types o o e e e e e e 225
XIV=25 Tupletypes e 225

TABLE OF CONTENTS 11

XIV-3

XIvV-4

XIV=5

XIV-6

XIV=7

XIV=2.6 Denotationoftypes. 226
XIV=2.7 Declarations of constantidentiers 226

XIV-2.8 Declarations of sequence identiers 226

XIV=2.9 Declarations of shared variables 227

XIV=2.10Declarations of state variables 227
Expressionsonsignals. e 227
XIV=3.1 Systems of equationsonsignals. 227

XIV=3.2 Elementary eXpressions. v v v i i e 229
XIV=3.3 Dynamic expressions v v i i e e e e 230
XIV=3.4 Polychronous expressions. v v v v v v i 231
XIV=3.5 Constraints and expressionsonclocks. 232

XIV=3.6 Constraintsonsignals. 233
XIV=3.7 Boolean synchronous expressions. 234

XIV=3.8 Synchronous expressions on numeric signals. 234

XIV=3.9 Synchronous condition. 235
EXpPressions ON ProCeSSES v v v v v i i e e e e 235
XIV=4.1 Composition. e 236
XIV=4.2 Hiding e 236
XIV-=4.3 Con ning with local declarations 236

XIV-4.4 Labelled processes. o i i i e 237
XIV-4.5 Guarded proCeSSES« v v v v i i e e e e 237
XIV=4.6 ChOoiCe ProCeSSES v v v i i e e e e e e e 237
XIV=4.7 ASSErtion ProCESSES v v v v v e i e e e e e 238
Tuplesofsignals. e 238
XIV=5.1 Enumeration of tupleelements. 238

XIV=5.2 Denotationof eld 239
XIV=5.3 Equation of de nition of tuple component 239

Spatial processing. e e 239
XIV=6.1 Enumeration 240
XIV=6.2 Concatenation 240
XIV-6.3 Repetition. e 240
XIV=6.4 Denitionofindex 241
XIV-6.5 Arrayelement. e 241
XIV-6.6 Extraction ofsub-array. 241
XIV=6.7 Array restructuration. e 241
XIV-6.8 Extended syntax of equations of de nition. 242

XIV-6.9 Cartesianproducto 242
XIV-6.10lterations of processes. e 242
XIV=6.11Sequentialdenition 243
XIV-6.12Sequential enumeration. 000 243
XIV=6.130peratorsonmatrices. v i 244
Models of processes e 244
XIV=7.1 Classesof processmodels 244
XIV=7.2 Local declarations of a processmodel. 245

XIV=7.3 Declarationsoflabels 246
XIV=7.4 References to signals with extended visibility. 246

XIV=7.5 Interface ofamodel o 246

XIV=7.6 Graphofamodel. 247

12 TABLE OF CONTENTS

XIV=7.7 DIreCtives e e e e e e e e 248
XIV-=7.8 Models as types and parameters. 248
XIV=8 Modules 249
XIV-8.1 Declarationanduseofmodules 249
List of gures 251
List of tables 253

Index 255

Part A

INTRODUCTION

Chapter |

Introduction

The SGNAL language has been de ned at INRIA/IRISA with the collabamatand support from the
CNET (now France Télécom R&D and then Orange Labs). Thigerte manual de nes the syntax
and semantics of the INRIA version of the language, whichniseeolution of the V4 version. The
V4 version resulted from a synthesis of experiments madeRIA and by the TNI company. An
environment of the &NAL language can be built in a style and in a way it is not the olvedf this
manual to de ne. However, such an environment will have tovjafe functions for reading and writing
programs in the form speci ed in this manual; the transkaigscheme will give the semantics of the texts
built in this environment.

-1 Main features of the language

A program expressed in the@\AL language de nes some data and control processing from arayst
of equations, the variables of which are identi erssifnals. These equations can be organized in sub-
systems (oprocesses A model of process a sub-system which may have several using contexts; for
that purpose, a model is designated by an identi er. It capriogided with parameters specifying data
types, initialization values, array sizes, etc. In additisets of declarations can be organized in modules.

[-1.1 Signals
A signal is a sequence of values, with which a clock is assotgd.

1. All the values of a signalbelong to a samsub-domairof adomain of valuesjesignated by their
commontype. This type can be:

prede ned (the Booleans, sub-domains of the Integers daubains of the Reals, sub-domains
of the Complex...),

de ned in the program (Arrays, Tuples),
or referenced in the program but known only by the functidrad handle it (Externals).

2. The clock of a signalallows to de ne, relatively to a totally ordered set contagat least as much
elements as the sequence of values of this signal, the sobisstants at which the signal has a
value. A pure signal, the value of which belongs to the sioglevent, can be associated with
each signal. This pure signal is present exactly at the peesmstants of the signal; thesent
type is a sub-domain of the Booleans. By extension, this pigmreal will be calledclock. A pure
signal is its own clock. In a process, the clock of a signahesrepresentative of the equivalence

16 INTRODUCTION

class of the signals with which this signakignchronougsynchronous signals have their values at
the same instants).

3. These values are expressed in equations of de nition mednstraints.

I-1.2 Events

A valuation associates, at a logical instant of the progrmemgition of the automaton), a value with a
variable.

An event is a set of simultaneous valuations de ning a tt@msiof the automaton. In an event, a
variable may have no associated value: it will be said thatcbrresponding signal is absent and its
“value” will be written? . An event contains at least one valuation.

Determining the presence of a signal (i.e., a valuationhiewgent results from the solving of a system
of equations irf 3, the eld of integers modulo 3.

The value associated with a variable in an event results fifmmevaluation of its expression of
de nition (thus it should not be implicit: circular de nitins of non Boolean signals are not allowed).

I-1.3 Models

A model associates with an identi er a system of equatiort \eical variables, sub-models and external
variables (free variables). The parameters of a model amstants (size of arrays, initial values of
signals, etc.).

A model may be de ned outside the program; in that case, iisgke only through its interface.
Calling a model de ned in a program is equivalent to replgcthis call by the associated system of
equations (macro-substitution).

Invoking a model de ned outside the program can produce sftiets on the context in which the
program is executed; these effects can be directly or iatiyr@erceived by the program and they can
affect the set of instants or the set of values of one or mdesfate signals. Such a model will be said
non functional (for example @ndom“fonction” is such a non functional model).

I-1.4 Modules

The notion of module allows to describe an application in alotar way. In particular, it allows the
de nition and use of libraries written in IBNAL or external ones, and constitutes an access interface to
external objects.

-2 Model of sequences

A program expressed in the@\AL language establishes a relation between the sequencesttiséitute
its external signals. The set of programs of theM8\L language is a subset of the space of subsets of
sequences (paB, chapteill).

-3 Static semantics

The relations on sequences presented in the formal modelilbes set of programs among them are
only considered as legal programs those for which the ardest each set of instants is in accordance

I-4. SUBJECT OF THE REFERENCE 17

with the ordering induced by the dependencies (causalibcipte), and which do not contain implicit
de nitions of values of non Boolean signals.

[-3.1 Causality

A real-time program has to respect the causality principlecording to this principle, the value of an
event at some instaritcannot depend on the value of a future event. The respecisoptimciple is
obtained in $GNAL by the implicit handling of time: the user has a set of terna dilow him/her to
make reference to passed or current values of a signal, faiui@ ones.

[-3.2 Explicit de nitions

The synchronous hypothesis on which is based the de nitidhe@SGNAL language allows to develop
a calculus on the time considered as a pre-order in a dissette

|I-4 Subject of the reference

This manual de nes the syntax, the semantics, and formalutens applied by a compiler to a program
expressed in theISNAL language. The BNAL language has four classes of syntactic structures:

1. The structures of the kernel languagefor which a formal de nition is given in the model of
sequences. The kernel language contains a minimal set Gftopgeon sequences of signals of type
event andbooleanon which the temporal structure of the program is calculatembntains also a
mechanism allowing to designate signals of external typesh@n interpreted functions applying
to these signhals. Removing anyone of these structures vetridtly reduce the expressiveness of
the language.

2. The structures of the minimal languagethat can be subdivided in three sub-classes:

(a) the non Boolean types and the associated operatorshahéwv to write a program com-
pletely in the $SGNAL languagethe open vocation of theSIGNAL language is neverthe-
less clearly asserted:it is possible to use external functions/processes, deineahother
language, or even realized by some hardware components ttvgn advised when speci ¢
properties exist, that are not handled by the formal calo#de possible in theIGNAL
language;

(b) the syntactic structures providing to the language densibility necessary for its special-
ization for a particular application domain, and for its nimg toward other environments or
languages;

(c) the operators and constructors of general use provalp@gramming style that favours the
development of associated methodologies and tools.

3. The standard (or intrinsic) process modelsvhich form a library common to all the compilers of
the SGNAL language;

4. The speci c process modelsvhich constitute speci ¢ extensions to the standard Iprar

This manual describes the structures of the kernel langaadeof the minimal language. It also
de nes a set of standard intrinsic processes. Finallysib @lontains the description of non-standardized
information (in the form of “directives”), used in the vessi of the language available in the INRIA
POLYCHRONY environment.

18 INTRODUCTION

-5 Form of the presentation

Three classes of terms are distinguished for the desamipfithe syntax of the language:

the vocabulary of the lexical level: each one of teeminals designates an enumerated set of
indivisible sequences of characters;

the lexical structures: th@erminals of the syntactic level are de ned, at a lexical level, by rile
in a grammar the vocabulary of which is the union of teeminals sets; no implicit character
(separators, for instance) is authorized in the terms oactsd following these rules;

the syntactic structures: tiéON-TERMINALS are de ned, at a syntactic level, by rules in a
grammar the vocabulary of which is composed of Teeminals; any number of separators can be
inserted between twderminals.

Every unit of the language is introduced and then describetividually or by category, with the
help of all or part of the following items. Generally, a ganderm representing the unit is given:
EXPRESSIONE, Eo, ...)
whereE1, Eo, ... are formal arguments of the generic term. This reptasea is used to de ne the
general properties of the unit in the rubrics that desciiieent

The grammar gives the context-free syntax of the considgredture in one of the following forms:

1. Context-free syntax

STRUCTURE ::=

DERIVATION1
j DERIVATIONZ2

j...

Terminal ::=

DERIVATION1
j DERIVATION2

|
terminal ;=

SET1
j SET2
jo..

DERIVATION1, DERIVATIONZ are rewritings of the variablBTRUCTURE (respectively, of the
variable Terminal). SET1, SET2 are rewritings of the variableerminal; they areDerivations
reduced to one single element (cf. below).

Each D=ERIVATION is a sequence @lemens, each of them can be:

asetof characters, written in this typography (lexical levelydn

a|terminal | symbol (of the syntactic grammar) composed of letters, imtypography, for
which only the lower case form is explicited in the grammar;

a terminal symbol| (composed of other acceptable characters), in this typbgra
aTerminal, in this typography,

a syntacticSTRUCTURE, in this typography (syntactic level only),

I-5.

FORM OF THE PRESENTATION 19

a non empty sequence element in their respective typography, with or withagmment
in this typography , respectively in the following forms:

— element{ element}

— { element}*
an optionalelementdenoted lement],

a difference of sets, denoteagfementlin element?, allowing to derive the texts aélementl
that are not texts oflement2

The syntactic structures may appear either in the pluraln dhe singular, following the con-
text. They may be completed byantextual informationin this typography. For example, in
S-EXPR-ARITHMETIC, “-ARITHMETIC” is only a contextual information for the syntactic
structureS-EXPR. Finally, several derivations may be placed on a same line.

Pro le

This item describes the sets of input and output signalseoépression. This description is done
with the notations? (E) that designates the list of input signals (or portsEofand ! (E) that
designates the list of output signals (or portsEof The notation ? {al, ...,an} (respectively,

! { aig, ... ,an}) designates explicitly the set of input ports (respecyivelitput portskyy, ... ,an.
Finally, the set operationd&\ B, A[B andA B (the latter to designate the set of elements of
A that are not irB).

. Types

This item describes the properties of the types of the argtsngsing equations on the types of
value of the signals. The notation(E) is used to designate the type (domain of value) of the
expressiorE. Given a process model (cf. pdtf chapterXl, p. 183 et seq) with nameP, the
notations (?P) and (!P) are used to designate respectively the type of the tuplecidiny the

list of the inputs declared in the interface of the model, ggdtype of the tuple formed by the list
of the outputs declared in this interface (cf. parsectionX1-5, p. 193 et seq).

(a) EQUATION

. Semantics

When the term cannot be rede ned in thes8AL language, its semantics is given in the space of
equations on sequences.

. De nition in SIGNAL

TERM(E1, Eo, ...)
is a generic term of theIBNAL language, to which is equal, by de nition, the represemtatf
the current unit.

Clocks

This unit describes the synchronization properties of tharaents (values of Booleans and clocks)
with a list of equations in the space of synchronization. fbtation! (E) is used to designate
the clock of the expressida and the notation to designate the clock of the constant expressions,
or more generally, the clock of the context. An equation Fersegally the following form:

@ ! (E1)=! (E2)

20 INTRODUCTION

7. Graph
This item de nes the conditional dependencies between ripgnaents with a list of triples:

(@) Eq! Es g,

The signaE; precedes the signél, at the clock which is the product of the clock®©f, the clock
of E» and the clock representing the instants at which the Bodearal E3 has the valudrue:
at this clock,E, cannot be produced befoks,.

8. Properties
This item gives a list of properties of the construction (@ample, associativity, distributivity,
etc.).

(a) PROPERTY
9. Examples

(a) One or moré&zxamples inthe SGNAL language illustrate the use of the unit.

Chapter Il

Lexical units

The text of a program of thel&NAL language is composed of words of the vocabulary built on afset
characters.

-1 Characters

The characters used in theGBIAL language are described in this secti@héracter). They can be
designated by an encoding which is usable only in the comsn#éme character or string constants, and
the directives, as precised in the syntax.

1. Context-free syntax

Character ::= character j CharacterCode

[I-1.1 Sets of characters

The set of characters (denoteldaracter) used in the &NAL language contains the following subsets:
1. Context-free syntax

character::= name-char j mark j delimitor j separator j other-character

() The setname-charof characters used to build identi ers:

(a) Context-free syntax

name-char::= letter-char j numeral-char j I:|

letter-char ::

upper-case-letter-char j lower-case-letter-charj other-letter-char

upper-case-letter-char::=

Ali[elifcli[o]i[E]i[F]i[6]iH]i[1]
P i fi[im]i[n]i[o]ifPlilQli[R]
p[slirifulifv]iwli [xJi[v]i 2]

22 LEXICAL UNITS

lower-case-letter-char::=
i
Bl
i[s]i

=]

. —

HBE
BE

.

—
 e—

<]
BER
BEE
=]
BBE
<[=]e]

k|
Tt]

—

other-letter-char ::=

>

>

j
j

T H >
—; H b1

—

IHHE\ -
EEEEREE

—

j
j
j j
jlajli

S

—.
—
pral

<] o]l
m

—

BECE

—
—

—

j
j jle|

j j j
i[e]i J“JEJEJ.JEJ
numeral-char ::=

Lofilalif2fifsfifafilslilelil7]il8]i]e]

Excepted for the reserved words of the language (keywaittus) pper case and lower case forms
of a same letterétter-char) are distinguished. The reserved words should appealytatdbwer
case or totally in upper case.

j

—
—

o] o] =]lo] =]

—

BEEE

[

EEBEE
E\ BEIE

EENREIL

(i) The setmark composed of the distinctive characters of the lexical yaitel the set of characters
used in operator symbols:

(a) Context-free syntax

II-1. CHARACTERS 23

mark ::= |:| separating character in real constants
and distinctive character of matrix products
j | ' |start and end of character constants

j N start and end of strings

] ? start and end of comments

] : character used in the de nition symbol

equality sign

inferior sign

superior sign and end of the dependency arrow

positive and additive sign

L] A

] negative and subtractive sign, and dash of the dependemay ar

j product sign

division sign, mark of difference, and sign of con ning
construction of complex

delay sign

clock sign

exclusion sign

== =]ele] 1]

] composition symbol

(i) The delimitors are terminals of the syntactic levellbwith other characters than letters and nu-
merals:
(a) Context-free syntax

delimitor ::= i parenthesizing, tuple delimitors

i parameter delimitors, dependencies parenthesizing
i array delimitors

input delimitor

output delimitor

j separation of units
J

- ==l

end of units

(iv) The separators given here in their ASCIl hexadecimal code (the space ctearand thdong-
separators are distinguished) :

(a) Context-free syntax

separator::= space

j long-separator

long-separator::= | nx9 |horizontal tabulation

j | nXA | new line

j | nxC | new page

j | nxD | carriage return

24 LEXICAL UNITS

(v) The othermprintable characters, usable in the comments, the directives ancetimtations of con-
stants. This subsetdther-character, is not de ned by the manual.

[I-1.2 Encodings of characters

All the characters (printable or not) can be designated bgramoded form CharacterCode) in the
comments, the character constants, the string constadtshaerdirectives. The authorized codes are
those of the norm ANSI of the language C (possibly extenddtl wodes for other characters), plus
the escape charact@ used in the comments. An encoded character is either a pbeeacter
(escape-codg or a character encoded in octal for@dtalCode), or a character encoded in hexadecimal
form (HexadecimalCod¢. The numeric codegJctalCodeandHexadecimalCodé contain at most the
number of digits necessary for the encoding of 256 chargictee manual does not de ne the use of
unused codes.

1. Context-free syntax

CharacterCode::= OctalCode j HexadecimalCode
j escape-code

OctalCode::= octal-char [octal-char [octal-char]]

octal-char:= [o]j[1]i[2]i[3]i[4]i[5]i[6]i

HexadecimalCode:= hexadecimal-char [hexadecimal-char]

hexadecimal-char::= numeral-char
ifalifeli[clipli[E)i[F]
ilafifofife]ifd]ife]i[f]

escape-code= |na|audible signal

j |nb | backspace

j | nf |form feed

i ?newline

i Tcarriage return

j | nt | horizontal tab

j | nv |vertical tab

j | nn|backslash

' | double quote

' |single quote

percent

nn]
n=
n=
i ? guestion mark
o]

II-2. VOCABULARY 25

-2 Vocabulary

A text of the SGNAL language is a sequence of elements ofTiaeminal vocabulary (cf. sectiof-5,

p. 18) of the SGNAL language. Between these elemeséparators can appear in any number (possibly
zero). ATerminal of the SGNAL language is the longest sequence of contigumusiinals and a
terminal is the longest sequence of contiguous characters that cmrbed by a left to right analysis
respecting the rules described in this chapter. A termiaalaontain a distinctive mark; the next mark is
not acharacter (it is used as escape mark):

1. Context-free syntax

pre x-mark ::= start ofCharacterCode

[1I-2.1 Names

A name allows to designate a directive, a signal (or a growgigofals), a parameter, a constant, a type, a
model or a module, in a context composed of a set of declasatidwo occurrences of a same name in
distinct contexts can designate distinct objects.

A Nameis a lexical unit formed by characters among the set composéetter-chars plus the
characte plus numeral-chars; aName cannot start with aumeral-char. A Name cannot be a
reserved word. All the characters oNmmeare signi cant.

1. Context-free syntax

Name::= begin-name-char [{ name-char}]

begin-name-char::= { name-charn numeral-char }

2. Examples

(a) a andA are distinctNames.
(b) X_25,The_password_12Xs3 areNames.

In this document we will sometimes designata@amefrom a particular categorX by Name X.

[I-2.2 Boolean constant values

A Boolean constant value is represented toye ‘ or ‘ false| which are reserved words (hence they can

also appear under their upper case foffiRUE |and FALSE).

1. Context-free syntax

Boolean-cst:= i

26 LEXICAL UNITS

[I-2.3 Integer constant values

An Integer-cstis a positive or zero integer in decimal representation asag of a sequence of numer-
als.

1. Context-free syntax

Integer-cst::= {numeral-char}*

[I-2.4 Real constant values

A Real-cstdenotes the approximate value of a real number. There aresétgoof reals: the simple
precision reals and the double precision ones that corftgiriormer. TheReal-css are words of the
lexical level so they cannot contain separators.

1. Context-free syntax
Real-cst::= Simple-precision-real-cst
j Double-precision-real-cst
Simple-precision-real-cst::=

Integer-cst Simple-precision-exponent
i Integer—cstD Integer-cst [Simple-precision-exponent |
(a Simple-precision-real-cstmay have an exponent)

Double-precision-real-cst::=

Integer-cst Double-precision-exponent
j Integer-cstlzl Integer-cst Double-precision-exponent
(aDouble-precision-real-cstmust have an exponent)

Simple-precision-exponent:= E| Relative-cst | Relative-cst
Double-precision-exponent:= @ Relative-cst | @ Relative-cst

Relative-cst::= Integer-cst

j Integer-cst
] I:l Integer-cst

2. Examples

(a) The notations contained in the following tables are &nmpecision representations respec-
tively equivalent to the unit value and to the centesimat pathe unit.

1e0 1le+0 10e-1 le-2
1.0 | 0.1e1 | O.1e+1 | 10.0e-1 0.01 | 0.001e1 0.001le+1 1.0e-2

[I-2.5 Character constant values

A Character-cstis formed of a character or a code of character surrounde@ytcurrences of the
characteEl.

II-3. RESERVED WORDS 27

1. Context-free syntax

Character-cst::= El Character-cstCharacterEl
Character-cstCharacter::= { Character n character-spec-char }

character-spec-char;:= D
j long-separator

[I-2.6 String constant value

A String-cst value is composed of a list of sequences of characters suteduby two occurrences of

the charact (list of substrings).

1. Context-free syntax

String-cst::= {D[{String-cstCharacter}* 1 El}*

String-cstCharacter::= { Character n string-spec-char }

string-spec-char::= D
j long-separator

[1-2.7 Comments

A comment may appear between any two lexical units and mdgaea separator. It is composed of a
seugence of characters surrounded by two occurrences dhdahlacte.

1. Context-free syntax
Comment::= [{CommentCharacter}*]

CommentCharacter::= { Character n comment-spec-char }

comment-spec-char:= |%

-3 Reserved words

A reserved word must be either totally in lower case or tptadlupper case. In this manual, only the
lower case form (in general) appears explicitly in the graanmles. It can be replaced, for each reserved
word, by the corresponding upper case form.

The reserved words used by thes8AL language are the following ones:

1. Context-free syntax

28

LEXICAL UNITS

signalkw ::=

j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j

acuon‘ i ‘after‘J ‘and‘ ‘array ‘j ‘assert‘

j |boolean| j |bundle

i [casq j ceII‘J charl j complex‘J ‘constant‘ ‘count‘

j | dcomplex j‘default j | defaultvalue] j determlmstlc‘J ‘dreal‘

j |else| j ‘end‘j ‘enum‘J event‘J ‘external‘

' false‘ j [from ‘j ‘function

jlif | j Ej init ‘j ‘integer‘j ‘iterate‘

j Ebel‘ j |long

' module" modulo‘

j next‘ j ‘node] not‘

o_f] @J operator‘l E

i |pragmas ‘pnvate‘J ‘proces#

j |real| j ref‘

j |safe| j shared‘J ‘short‘ ‘spec‘J ‘statevar‘J ‘step‘l ‘strlng ‘j ‘struct‘

 [ten] 1 [i] 1 [v] [e] 1 [ooe]

j unsafe‘ j ‘use‘

j |var

' when\ i \where\j \window\j \with\

j | xor

Note: is currently hidden in the syntax of the language (cf. @arsectionXI-7, p. 198 et

seq).

Part B

THE KERNEL LANGUAGE

Chapter Il

Semantic model of traces

llI-1 Syntax

We consider:

A={a,as,...,an,b ...}
a denumerable set of typed variablesgorts);

F={f,f1,....09,...}
a nite set of symbols of typed functions;

T ={event ,boolean ,...,t,...}
a nite set of basic types (sets of values);

TT = [O.n!'TT

n2N
the set of array types,

[
SS= BITT
B2A
the set of tuple types,

TT =T[TT[SS
the set of types.

the symbolgdefault ,when, $.
We de ne the following sets of terms, de ning the basic syntd the SGNAL language:

GD={ta}
the set ofdeclarations(association of a type with a variable);

GSS=fah+1 = f(ag,...,an)}
the set ofstatic synchronougenerators (elementary processes), among them the setarbters
on arrays and tuples are distinguished;

GDS={ay:=: a; $init ag}
whereag is a constant with same domain as the set ofdynamic synchronougenerators (ele-
mentary processes);

32 SEMANTIC MODEL OF TRACES

GE ={a3 :=: a; when a,} the set ofextractiongenerators (elementary processes);

GM ={az:=: a; default ay}
the set oimergegenerators (elementary processes);

recursively the sdPROC of syntactic processes as the least set containing:

- G=GD[GSS[GDS[GE[GM
the set of generators,
— PC={P1|P2 whereP1andP2 belong toPROC}
(composition process),
— PR={P1/ a (denoted also P1 where a) whereP1 belongs toPROC anda

belongs toA}
(restriction process).

lI-2 Con gurations

Let D be the set of values that can be taken by the variald&sn guration is an occurrence of the
simultaneousvaluation of distinct variablegsynchronous commmunication)lhe values respect the
properties resulting from the interpretation of the ternigolr are used. In D, the set of Boolean values,
B=ftrue; falseg, is distinguished.

For a variablea; 2 A, and a subseA; of variables inA, we consider:

D, the [domain of values (Booleans, integers, reals...) thatledaken bya;.
DAJ‘ = Dai

a 2 Aj
DA =D

The symbol? (? 62D) is introduced to designate the absence of valuation \wraable. Then we
denote:

D’ = D [f?g
D} = Dp [f?g
ConsideringA; a non empty subset &, we callcon guration on A; any application
e:Ar ! D3,
e(a) =? indicates thaa has no value for the con guratioa
e(a) =v indicates, fov 2 D g, thata takes the value for the con guratione.
e(A1) =fx=a2 Aq;e(a) = xg

The set ofcon gurationsonA; (A7 ! DZl) is denoteoEAl.
By convention,le is the single con guration de ned on the empty set of partéit is called unit

con guration).
Theabsent con guratioronA; (A1 ! f2g) is denoted? o(A1).

I1I-3. TRACES 33

The set

Ai A

is the set of all con gurations on the subsetsAqf.
It is de ned a special con guration o\, denoted], which is calledblocking con guration (or

impossible con guration).
The following notations are used:

EA]_:EAl[f]g
EA]_:EAl[f]g

Partial observation of a con guration

LetA; A andA, A two subsets of ande 2 EA1 some con guration oA\ 1.
The restriction ok on A», or partial observation ad on Ao, is denotedszZ:

en, 2 BEapa,
Itis de ned as follows:
((A1\ A2 6 ;)V (e61])) ((8a2 A1\ Az) ((ga,)(a)= &a)))
(As\ A28)" (€=1)) (Ga,= 1)
(AN Az=3)) (ga, =g = 1o)

Product of con gurations

Lete, 2 Ea, ande, 2 Ea, two con gurations.
Their product is denoteé; e:

e=e &2 Eaja,
It is de ned as follows:
w w
e=1 ., (ee=1) (e2=1) (ejana, & €2ja;1A,))
V
(e6])) ((ga,=e&) (ga,= &)

Corollary 1 (E 4, ,1e) is a commutative monoid.
The product operatoris idempotent andl is an absorbent (nilpotent) element.

1I-3 Traces

A traceis a sequence of con gurations (sequence of observatioiteput the blocking con guration.
For any subsef\; of A, we consider the following de nition of the safAl of traces oM.

34 SEMANTIC MODEL OF TRACES

[11-3.1 De nition

TAl is the set of non empty sequences of con guration®\@ncomposed of:

nite sequences: they are the set of applicationg, N! EA1 where N represents the set of
nite initial segments of N (set of natural integers, inding 0),

in nite sequences: they are the set of applications! N EAl-

The set

[
TA: TA

1 i
Ai A

is the set of all non empty sequences of con gurations on tibsets ofA ;.
The empty sequence of con gurations is dendiid
A trace onA1 is either a sequence Eﬁ‘Al or the empty sequence. The set of trace#\otis:

TA]_ = TA]_ [f OTg

The set of traces on subsetsAf is:
T a =T a,lf Org

The set of traces de ned o, denotedT, is the union of the set§a, for all subsetsA1 of A.

The single in nite sequence de ned oh. is denotedlt and is callecunit trace. It is equal to the
in nite repetition (1g)! of the unit con gurationle.

Theabsent tracenA; (N | f ? o(A1)g: the in nite sequence formed by the in nite repetition of
? o(A1)) is denoted? A, .

Notations

The smallest set of variables 8f on which a given tracd is de ned (de nition domain of the
con gurations composind) is referred to asar(T). By conventionyar(Ot) = A.

For atracel andt an integer, we will note frequently; the con gurationT (t) of T at the instant,
and we will note sometimes the value of a variabla for this con guration.

[11-3.2 Partial observation of a trace

LetA; A andA, A two subsets oA andT 2 TA1 some trace O’ .
The restriction off onA», or partial observation of onA,, is denotedlya, .
If A1\ A 6 ;, Tya, is the tracel, such that:

dom(T,) = dom(T)
8t 2 dom(T) Ta(t) = T(t)a,

If A1\ Az =, Ta, = T = 17.
f A28 ;,0ra, = Or

I1I-3. TRACES 35

[11-3.3 Pre x order on traces

The following relation is de ned on traces:
T:\ T, ifandonly if:

dom(Ty) dom(T>)
(8t) ((t2dom(Ty))) (Ta(t) = To(t)))

It is said thafT, is a pre x of T,.

Corollary 2

\ is an order relation onl, Ot is the minimum for this order.
The set of pre xes of a trace is a chain.

Any subset of pre xes of a trace has an upper bound.

The notationT ; represents the pre x of a tracde such that 2 dom(T ;) andt +1 62dom(T).

[11-3.4 Product of traces

The producfT = T; T, of two tracesT; and T, de ned respectively o\; andA» is the greatest trace
for the order relation such that:

Vv
(Tka, \ T1) (Tka, \ T2)
(itisde ned onA1[A, and is obtained by termwise products of respective events).

Corollary 3 (T a,,,l7)is a commutative monoid.
The product operatoris idempotent anf)t is an absorbent (nilpotent) element.

[11-3.5 Reduced trace

AtraceT; is said to be aub-traceof a non empty trace, if and only if there exists an in nite sequence
f 1, strictly increasing (i.e., injective and increasing) Br{such a sequence is calledpansion function
onTy), such that:

T2 fajgomery = T1

(the notatiorfx designates the restriction of a given functfolon the domairx).

Remarks
Oy is a sub-trace of any trace;
any pre x T, of T, is a sub-trace of».

Corollary 4 The sub-trace relation is a preorder (re exive and trangs).

The sub-trace relation is not antisymmetric, as shown bydth@ving sequencest)' and()
(withfy(n)= n+1).

36 SEMANTIC MODEL OF TRACES

De nition A traceT; is said to be aeduced traceof a non empty tracd> if and only if T is a
sub-trace ofl; and:

(dom(Tq) is nite)) (dom(Ty) is nite)

for any expansion functiof, on Ty such thaflz f1j4om(r,) = T1, then:

(8t 2 (dom(T2)) nf1(dom(T1))) (Ta(t) = ? e(A2))

Proposition The relation'is a reduced trace of”is an order relation.
“T,1 is areduced trace af” is denoted:

Ty #To

Proof of antisymmetryT; 4 ToandT, 4T
dom(T,) =dom(T,)
If dom(T1) is nite then the single possible expansion functionTanis the identity.
For any traceT, T is a pre x of Ty if and only if it is a pre x of T, is proved by recurrence on the

length of T.
Then the existence of an upper bound to any subset of pre kadrace proves the equality. 2

For a given expansion functidnand a tracd 1, there exists a least trace (for the pre x ordey, T,,

such thatl; 4 To.
We denote by the function that, to an expansion functibrand a tracd , associates this least trace

f " T (example on gureB-lIl.1).
Then we have, by de nition:

T xf"T
T e e ? (= ef_“
f1n T e 2 ?* e 2 2

Figure B-IIl.L:f 1" T with f 1(0) =0, f1(1) = 3,f 1(2) = 4,f 1(3) = 5...

Property:
fo" (F2" T)=(f2 f2)"T

For anyf , we have alsé " O = Or.
By convention:f " 17 = 15.

lH-4. FLOWS 37

l1I-4 Flows

De nition A ow is a trace which is minimal for the relationy.

Comment: A owF onA; is a trace that does not contain the absent con guratioA phetween
two con gurations which have valued variables.

Corollary 5

(Fisa owandFi\ F)) (Fiisa ow);

Ot isa ow;

1t isa ow;

if F isa nite owon Ay, then(F ? e(Al)!) isa ow;

? A isa ow.

[1I-4.1 Equivalence of traces
De nition Two tracesT; and T, are said to be equivalent modufo (this is denotedT; 4 Ty) if
and only if there exists some tragesuch thafl » T; andT 4 T».

This relation is indeed an equivalence relation.
Property For any tracel, the equivalence class ®f modulo? is a lattice.

Proof

By de nition, every pairTy, T» in an equivalence class has a lower bound.

Every pairTq, T2 in an equivalence class has an upper bound:
Letfq, fo such that:

T1 f1=min(Ty;T2)
T2 f2=min(T1;Tz)
The upper bound is the trace
max(Ty;T2) = f2" Ty = 9" T
with f 9, f 9 de ned as follows:

8t; if 9s;f1(s) = t thenf X(s) = max(t;f »(s)),
if s 62f 1(dom(min(Ty; T2))) thenifs =0 thenfXs) =0 elsef (s)= fXs 1)+1

(f Qis de ned symmetrically).
Then

(f9 f0) " min(Ty;To) =(f2 f2) " min(Ty; T2) = max(Tq; To)

38 SEMANTIC MODEL OF TRACES

Each equivalence class has a ow as lower bound. For a fratieis ow is denotedTy.

Notation The set of ows onA; is denotedSa, .

[1-4.2 Partial ow

LetA; A andA, A two subsets oA andF 2 SA1 some ow OnAj.
Theprojectionof F onAy, denoted a,(F), is de ned by:

A2(F) = (Fga,)#
The following equalities hold:
8F, .(F)= 17
Az(OT) = OT

Az(? Al) = ’) A\ A,

11-4.3 Flow-equivalence

Equivalence modul@ is an equivalence relation that preserves the simultamesgf valuations within
a con guration and the ordering of con gurations within ade: traces which are equivalent mod@lo
possess the same synchronization relations.

A weaker relation is introduced, which is called ow-equrmace. It allows to compare traces with
respect to the sequences of values that variables hold.

De nition A traceT%de ned onA; is arelaxationof a traceT de ned on the same set of variables

Ajifandonlyifforalla2 Ay, T 4+ TO This is denotedT v TO

kfag kfag:

Corollary The relaxation relation is an order relation.

De nition Two tracesT; andT, are said to beow-equivalent(this is denotedT; T5) if and only
if there exists some trace such thafl v T; andT v T».

The class of ow-equivalence of a tradeis a semi-lattice. It admits a lower bound which is a ow,
written T .

[1I-5 Processes

[11-5.1 De nition

A processonA; Ais aset of ows onAj which are non comparable by the pre x relation.

I1I-5. PROCESSES 39

Example Let us represent a ow by the sequence of its events, wherevemt & represented by the
variables which are valued for it (successive events araratgal by the sign “;”).
Consider the following ows de ned on variables b

Fi: aabb
Fo,: ajabab
Fs: ajabbb

The ows F; andF, (respectivelyF, andF3) can belong to a same process. HowelrerandF3
cannot belong to a same process since they are comparable.

The set of processes @ is denotedP . Itis a subset oP (Sa,), the set of subsets &,
The set

Pa= ' Pa

1 i
Ai A

is the set of processes on the subset& of

The processlp = fltg, de ned on the empty set of ports and with the unit trace as single
element, is callednit process.

The process 0A; de ned by the empty set of ows is denotddp (A1).

Notation

The notationvar(P) is used to designate the smallest set of variables oh which the procesB is
de ned.

[11-5.2 Partial observation of a process

LetA; A andA, A two subsets oA andP a process ow\i.
Theprojectionof P onAy, denoted a,(P), is de ned by:

A, (P)=1f a,(F)=F 2P and a,(F)ismaximal for\ g

[11-5.3 Composition of processes

Let P; andP, two processes de ned respectively An andA.
Thecompositionor synchronous compositipof P; andP,, denoted1jP,, is a process oA1[A»
de ned by:

PijP2= fF 2 Sp A, = (9F12P1) (a(F)\ F1))

v ((OF22P2) (1 A, (F)\ F2))
(F is maximal for\)g

Corollary 6 (P A;.J.1p) is @ commutative monoid.
The composition operatgris idempotent an@p (A1) is an absorbent (nilpotent) element.

40 SEMANTIC MODEL OF TRACES

[11-5.4 Order on processes

The following relation is de ned on processes:
P1\ P, ifandonlyif:

(8F12P1) ((9F22P3) (Fi\ F2))

This relation is an order relation.

Proof of antisymmetry:
(P1\ P2)) ((BF12P1) ((9F22P2) (F1\ F2)))

(P2\ P1)) ((9F32P1) (F2\ F3))
ThenFy1 = F3z since ows in a process are not comparable\ hy
ThenF1 = F,. ThusP; = Ps. 2

Corollary 7

A2(0p (A1) = Op(A1\ A2)

var(p)(P) =P

AnA(P)=(Ay A(P)

ALA(P)V A (P)] AL (P)

var(P;)(P1P2) \ P1

is monotonic: P1\ Py)) (B(P)\ B(P2)
j ismonotonic: P1\ P2)) (QjP1\ QjP2)

B (P1jP2)\ B (P1)j B(P2)
Proposition LetP; andP; two processes de ned respectively Aq andA».
(Pr= A (PiP2)) o (ana(P)\ apna,(P2)

Sketch of the proof:
Since a,(P1jP2)\ Py itis suf cient to prove that

(P1\ A (P1jP2)) » (ana(P)\ apnay(P2))

)) Assume thaPq \ Al(Plj P>).

LetF 2 Aq\ Az(Pl)

(OF12P1) (F= apnay(F1))

SinceF; 2 Py, by hypothesis,(9F%2 A, (P1jP2)) (F1\ F9)
Thus (9F %2 P1jPy) (F1\ A, (F%)

By de nition of the composition,(9F$%2 P,) (a,(F°Y\ F9
LetF%% Ay a,(F2)

ThenF \ FJ00

I1I-6. SEMANTICS OF BASICSIGNAL TERMS 41

() Assumethat o\ a,(P1)\ ap A, (P2).
If F1 2 Pl, then (9F2 2 Aq\ AZ(PZ)) (Aq\ Az(Fl) \ F2)

Thus (9F22 P2) (anas(F)\ anas(FD))
Thus (9F 2 P1jP2) (F1\ a,(F)) 2

Consequences

if AL\ Ao = ;i P1= A (PijP2) andPy = a,(P1jP2)

if A1 Ai(Pi= A (P1P2)) , (P1\ a,(P2)
if Ao A1:(P1=P1jP2) , (a,(P1)\ P2)
if A1 = Az (P1= P1jP2) , (P1\ P2)

As an application, iPP, represents a safety property de ned on the same set of VesiasP1, P,
satis es the propertyP,, which means that any ow oP; is a ow of P, (P, is less constrained than
P1), if and only if P1 = PqjP».

Note that there is the same result whH&nis de ned on a subset of the variablesmyf.

More generally, ifA, A1, P1 = P1jP2 means thaP, is anabstractionof P;.

III-6 Semantics of basicSIGNAL terms

The semantics of each primitive operator is de ned by a sebws: a SIGNAL processonA; Alisa
non empty set of ows o1 (i.e., a subset oSAl) de ned, from primitive operators and composition,
by constraints(relations) on the ows.

In the following, we denote generically : PAl a process o\1, to de ne the semantics of the

which are distinct.

[11-6.1 Declarations

Let designate a type whose domain of values (s).
The term

X

de nes a proces® : Pfx g representing all the possible sequences of values of thals(g

P= f T2Sxg=
@) ((x)67?2)) (M(x)2 () g
[11-6.2 Monochronous processes

A processP de ned on A; is said monochronousf, at each instant for which one of the signals
is present (respectively, absent), all of them are alsoepte@espectively, absent). Flows de ning
monochronous processes are called also monochronous ows.

(8T 2P) ((8) (((9X 2A1) (T(X)=7))) ((BY2A1) (Te(Y)=7))))

42 SEMANTIC MODEL OF TRACES

2-a Static monochronous processes

Let F be an operator. Under some interpretatidior which the interpretation df is denotedjFj]; , the
term

)<ﬂ+l::: F(X].!!)(ﬂ)

de nes a proces® : Pvar(xl ----- Xn:Xns1) DY some relation between the sequence of values of the

signal X,+ 1 and the sequence obtained by the pointwise extension ofphication of F, under this
interpretation, to the sequence of tuples of values of tgaats X,. .. X, (note that the sign:%: ”
makes explicit the fact that this term represents a non ricequation).

T is monochronous and

(8t) ((Te(Xn+1) € ?)) (Te(Xn+1) =[iFjI (Te(X1); 5 Te(Xn)))) 9
2-b Dynamic monochronous processes: the delay
The term
X = X $init

de nes a proces® : Pvar(xl; X,) by the relation constraining the equality of the sequenceabfes
of the signalX, and the sequence of values of the sigkaldelayed by 1\ is the initial value ofX,.

P: f TZSvar(Xl;Xz):
T is monochronous
and (8t> 0) ((Ti(X2)€ ?)) (Ti(X2)= Tt 1(X1)))
and(To(X1) 6 ?)) (To(X2)= Vo) 9

[11-6.3 Polychronous processes

A process de ned o\ is saidpolychronousf it contains a ow T for which there exists some instant
in which one of the signals is present while another one isBpextension, a term is said polychronous
if it allows to de ne polychronous processes.

3-a Sub-signals
The term
Xz = X when X

de nes a proces® : PVB.I’(XJ_;XZ;X:;) by the relation constraining the equality of the sequence of
values of the signa¥s and the sequence of occurrences of value of the skinahen the Boolean signal
Xo carries the valugrue.

P= f T2Syarx,;:Xsxs) = (8 (
vy (Ti(X2) = true)) (Tei(X3) = Ti(X1))
((Te(X2) 6 true)) (Te(X3)="?))) g

I1I-7. COMPOSITE SIGNALS 43

3-b Merging of signals
The term
Xz =i Xpdefault X

de nes a proces® : PVB.I’(XJ_;XZ;X:;) by the relation constraining the equality of the sequence of
values of the signaX; and the sequence formed by the occurrences of value of thal 3{gor by default
the occurrences of value of the signal

P= f T2Syax,; Xsxs) = (8) (
vy (Ti(X1) 8 2)) (Ti(X3) = Ti(X1))
(TtX1)=7?)) (TuX3)= Te(X2)) g

[11-6.4 Composition of processes

The term
P | P

whereP; andP, de ne respectively processés; andP, on the sets of variables; andA,, de nes a
process : PAl[A, by the greatest relation constraining their common sigieaigspect the constraints
imposed respectively by; andP, (see an example in the gui@—Ill.2, p. 44).

P= PP,

[11-6.5 Restriction

The term
Py | a

(or P where a)
whereP; de nes a procesd$’; on the set of variabled\;, de nes a proces® : PAlnfag by the
projection ofP ; on the subset of ports & which are different frona.

P=" A;nfag(P1)

llI-7 Composite signals

The types of the &NAL language contain elementary types such as Booleans, iigjegje., but also
structured types allowing to declare composite objectsic8ired types are tuple types and array types.

44 SEMANTIC MODEL OF TRACES

| |
a C 7 V3
P1 l l
| |
a J wz)‘ ?
/ / -
/ /
/ /
/ /
/ /
/ /
/ /
((9
o - Wo !
| |
P2 L
az L ? X3
| |
| |
N N
/ /l AN AN
! / N N
({ B B
| | | |
ad ? | Vq | Vo | ? | V3
| | | |
| | | |
PIP2 a ? LWy ? L Wo ?
| | | |
| | | |
az X1 | Xp ! ? L7 X3
| | | |
| | | |
a1 V3 Vg
P1P2 a ? ?
az ? X3

Figure B-lIl.2: Two ows of the composition dPlandP2

1I-7.1 Tuples

Construction of tuple

If B, ...,Endesignatan signals of respective types, ..., m, the term
(E1,... Ep
de nes a tuple of signals, of typg 1 ::: m) (Where designates the product of domains), such
that

Tuple types

I1I-7. COMPOSITE SIGNALS 45

Letm types 1,..., m, m names of variable8y, ...,A, and a process of synchronizati@n
The term
bundle(1A ...; mAn)spec C

de nes a tuple type (with named eld4, ...,A, as the set of functions:

[
DA A (i) suchthat(A)2 ().
i=1
It is reminded that the notation(i) designates the domain of values (type) associated with
WhenC is the process of synchronization that de nes all the eld#he tuple (recursively) as being
synchronous, the corresponding type is then denoted bgthe t

struct(1A -5 m An)

It can be considered, generically, that a tuple type, remtesl by a tuple with named or unnamed
elds (cf. partC, sectionV-5, p. 78 et seq), can be viewed as a product of domains

(1 0 m)

where | is the type of th&™ element of the tuple.

Declaration of a tuple variable (with named elds)

The association of a tuple type with synchronizatidnwith a variable, denoted by the term
bundle(1A ...; mAn)spec CX

de nes a polychronous tuple of signals, such that

@8t (
((8) ((Xu(A)8?)) (Xe(A)2 (i)
(the relation de ned by the process denoted®ys veri ed))
Remark:
Such a declaration is a@\VAL process with as interfacey A, ..., m Anin input, and the empty set
in output.

For the particular case of a monochronous tuple, the asgmti@denoted by the term
struct (1A m An) X

de nes a monochronous tuptgnal, such that
8) ((Xc67?)) ((8) (Xe(A)2 (1))
Access to an element

WhenXdesignates a polychronous tuple the type of which is de reetha set of functions

M

DA A i suchthat(A) 2 i,
-1

the term |

Y = XA

46 SEMANTIC MODEL OF TRACES

de nes a process allowing to access to a component of the:tupl

8t) (Yi=X¢(A))

Particular case: wheXddesignates a monochronous tuple, the term

Y = XA

de es a monochronous process allowing to access to a componghe tuple:
@) ((Xe&7?)) (= Xi(A)))

Pointwise extension

The operators de ned on values of elementary types may lendgt canonically (pointwise exten-
sion) to tuples.

Let us consider someperatorF de ned with the following signature:

1 o N N +1

(note that operators may be polymorphic on some of theiraoqs, so that a given, may stand here
for some set of types).

We will denote
(X @ik, - - X ank)
the elements of a tuplg with m elements.

If at least one of the is a tuple the elements of which are correspondingly possilljuments of
the operatof, more precisely, if

: : W : \Y
©Om ((BK (((%)=Chk 0 k) (X)=7)) " (
R ()0 s W))))
(where ,, ..., k, and i represent some particular instances of typg
the term

X|\|+1::Z F(X]_, ,XN)

under some interpretatioh, speci es a process which de nes the tuple with elementsXy 1 by a
pointwise application ofF:

(8t) ((8i; 1 i m) (X_ain+1i =[JFili(vi_ait; 2 vn_ait))
where
: : V
C (Q)=Cr 0 w)y) (k@ =X &) (
C)6k =t k) ((R)="W)) (W@t = Xky))

This de nes recursively new signatures of the operatorsthst the pointwise extension can be
applied recursively.

-7.2 Arrays

D being the set of values that can be carried by a variabkeiniroduce a distinguished value, denoted
nil , such that, semanticallpil 62D andnil 6 ?. This value is in particular the value of a non de ned
element of an array. In the language, a value equaliltanay be any (non determined) value of the
correct type.

I1I-7. COMPOSITE SIGNALS a7

Array types

Letm integersny, ...,ny (N; 2 N), and a type .
The term

de nes an array type as the set of functions:
(0.ny 11 ::: [0o.ny 1! (),
where [0.n; 1] denotes the set of integers included between Omndl, and () denotes the domain
of values of type .

The curry ed and non curry ed forms of the functions de ning an array type are considersed a
equivalent.
Thus, when the type is itself an array type, de ned by the set of functions

(0.nmsr 1 0 [0enmep) (),
the type denoted blyny;:::;nm] is de ned by the set of functions
(0.ny 11 ::: [0nmsp D! ().

Declaration of an array variable

The association of an array type with a variable, denotedhéydrm
[ng:innm] X
de nes an array signal such that

(8t) (
(X6 ?)

) (81 k m) ((8ik;0 ik nme 1) (Xelinim)2 (1))

ForX an array of typ€[0..ny 1] ::: [0.ny 1D'
the set of tuples of types [@3 1] ::: [0.n, 1]wherel p misdesignated bipom(X).

Complete arrays and partial arrays

An array of typeg([0..n7 1] ::: [0.nn, 1])! is saidcompletef the function
([0.ny 1] ::: [0.ny, 1!
that de nes it is total.
If this function is partial, the array is saartial.
In this case, it is de ned by the total function
([0.ny 1] ::: [0.ny, 1! [f nilg
that extends this partial function by associatimlg with the non de ned elements.

When the array de ned by one of the following operators mayphetial, the function described
by this semantics is necessarily a restriction of the faimcthat de nes the array. The corresponding
extension is such that any element non de ned by the senzistiequal tail .

48 SEMANTIC MODEL OF TRACES

Array element

WhenXdesignates an array the type of which is de ned as the setnatifons

([0.ny 1] ::: [O0.ny, 1D! -,
andl 4, ..., mare signals of type integer,
the term

Y = Xlg,...04

de nes a monochronous process allowing to access to an atevhéhe arrayx

(8t) (
(X{ 6 ?)

Vv
) (((Blke) (O Ty e 1)) (Vi=Xe(lwesi:5Ime)))

This operator is generalized below (see “extraction of auby").

Static enumeration of array

The term

X = E&,..&l

de nes a monochronous process enumerating the elementsasfay:
@8t) ((Xe&7?)) ((Bi=1;:::5n) (Xe(i)= Eit)))
Iterative enumeration of array

The term
K :=: Nrecur f from

(whereN maximum number of iterations, denotes a positive integhich has a stricly positive upper
bound,upper_bound(N); Vp denotes a value (or a tuple of values) of tygeandf is a function from
into),

de nes a process enumerating elements of a vectoraffsizeupper_bound(N):

8t) (
(Kt 8 ?) v v
W (8) (((0 i<N¢ 1) \((K(0)= Vo) (Ke(i +1) =[jf jli (Ke(0))))
((N¢ i< upper_bound(N) (K(i) = nil)))))

The equatiorK ((i) = nil expresses the fact that the corresponding value existse(silh the ele-
ments of an array have the same clock), but it is not detenilmethe language, this can be represented

by: Ki(i) = Ki(i).
This form is not provided as such in the concrete syntax ofghguage.

A particular formis 0.. N 1 which represents the term Nrecur f from 0 wheref
designates the function on integers such fifa) = x + 1.

I1I-7. COMPOSITE SIGNALS 49

Pointwise extension

The operators de ned on values of elementary types may lendgt canonically (pointwise exten-
sion) to arrays.

Let us consider some operatede ned with the following signature:

A VI B NP

(note that operators may be polymorphic on some of theiraops, so that a given, may stand here
for some set of types).

If at least one of th@ % has one dimension more than the corresponding argumeng itetinition
of the operatofr, more precisely, if VY . v
©@m) ((@K (((M)=.m 14! W ((%)=")) (

C @k (M)=0.m 14!)

(where and represent some particular instances of type
the term

THe1:= FH(TX, ..., TX)

under some interpretatidn de nes a monochronous process which de nes the afigy ; by a point-
wise application of:

(8t) (
(TXn+1; 8 ?)

) (8,0 i m 1) (TXner ()= [iFil (vaeli);zo;vne(i)
where . Vv
(€ (M) =10.m 101)\) M= TXk@) (
((M)spo.m 1! o) ((M™)="K)) el = TXc)))

This de nes recursively new signatures of the operatorsthst the pointwise extension can be

applied recursively.

Cartesian product

With | andJ arrays of respective types
(1)=o.m 1! and (I)=[0.n 1!
the term

(3= 13

de nes a monochronous tuple of signa(d, ;JJ), with Il andJJ of respective types
(W)=[o.m n 1! and (J3)=[0.m n 1!
such that:

8t) (
(1.6 ?)

) (80 k m 1), ((8;0 p n 1) (
(le(k n+p)=1e(k) Ik n+p)=Je(p)))))

More generally, ifl is a tuple (with unnamed elds) of type
()=[(o.m 19t 4 = [O.m 1! ,

50 SEMANTIC MODEL OF TRACES

andJ is an array of type

(B)=[0.n 17!
the term
(I g, 01 pdd) = l,J
de nes a monochronous tuple of signall, 1;:::; Il p;JJ), with, if I designates the tup{@ 1;:::;11 p)
Il andJJ of respective types
(W)=o.m n 1! 4 ::: [0.m n 1!
(33)=[0.m n 1!
and:
8t (

(116 ?)
) (80 k m 1), ((8;0 p n 1) (
(lHe(k n+p)=1e(k) Ik n+p)=Je(p)))))

The cartesian product is used in particular to de ne joiiigexes used for multi-dimensional itera-
tions of processes.

Remark: l4,...0lm = 11, lo,...lm

Partial de nition of array

wherel 4, ..., | , are integers or arrays of integers:
(11))=...= (1n)=(0.by] ::: [0.))!
with an integer type, and the basic integer values of thare positive or zero,
() =(0.c1] ::: [0.g])! withey by by,
and (Y)=([0.a;] ::: [0.a,])! [f nilgwithford i n,a= max I;(K)

k2Dom(l;)

de nes a monochronous process which speci es, in the gécasse, a partially de ned array:

(8t) (
(X¢ 6 ?)
) (v
((p=0) (

(K6:)) ((Kmax =maxk)) (Vi(s::50n) = Xe(Kma))))))

where theK hax are obtained by the maximal elements in the #etsising the lexicographic order on
NP.

I1I-7. COMPOSITE SIGNALS 51

Extraction of sub-array

The de nition of the operator of access to an element of agagn above is generalized in the
following way to de ne the extraction of sub-array.
The term

X = Y1q,...00]

wherel 4, ..., | , are integers or arrays of integers:

(1))=...= (1n)=(0.by] ::: [0.))!

with an integer type, and the basic integer values of thare positive or zero,
(Y)=([0.a1] ::: [0.an])!
and (X)=([0.by] ::: [0.B]! [f nilg

de nes a monochronous process which, in the general casacexsome sub-array froi

(8t) (

(Yi 6 ?)

) (i
((((lagsiistag) 2 Dom(Y))) (Xe= Yi(laiiiIng))) (

w5 62Dom(Y))) (X = nil))
((8(1;:::5ip) 2 NP;8K;1 k p; 0 jk b)) ((
((MeeGaszzsip)iiisitne(inriisiip)) 2 Dom(y)))
Xe(Gor5dp) = YelaeGassip)iiintnelniisip)) o (
((MeGarzzsip)iiinitnt(asiiosip)) 62Dom(Y))) (
Xt(j1s:iiijp) = nil))))))

Sequential de nition

The term
T = Tlnext T2
where:
(T =(0.c1] ::: [0.co])! 1[f nilg,
(T2)=([0.by] ::: [0.bp])! o[f nilgwithe, by;iii;g by,
and (T)=([0.ca] ::: [0.co])! (1t 2)[f nilg

de nes a monochronous process which speci es, in the gémaise, a sequential de nition of an ar-
ray:

(8t) (
(Tt &8 ?)
) ((8(uiiizijp) 2 NPIBKA k p; 0 ji o) ((
(((j2;::130p) 2 Dom(T2) ~ (T21;:::35p) € 0il))) (
Ti(nip) = T20ge)) (
(((J2;:::5)p) 62DOM(T2)) (T2 (1;:::50p) = nil))) (

Te(indp) = ThGip))))

52 SEMANTIC MODEL OF TRACES

[I-8 Classes of processes

The following classes of processes are usefully distirgrds

[11-8.1 Iterations of functions

Let P a process de ned oA;. P is aniteration of functiononA, A if and only if:

(8F1;F22 P) ((8t1;t2) ((Fika,(t1) = Faka,(t2))) (Fa(ty) = Fa(t2))))

Remark: An iteration of function does not need memory.

[11-8.2 Endochronous processes

Let P a process de ned oA;. P is endochronou®n A, Aj, whereA, is considered as a totally

P! falg(P) o fang(P)
such that
(F):(falg(F);:::; fang(F))

is injective (and thus bijective, since it is necessarilgjesttive).

Informally, a process is endochronous on a set of varialflagyi ow of this process is entirely
determined by the sequences of values carried by thesdheiandependently of their relative presence
and absence.

In other words, a process is endochronous on a set of vasi#fldéven an external (asynchronous)
stimulation of these variables, it is capable of reconsitngca unique synchronous behavior (up?e
equivalence). Then, it can be implemented as a process vidiofostly insensitive to internal and
external propagation delays. This implementation andadtgext have only to agree on activation starts
and on the availability of data.

Property A processP de ned onA; is endochronous oA, Aj if and only if:
(BFiF°2P) (((a(F) =(a(F%) . (F 4F9)

If a subsetA, Aj is considered as the setioputsfor P, we say thaP is endochronous if it is
endochronous on its inputs.

[11-8.3 Deterministic processes

A process is deterministic on a set of variables if any ow loitprocess is entirely determined by its
restriction to this set of variables.
Let P a process de ned oA;. P is deterministicon A, A if and only if the function

P! A, (P)
such that
(F)=a(F)

is injective (and thus bijective, since it is necessarilgjesttive).

In other words, a process is deterministic on a set of vatalblany two ows of this process have
the same behaviors when they have the same projection osethig variables.

I1I-8. CLASSES OF PROCESSES 53

Property A processP de ned onA; is deterministic orA, Aj if and only if:

(8F;F°2P) (((m(F) #(a(F9)) (F #F9)

Remarks and examples:

For any elementary proces$s of the SGNAL language of the fornx :=: E(y1, ..., Yn), if
For any elementary proces$s of the SGNAL language of the fornx :=: E(y1, ..., Yn), if

X = Ydefault X
is not deterministic of Yg.

The determinism 0#A; is not stable by composition and restriction.

Properties:

If a proces<P is an iteration of function o1, then it is deterministic o .
If a process is endochronous oA1, then it is deterministic oA ;.

[11-8.4 Reactive processes

Reactivity of a process with respect to some set of variahleg be de ned as the ability of the process
to react to each con guration of these variables in all state

Let P a process de ned oA;. P isreactiveonA, Aj if and only if for each owF 2 P, for
eacht 2 dom(F), for each evene on A, there exists a owF°2 P such that:

V
(F% 1=F t 1) (FA)js, = ©:

P is strictly reactiveon A, A1 if and only if for each owF 2 P, for eacht 2 dom(F), for each
evente on A, different from the absent eveRte(A>), there exists a owF°2 P such that:

V
(Fot 1= F ¢ 1) (Fo(t)jAz = e):

A process which is reactive on a non emptyAetis obviously strictly reactive oAo.

Examples:

Z = Xdefault Y

is strictly reactive orf X; Yg.

Z = XandY

is neither strictly reactive, nor reactive 6X; Yg.

54 SEMANTIC MODEL OF TRACES

[1I-9 Composition properties

[11-9.1 Asynchronous composition of processes

The partial order of relaxation is used to de ne the semandictheasynchronousomposition of pro-
cesses: roughly, the asynchronous composition of two psesP; andP is de ned by the ows the
projection of which on common variables Bf andP, are relaxations of the projections on these com-
mon variables of ows ofP; and of ows of Ps.

De nition LetP; andP, two processes de ned respectively An andA,.
The parallel compositionor asynchronous compositiasf P; andP»,, denotedP1kP,, is a process

onA1[A, dened by:

P1kP, = fF 2 Sp,[A, = ((F12 Sa;9F22 P1) ((F1\ FD
v Cana(F1) v ana,(F))
v Cama(F1) & amar(F))))
((9F22 Sa,9FP2 Po) ((F2\ F)
v Cana(F2) v anay(F))
v Cama(F2) # anai(F))))
(F is maximal for\)g

11-9.2 Flow-invariance

Flow-invariance,based on ow-equivalence, is a property that relates syomabuis and asynchronous
compositions of processes. It consists of ensuring thasgncaronous “implementatiorP;kP, of a
synchronouspeci cation P1jP, preserves the sequences of values for all ows.

De nition Let P, andP, two processes de ned respectively An andA.
The composition oP1 andP, is said ow-invariant onl A1 [A, if and only if:

(8F 2 P1jP2) ((8F°2P1kPy) (((+(F) =(1(F))) (F F9))
It means that a synchronous design made of a ow-invariantpmusition of processes is robust to

their distribution.

[11-9.3 Endo-isochrony

A special case of practical interest is the one of endochuspoocesses.

De nition Let P; andP, two processes de ned respectively &1 andA,. They are saicendo-
isochronousf and only if P, P> and a,\ A,(P1)] a;\ A, (P2) are endochronous.

Property If P; andP; are endo-isochronous, then their composition is ow-isar on its set of
variables.

I1I-10. CLOCK SYSTEM AND IMPLEMENTATION RELATION 55

I1I-10 Clock system and implementation relation

The re nement of a system speci cation consists in transfiog its abstract behaviors into more con-
crete ones that make intermediate computational stepgixglonversely, the abstraction of a behavior
consists in discarding some intermediate calculationsisThis useful to have aimplementation rela-
tion between processes, that takes into account a notion of Gmement.

Sampler system

Let T atrace oM. A sampler systerfor T is a functions : A; ! Aj such thats is acyclic, and
foralla2 A1, s(a) is a Boolean and

(8t) ((Ti(s(a)) = true)) (Ti(a) & ?))

A function s is a sampler system for a procd3sf and only if it is a sampler system for every ow
of P.

Clock system

Let T atrace omA;. A clock systenfior T is a sampler system such that foralp A4,
8t) ((Te(s(a)) = true) , (Ti(a) & ?))

A function s is a clock system for a proceBsif and only if it is a clock system for every ow of.
Sampling

Let T atrace orA; ands a sampler system foF. Thesamplingof T by s is the traceT ®= S¢(T)
de ned onA; such that forall 2 A;, (8t) (TYa) = S (Ti(a))) whereS is recursively de ned
as follows:
if sis not de ned ona, thenS (T (a)) = Ti(a),
if sis de ned ona, then

S (Ty(a) = Ti(a) if S (Ti(s(a)) = true;
S (Ty(a) = ? if S (Ti(s(a)) 6 true:

Let P a process de ned oA;. The sampling oP by a sampler systemfor P is the proces®®
denotedP®= ¢(P), de ned as the set of ows which are equivalent to samplin§ows of P:

\%
PO= T2 Sa, =(T2P) (T%= S¢(T))g
Well-clocked implementation

Let P a process ol\; andQ a process or\, such that there exists a one-to-one correspondence
such that (A1) Ao, and lets a clock system oQ.
Q is awell-clocked implementatioof P with respect tes (denotedQ ¢ P) if and only if:

an(s(Q)) = P:

56 SEMANTIC MODEL OF TRACES

lI-11 Transformation of programs

A general principal of transformation of programs (whichajgplied for SGNAL programs all along
the design of an application, for example for veri cationrpose, for implementation purpose, or to
calculate abstractions of behaviors) consists in thewatlg generic rewritting scheme: homomorphisms
of programs are de ned such that a program is contained irctimeposition of its transformations by
these homomaorphisms. Typically, one of these transfoanatis an abstract interpretation of the initial

program.
Let A; a set of variables. We consider:

an interpretation homomorphisi, which associates with each elementary proéesie ned on
A1 aproces®); = f(P)onAy,

an homomorphism, which associates with each elementary pro¢este ned onA1 a process

suchthat A\ a,(P)\ ap A, (QfQr)

and thusP = A, (Pj(Qf]Qr))-
Then we de ne a transformation of programs (which is an homgrhism)

Ty - PAl ! PA(l)[A,

such that

Ti (P) = left(T Ty (P))jright(T Ty (P))
with:

left((< X;Y >)= X

right(< X;Y >)=Y

TT#(P)= <f (P);r(P) > if P is an elementary process

T T (P1jP2) = < left(T Ty (P1))jleft(T Ty (P2)); right(T Ty (P1))jright(T T (P2)) >
Then,P = A, (PjTx (P)).

Chapter IV

Calculus of synchronizations and
dependences

V-1 Clocks

As said before, the clock of a signal represents the presaeatants of this signal, relatively to the other
ones. A system of clock relations is associated with anyesystf SGNAL equations (85NAL process),
in order to represent speci cally thgynchronization®f the process.

For that purpose, an homomorphis@iock, is de ned on processes, which has the following prop-
erty:
Clock(P)| P=P
or equivalently:P\ Clock(P)
(by abuse of notation, we use the same notation for the symtand semantic homomorphisms).

Then, the system of clock relations is encoded as a systeralyfigmial equations on the eld of
integers modulo 3.

IV=1.1 Clock homomorphism

Let us consider the followinglerivedelementary processes, in order to make easier the expressio
clock equations:

a = by

isde ned byay :=: a;==ay

where == represents the equality operator de ned on values of ang.tyjbe signab, is de ned

at the same instants as the sigaghnd at each one of these instants, its value is the Booleaa val
true (the type ofa; is the subtype calledvent of the Boolean type, which contains as single value
the valuetrue). It is said thaba; represents the event clock of the sigaal

arb= a

is de ned by @3 :=: ba; ==bay) where aj

and is generalized to variables &1 b= ...b= a,). It expresses that the signas anda, (more
generally,ay, ...,a,) are present at the same instants (their clocks are equal).

The Cock homomaorphism is de ned as follows, depending on the typat@fignals (the notation
(x) designates the type &f): Boolean equations are left unchanged in the homomorphism

58 CALCULUS OF SYNCHRONIZATIONS AND DEPENDENCES

1-a Monochronous de nitions

De nitions by extension:

if ()= (a;)=...= (an)=boolean
b:=: f(ai,...,an) 7' b= f(ay,...,an)
else:

b:=: f(ai,...,an) 7! bb=a;b=...b= a,

Clock:
b:=: ba7!b:=: b

Delay:

if (b) =boolean
b:=: a$init v7!'b:= a$init v

else:
b:=: a$init v7! bb=a

1-b Polychronous de nitions

Extraction:

if (b) =boolean
b:=: a;whena, 7! b:=: a; whena,

else:
b:=: a; whena, 7! bb=ba; when a,
Merging:

if (b) =boolean
b:=: a;default ay7! b:=: a;default a,

else:

b:=: a; default a, 7! bb=ba; default bay
1-c Hiding
Clock(P where a) = Clock(P) where a

1-d Composition
Clock(P1 | P,) = Qock(P1) | Clock(P,)

IV=1.2 \erication

As a consequence, R is a safety property satis ed b@lock(P),
which is expressed b | Cock(P) = Clock(P),
R is also satis ed byP sinceP = Clock(P) | P.

IV-1. CLOCKS 59

IV=1.3 Clock calculus

Since the system of clock relations handles only values olé&m signals, and presence/absence for the
other types of signals, there is a natural encoding of thakes in the eldZ/3Z of integers modulo 3

(or Galois eld F3 with three elements):

Fz=[f 1,0,1g;+;]

with the usual meanings for operations and valuesq the usual addition modulo 3, is the usual
multiplication).

We de ne the set of polynomials dhz and a set of variables isomorphic to the variables oiGavaL
program. The association of the value 0 with a variable eigis the absence of value for the associated
signal in the corresponding instant. With each present &ookignal, the value 1 (which is equal to 2
in Z/3Z) is associated if its current valuefslse, and the valuerl is associated if its current value is
true. Thus, the square of the value of the variable associatddanyitesent Boolean signal is equal to 1;
for each non Boolean signal, we are interested only in thegmee or absence of a value at the current
instant. So we associate with such a signal a squared \&riabl

The synchronization of alSNAL program is expressed by a system of equations in the setwf pol
nomials onF3 de ned by the homomorphism described below.

3-a Monochronous de nitions

De nitions by extension:

b= f(a,...,.an) 7' P =al=:::=a?
(some relation on the values Iafay, ... ,a, is obtained wheffi designates a Boolean operator).
Clock:

b:= ba7! b= a?
Delay:

b:= a$int v7l 41 =1 ad) n.+a og=v;b=a ,

3-b Polychronous de nitions

Extraction:

b:=: aywhena,7!b=a; (a a3)

Merging:

b:= ajdefault a,7'b=a;+(1 a) a
3-c Hiding

Replaces, in the system, the hidden variable by an intemal o

3-d Composition

The system obtained fé?1 | P2 is the union of the systems obtained Rit and forP2.

60 CALCULUS OF SYNCHRONIZATIONS AND DEPENDENCES

3-e Static and dynamic clock calculus

Then the calculus of synchronizations (clock calculus) @l@NnAL program is done by studying a

dynamic system such as: 8
< Xna = P(Xn;Yn)
Q(Xn;Yn) = O
Qo(Xo) =0

whereX is a state vector i§iZ=3Z)P andY is a vector of events (abstract interpretations of sigrihks)

make the system evolve.
Such a dynamic system is a particular form of nite state $ihion system. Thus it is a model of

discrete event system on which it is possible to verify progg or to make control.
Studying such a system then consists in:

studying itsstaticpart, i.e., the set of constraints
Q(Xn;Yn) = O
studying itsdynamicpart, i.e., the transition system

Xnsr = P(Xn;Yn)
Qo(X0) 0

and the set of its reachable states, etc.

IV—2 Context clock

The clock relations imposed by&VAL operators imply the existence obntext clockgor the various
occurrences of the signal variables.

A particular case of this situation is for the occurrenceafstants (representing constant sequences),
since such a context clock is the only way to assign a clockdmtcurrence of a constant.

Occurrences of constants are allowed iBAL expressions as a practical way to designate constant
signals, i.e., signals with a constant value. The occug@icsuch a constant,, in some expression,
stands for the occurrence of some hidden signale ned asx :=: x $init v.

Each occurrence of a constant has a particular clock (wheecmat be xed explicitly since the
corresponding signal is hidden): this clock is de ned by tloatext of utilization of the constant.

It is de ned a utilization mode of the constants:

allowing as much exible use as possible
(we want to be able to write + 5 but alsox + (y default 5));

allowing intuitive handling of their clocks (a constant islidered at the clock necessary for the
coherence of a synchronous expression);

free of interpretation for the synchronous operati@ml in particular, preserving possible proper-
ties of commutativity, associativity. .. of these operator

preserving the spirit, if not the letter, of the substitatjrinciple;
preserving the properties of the temporal operators:

— “associativity” ofwhen,

IV-3. DEPENDENCES 61

— associativity ofdefault
— “right distributivity” of when on default

These requirements lead to consider that the occurrencemistant has a clock which is provided by
the context.This has the consequence that the substitution principaigapply in general.
The rules for the de nition of the context clock are introéacinformally below.

For a de nition

the context clock of is the clock ofX .

For a monochronous expression, the context clock of eaalmaent is the context clock of the
expression.

For a delay
E1 $

the context clock oE; is unde ned, which means that the argument of a delay carmatdonstant
(note that it has also consequences on derived operators).

For an extraction
E; whenC

havingH as context clock, the context clock Gfis H, that ofE; is the clock product oH and
of the clock at whiclC has the valué¢rue
(this can be used to assign explicitly a clock to a constant).

For a merging of signals
E, default E»

havingH as context clock, the context clock Bf and ofE, isH.
For exampleb default x is equivalent tc.

In the sequel, the clock of a constant outside some contéibevdenoted-.

The rules for the calculation of the clock of a constant inveegicontext apply also for the signals
the clock of which is unde ned. These signals are called rlooked signals. Such a signal is obtained,
for instance, by the operatwar . Thus, the clock ofar E outside some context is also denoted

V-3 Dependences

The equations on signals imply, at the execution, an evaluarder which is described by the depen-
dence graph.

62 CALCULUS OF SYNCHRONIZATIONS AND DEPENDENCES

Figure B—-IV.1: Formal meaning of the dependence statement

IV=3.1 Formal de nition of dependences

The following informal de nition of dependences can be stht

A signalx depends on a signgl“at” a Boolean conditiort (noted y ¢ x) if, at each instant for which
cis present antfue, the event setting a value ¥ocannot precede the event setting a valug.to

A formal de nition in the form of an automaton is presentedéheWe give the formal meaning of the
statement

c
yl = X
in the gure B-IV.1. In the gure, the clock equations in states can be read dswisl y2(c+ ¢%) = 0
means “abseny) _ (absentf) ¢ = false)” (at the considered instanty? = 0 means “abserny(”;
c+ ¢ =0 means “(absent] _ ¢ = false)”. This gure describes a non deterministic automaton wihic

represents the legal schedulings of calculi in one instawbaform with statement yC X.

States of the automaton are made of dependence graphs akeglmtions. Clock equations can
be represented as equationg-i

Transitions are labelled by signalg; €; x), or by the empty word. A transition labelled by
reads: “signaly occurs, with any legal value”. A transition labelled &il) (respectivelyc(1))

IV-3. DEPENDENCES 63

reads: “signalc occurs, with valudrue (respectivelyfalsg”; the empty word" represents the
occurrence of any signal bug;(c; X).

In the automaton of the gur8-IV.1, all the states have an additional transition (not repitesen
in the gure), labelled by', toward the initial state (which is represented with a thitkle in the
gure).

The automaton describing all legal schedulings of calaulia program in one instant is obtained
by a synchronous product of such basic automata, as desénilsectionlV—3.3. Since these automata
describe instantaneous behaviors, they are caflimio automata. The states of the transition system
describing the overall behavior of a program areftireedstates (ormitial states) of the micro automata.

IV=3.2 Implicit dependences

The equations de ning a process may induce implicit depanés, such as described in the following.
Notations: For a Boolean, we use the notatioft] to represent the clock at whiahhas the value
true, and[: c] to represent the clock at whicthas the valudalse.
In addition to the implicit dependences described below,fdtlowing implicit dependences apply
equally:

for any signalx, I b X

for any Boolean signat, c!bC [c] and c!bC [:]

[c]

any dependencé 5? x implies implicitly a dependencig]! X.

2-a Monochronous de nitions

De nitions by extension:

b:=: f(ai,...,an)

The following implicit dependences exist:

a b...,al b

Clock:

b:=: ba

bis identi ed with the clock ofa, there is no implicit dependence.
Delay:

b:=: a$init v

There is no implicit dependence.

2-b Polychronous de nitions

Extraction:

b:=: a; whena,
The following implicit dependence exists:

a]_!tb b

64 CALCULUS OF SYNCHRONIZATIONS AND DEPENDENCES

Merging:

b:=: a; default a,

The following implicit dependences exist:
allbf311 b

a !bazb ba; b

wherdoa, b ba; designates the clock representing the instants dfiat are not instants @f;.

IV=3.3 Micro automata
3-a De nition of micro automata

The micro automaton associated with a program describdedgheschedulings of calculi iane instant.
Let A be a set of variable#AS = A* [A s the set of variables & labelled by+ or
A word onA is any subsein of AS such that

a®2m) a*62nwheret= and =+
A micro automaton o\ is a tuple

<S;P(A®);S;; S P (A% S>

such that:
S, S: Sisthe set of states arf§] is a set of initial states;

if s1 ma s 2 (isthe set of transitionsn; is the label of the transition), arsd ma s32 ,and
...ands, "" spe1 2, then:
8i6jmi\ m=,
n

andm = m; is a word onA:
i=1

ifs;: sp2 then s,2 51

The micro automaton is calleshturated micro automatoif, in addition,
s1™s,2 ands, ™s32) s MUMg2

Let AUT be a micro automatorgat(AU T) is the saturated micro automaton which contaiksT .
Consider two micro automata de ned respectivelyfonandA, with A1\ A, = A. Two labels of
transitionsm; on A1, andm; on A, are said ta@oincideon A if and only if:

(M1\ AS)=(my\ AS)

Let AUT; =< S1;P(A3);Su; 1> andAUT, =< Sy;P(A3);S2; 2 > two micro automata.
Their (synchronous) product, denot@d) T = AUT4jjAUT,, is the micro automaton oA [Ay,

de ned by:
AUT = Sat(<S; Sy P(AS[A3);Sy Sa; >)

1 is denoted' in IV=3.1.

IV-3. DEPENDENCES 65

with de ned as follows:

(s1;52) "t (s9;'sp) 2 iff m\ A3=; ands;"'s{2 ;
(s1;82) T2 (s1;89) 2 iff my\ AS=; ands;"2s32
(s1;52) mal m2 (s%;8)) 2 iff my andm, coincide onA;\ A,

m m
ands; ; 's?2 jands;;?s92

3-b Construction of basic micro automata

(i) Micro automaton associated with a system of equations

Let us consider a system of clock equations on a set of vasabl
R(A)=0

having at least one solution (the system encodes clock iegsatf a program).

A partial valuationof is any system of equations’: R{A9 = 0 equivalent tdR(A) = 0 in which
a non empty subsdta;:::;a,g of variables ofA have been replaced by values:::;vy, 2f 1;1g
such that ®has at least one solution.

If denotes such a substitution, the following notations aeelus

(&) = v; denotes the value assignedaidoy
(R(A)) denotes the systeRY{AY obtained by the substitution.

Then we consideP () the set oR{A9 such that there exists verifying
(R(A)) = RYA9.

The micro automaton associated withs the saturated micro automaton
<S; P(A%);fsog; >
such that:
there exists a bijection : P() ! Swith (R)= sp
for any partial valuation of R{A9 2 P (R(A)),

RY;" ((RY)2

if and only if:

at 2T iff (a)=1 and
a 2T iff (= 1

forall %: RYA9 =0 such that

8a;a2 A°) a=0 is asolution of °

then _
(RY; sp2

66 CALCULUS OF SYNCHRONIZATIONS AND DEPENDENCES

(ii) Micro automaton associated with a dependence

The micro automaton associated with c
yl 7 X

is de ned as follows.
We consider the following states of resolutign

YOy xtyixgfexg (yAc+) = 0);fygfxg feg (c+ ¢ =0);(y? = 0)
The micro automaton associated Withcy x is the saturated micro automaton

Sat(<S; P(fy;x;cg®);fsog; >)

such that there exists a bijection. E ! S with (y 1 X) = Sp
and with de ned as follows:

ME0E ¥ %2

o C X (fyixg) 2

(y! ¢ x)?’ (fc;xg) 2

MY (yAc+ A)=0) 2
(o]

R N (¥

¥y 0! (fxg2
¥y x7 (?=0)2
; C
¥y ;7 M x2
In addition, contains all other transitions coming from resolution sastdescribed in (i).

The corresponding micro automaton is displayed in the gB¢V.1, wherec” andc are denoted
respectivelyc(1) andc(1), andy andx are denoteg andx; moreover, the transitions have been

omitted in the gure.

(iif) Micro automaton associated with a memorization

The encoding presented iW—3.1 considers not only the clocks, but also treduesof the Boolean
ows: delayed Boolean ows are thstate variableof the program.

The micro automaton associated with=: y $init v wherex andy are Boolean ows is the
saturated micro automaton obtained from the micro automaépicted in the gureB—IV.2, p.67. The
initial states of this micro automaton are the states reptesl with a thick circle in the gure.

(iv) Micro automaton associated with a process

The micro automaton associated with a process is the pradtice saturated micro automata asso-
ciated with each de nition involved in the process.

IV-3. DEPENDENCES

67

Figure B—-IV.2: Micro automaton of :=:

y $init

\Y

Part C

THE SIGNALS

Chapter V

Domains of values of the signals

A signal is a sequence of values associated with a clock. eTvases have all the same type, which is
considered as the type of the sequence. The objective oftihister is to present the notations used to
represent these types and the processings which are appligdm. An element of the set of types of
the SGNAL language is denotegpe.

Let E be a term of the &NAL language; we denote by(E) the type associated with the teirand,
whenE is a constant expressio'n,(E) the value of this expression, elaborated in the context iichv
appears.

The set of types of theISNAL language contains the scalar types, the external typearrine types
and the tuple types.

1. Context-free syntax

SIGNAL-TYPE ::= Scalar-type
j External-type
j ENUMERATED-TYPE
j ARRAY-TYPE
j TUPLE-TYPE

V-1 Scalar types

Scalar types are the following: synchronization typesget types, real types, complex types, character
type, string type; the integer, real and complex types c@®be set of numeric types; character and
string types compose the set of alphabetic types.

1. Context-free syntax

Scalar-type::= Synchronization-type
j Numeric-type
j Alphabetic-type

Numeric-type ;= Integer-type
j Real-type
j Complex-type
Alphabetic-type ;= |char

j | string

72 DOMAINS OF VALUES OF THE SIGNALS

V-1.1 Synchronization types

The synchronization types are used to de ne the clocks ositpeals. They are the typavent (or pure
signal) and the typboolean

Denotations of types

1. Context-free syntax

Synchronization-type::= |event

j | boolean

2. Types

(@) (event)=-event
(b) (boolean) =boolean

Denotations of values

A signal of typeeventtakes its values in a single-element set: there is no asedaanstant and
a parameter cannot be of that type.

The constants of typkooleanare the logical values denoted with the syntax &omlean-cst(cf.
partA, sectionll-2.2, p. 25).

The default initial value of typbooleanis the valudfalse.

V-1.2 Integer types

Integer values can be in short representation (shp@t), normal representation (typeteger), or long
representation (typlng); a given implementation may not distinguish these typesthis document,
the notationgnax long, min long, max integer, min integer, max short andmin short will be used

to designate respectively: the greatest representalgigen{of typdong), the smallest representable in-
teger (of typdong), the greatest integer of typeteger, the smallest integer of typateger, the greatest
integer of typeshort and the smallest integer of tyghort. These values depend of the implementation
and respect the following order:

min long min integer min short 0 < max short max integer max long

min integer < 0

Denotations of types

1. Context-free syntax

Integer-type ::= |short

HE

j |integer
j |long

2. Types

(@) (short)=short

V-1. SCALAR TYPES 73

(b) (integer)=integer
(c) (long)=long

Denotations of values

The positive values of an integer type are denoted followliregsyntax of arinteger-cst (cf. partA,
sectionll-2.3, p. 26). A negative value has not a direct representation: it iaiaktl using the operator
|:| applied to a positive value.

1. Types
(a) The type of ainteger-cstE is the smallest integer type that contains it.

2. Semantics

An Integer-cst denotes an integer value represented in decimal base jrceshtaetween O
andmax long.

An occurrence of an integer value of tyghort (respectively,integer andlong) smaller
than min short (respectively,min integer andmin long) or greater thaimax short (re-
spectivelymax integer andmax long) results, in the considered type, in a value depending
of the implementation.

For aninteger-type, the default initial value is the value 0.
Bounded integers

Integers have a special role since they can be used to indeysain that case, we have to consider
bounded values.
In this document, for a given signgl, we will use sometimes the following notations:

lower_bound(E) designates the lower bound of the value&of

upper_bound(E) designates the upper bound of the valuek of

These bounds are constant integers.

V-1.3 Realtypes

The real values can be in simple precision representatyqe (eal) or double precision representation
(typedreal); a given implementation may not distinguish these types.

Denotations of types

1. Context-free syntax

Real-type::= |rea

e

2. Types

(@) (real)=real
(b) (dreal)=dreal

74 DOMAINS OF VALUES OF THE SIGNALS

Denotations of values E;. E,eE3 (simple precision) oE ;. E,dE3 (double precision)

A value of real type is denoted following the syntax dRaal-cst(cf. partA, sectionll-2.4, p. 26).
A Real-cstdenotes the approximate value of a real number.

1. Types

(&) A Simple-precision-real-cstis of typereal.
(b) A Double-precision-real-cstis of typedreal.

2. Semantics

The value' (E;), whenE; is omitted, is 0.

If E, hasn digits, the value of the constant is the approximate valug dE1) + * (E2)
10 10 (Ea),

For aReal-type the default initial value is the valu@0 or 0.0d0 following the type.

V-1.4 Complex types

The complex values have the common representation of tbaiponents (simple or double precision,
respectively typesomplex anddcomplex); both types are distinguished in a given implementation if
and only if the typedreal is distinguished from the typeal.

Denotations of types

1. Context-free syntax

Complex-type::=
,.

2. Types
(a) (complex)=complex
(b) (dcomplex) = dcomplex

Denotations of values

A value of complex type is obtained for example in the follogriexpression, the rst element of
which is the real part and the second one the imaginary pars€ctionVI-8.1, p. 131).

1. Examples

(@ 1.0 @ (1.0)

For aComplex-type the default initial value is the pair of default real initi@lues.

V-2. EXTERNAL TYPES 75

V-1.5 Character type

The typecharacter contains the set of the admitted characters in the language.

Denotation of type
1. Types

(@) (char) =character

Denotations of values
A value of typecharacter is denoted by &haracter-cst (cf. partA, sectionll-2.5, p. 26 et seq).

The default initial value of typeharacter is the character n000" .

V-1.6 String type

The typestring allows to represent any sequence of admitted characters.vdlhe of the maximal
authorized size for a stringnaxStringLength , depends of the implementation.

Denotation of type
1. Types
(@) (string) =string
Denotations of values

A value of typestring is denoted by &tring-cst (cf. partA, sectionll-2.6, p. 27).
The default initial value of typstring is the empty string" .

V-2 External types

External types make possible the use of signals the type whviti not a type of the language.

Denotation of type A

An external type is designated by a name.

1. Context-free syntax

External-type ::= Name-+ype

2. Types

(a) For an external type with nande (A) = A
Two external types with distinct names are not comparable.

3. Examples

(a) pointer is an external type with nangointer

76 DOMAINS OF VALUES OF THE SIGNALS

Denotations of values

An external constant can be denoted by a name; the value oftamal constant can be de ned by
the environment of the program (cf. p&itchapterXll, p. 207 et seq).

For example the identi enil can represent a constant of typeinter

For any external typd\, it is possible to de ne a constant that represents the dtafatial value of
typeA (cf. sectionv—7, p. 86 et seq).

The only operations the semantics of which is de ned on ewsktype signals are operations of
description of communication graphs (which are polymargperations).

V-3 Enumerated types

Enumerated types allow to represent nite domains of vatepsesented by distinct names. These values
(the enumerated values) are the constants of the type tdwhey belong.

Denotation of types enum (ag, ..., am)

An enumerated type is de ned by the list (considered as aeredllist) of its values (the enumerated
values) and by its name (cf. sectivh7, p. 86 et seq): type A = enum (az, ..., am);
However, like for the other types, such a name does not nadlgssxist. In that case, the name of the
type is empty.
The de nition of an enumerated type declares its enumenzdes.

1. Context-free syntax

ENUMERATED-TYPE ::=

Name-enum-valug |:| Name-enum-valué

2. Types
(a) The type of the enumerated type is:
(A = enum (ay, ..., am)) =A f ag:::;ang
wheref ay;:::;amgrepresents the nite set of ordered valu®gs . . .,ay,. It means that the

name of an enumerated type (the name that is given in therdéola of the type) is part

of that type. Depending on the implementation, it can be #s® ®r not that synonyms (cf.
sectionV-7, p. 86 et seq) are considered in the de nition of the type.

If the enumerated type is not designated by a name, thenpigsigyjust the nite set of its

ordered values.

(b) The type of the enumerated values of an enumerated tythesisnumerated type: (al) =
...= (am)= (enum (az, ..., am))

(c) Two enumerated types are considered to be equal if theg bath the same name, and
the same set of enumerated valuiesthe same order.Two enumerated types that are not
designated by a name are considered to be equal if they hawsathe set of enumerated
values, in the same order.

3. Semantics
The enumerated values of an enumerated type are orderdddiyrorder of their declaration).
All the values of a given type are distinct; these values &enguished by their name.

V4. ARRAY TYPES 77

4. Examples
(a) type color = enum (yellow, orange); and type fruit = enum
(apple, orange); are two enumerated types, each one dening an enumerated

value named “orange”. Both enumerated values named “ofargedistinct values, with
different types. The next paragraph describes the way aitpto distinguish them.

Denotation of values

#a; or A#a
whereA is the name of the enumerated type.
Note: the symbo# does not appear in the de nition of the type (and its enuneeraalues), but only for
the use of an enumerated value.

1. Context-free syntax

ENUM-CST ::=

Name-enum-value

i Name{ype Name-enum-value

2. Semantics

The notatior#a; can be used to reference an enumerated \alirea context in which there
is no possible ambiguity on the referenced value. If it isthetcase, the notatioh#a, has
to be used, wherA designates the enumerated type.

The default initial value of an enumerated type is the rdueeof its declaration.
3. Clocks An enumerated valua, (designated byta; or A#a;) is a constant.
@! (a)=-
4. Examples

(a) color#orange andfruit#orange designate two different enumerated values (of two
different types) with the same name.

With respect to the fact that there are possibly identicahem for different enumerated values in
different enumerated types, the visibility of enumeratatligs is the same as that of the type in which
they are declared (cf. paf, sectionXl-2, p. 191 et seq).

V-4 Array types

An array is a structure allowing to group togetlsgnchronouglements of a same type. The description
of such a structure and of the access to its elements usdsbespressions that have the general syntax
of signal expressionsS(EXPR).

78 DOMAINS OF VALUES OF THE SIGNALS

Denotation of types [ny, ..., Nm]

An array type is de ned by its dimensions and by the type oél&snents.
1. Context-free syntax

ARRAY-TYPE =

m S-EXPR {D S-EXPR} SIGNAL-TYPE

2. Types
(a) The elaborated valuesof (' (n1)),...,nm (' (nm)) are strictly positive integers.
(b) The type of the array is:
(In, ... nml)=(@0." () 11 ::: (0. (nm) 2! ().
(c) When the type () itself is an array typ¢ nm+1, ..., Nm+p] , then the type of the
array is:
([ne, o, nm])=(@0." (1) 1 ::: (0. (hmep) W ().
3. Clocks The integers; must be constant expressions.
@! (n)=~

4. Properties
(@) Thetypeg ni, ny] and[ni] [ny] arethe same.
5. Examples

(a) [10,10] integer is a two dimensions integer array (the bounds of the arrainbey
plicitly at index O in each dimension).

(b) [n] pointer is a vector of values of external typeinter

Denotations of values

A constant array is de ned by a constant expression of arthypartD, sectionIX-2, p. 159); the
elements that compose a constant array are from the samendoma

For anARRAY-TYPE , the default initial value is an array of which each elemesd the default
initial value of the type of the elements of the array.

V-5 Tuple types

The SGNAL language allows to de ne structured types, called in a geneay tupletypes. Two cate-
gories of tuple types, called also tuple types with namedsgktan be associated with the objects of the
SIGNAL language in declarations:

polychronous tuples (designated by the keywouadle);

monochronous tuples (designated by the keyvabrdct)

V-5. TUPLE TYPES 79

(remark: the objects declared of tuple type can also beccaljdes.

An object declared of type polychronous tuple is in fact engehg of objects (family of objects).
In this way,a polychronous tuple of signals is not a sigrfedr example, in the general case, it has no
clock); it cannot be used as the type of the elements of agy.afathe opposite, an object declared of
type monochronous tuple can be a signal: it has a clock @eliVby the operatt) and it can be used
as the type of the elements of an array.

A general rule is that operators on signals do not apply oyghobnous tuples, but they are pointwise
extended on the elds of these tuples (cf. p@rtchapterX, p. 179et seq).

The SGNAL language allows also to manipulate gatherings (or tuplespjects with no explicit
declaration of these gatherings. They de ne in fact tuplés wnnamed elds, the type of which is a
product of types (cf. sectio6.2, paragraph “Order on tuples”, B2 et seq). The operators de ned on
signals are pointwise extended to tuples with unnamed @éispartD, chapterX, p. 179et seq). By
extension, it will be possible to refer to the clock of a tupfesignals if all the signals of the tuple have
the same clock.

Denotation of types

struct (1 X1 .. m Xm;)
or
bundle (1 Xgq; ...} m Xm;) spec C

A tuple type is de ned by a list of typed and named elds; in &duh, clock properties can be
speci ed on the elds of a tuple.

The description of such a type uses lists of declarationegiisnce identi ersS-DECLARATION
(cf. sectionV-9, p. 89) for the designation of the elds, and properti@PECIFICATION-OF-
PROPERTIES (cf. partE, sectionXl-6, p.195) to express the clock properties that must be respected by
the signals corresponding to the elds de ned by the typeeJdnproperties should describe exclusively
clock propertieson the elds of the tuple, excluding for instance graph pmips. Note that constraints
on values can be speci ed under the form of constraints ockslo

A tuple type can be multi-clock (polychronous) or mono-&d@monochronous). If it is multi-clock,
it is distinguished by the keywortdundle and it can contain speci cations of clock properties apmdyi
onits elds. Ifitis mono-clock, itis distinguished by thekwordstruct and all its elds are implicitly
synchronous; in this case, it can be used as type of the eterokan array.

1. Context-free syntax

TUPLE-TYPE ::=

struct ENAMED-FIELDS

i [bundle NAMED-FIELDS
[SPECIFICATION-OF-PROPERTIES]

NAMED-FIELDS ::=
{ S-DECLARATION } *

2. Types

(@) From the point of view of the domains of associated valud#® polychronous or
monochronous tuple types with named elds are designatetieansame way in this doc-
ument. The domain is a non associative product (i.e., preggethe structuring) of typed
named elds.

80 DOMAINS OF VALUES OF THE SIGNALS

() (struct (1 Xi; ... m Xm:))
=bundle(fX1g9! (1) f Xmg! (m))

() (bundle (1 Xi; .. m Xm;) spec C)
=bundle(fX1g! (1) i f Xmg! (m))

(d) Atype
bundle(fX1g! (1) ::: f Xmg! (m))
de nes a set of functions
C X1 Xmg ! (i) suchthat(X;)2 ().

i=1
3. Semantics
The tuple types with named elds{ruct andbundle) allow to de ne structured types as non
associative grouping of typed named eld§: 1 X1; ...; m Xm;) . The speci cations
of propertiesspec C apply on the elds of the tuple. They establish constraitist tmust be
respected by the signals de ned with such a type (space ahsgnization of the values of the
domain).

4. Examples
(a) struct (integer X1, X2;)
is a tuple of two synchronous integers.

(b) bundle (integer A; boolean B;) spec (i Ab# B
de nes a union of types as a tuple the elds of which are mujuekclusive.

Denotations of values

A constant tuple is de ned by a constant expression of tugllepartD, sectionVIII-1, p. 153).
For aTUPLE-TYPE, the default initial value is recursively the tuple of iaitvalues of its elds.

V-6 Structure of the set of types

A partial order is de ned on the types such that there existsagural” plunging of a smaller set into
a greater one. The types are organized into domains comésppto theoretical sets (non constrained
by the implementation). In this way, the domain of synchzation values $ynchronization-type)
contains the typesvent andboolean the domain of integerdrfteger-type) contains the typeshort,
integer, andlong; the domain of realsReal-type) contains the typeseal anddreal; the domain of
complex Complex-type) contains the typesomplex anddcomplex

V-6.1 Set of types

The set of types is composed of the types the expressionsiohwh the SGNAL language, described
in the following summary, are derived from the variaBI&SNAL-TYPE :

V-6. STRUCTURE OF THE SET OF TYPES 81

SIGNAL-TYPE
calar-type

?ynchronization—type
event| denotes the typevent
boolean| denotes the typboolean
Blumeric-type

gneger—type

> |short|denotes the typshort
integer | denotes the typmteger
long | denotes the typkong

Beal—type

real | denotes the typeeal

%l denotes the typdreal
gomplex—type

complex| denotes the typeomplex
dcomplex| denotes the typdcomplex
(\Iphabetic—type

char | denotes the typeharacter

string | denotes the typstring

External-type
Name-type
Generic form of the external typesame
ENUMERATED-TYPE

Name-enum-valug |:| Name-enum-valug

ARRAY-TYPE
m S-EXPR{ DS—EXPR} IIlSIGNAL—TYPE

Generic form of the array type¢f0..n1 1] ::: [0.ny 1)) !
%’UPLE-TYPE

3 |struct | (|NAMED-FIELDS
bundle NAMED-FIELDS [SPECIFICATION-OF-PROPERTIES]
2

Generic form of the tuple types with named elds:
bundle(fX1g! 1 ::0 f Xmg! m)

V—6.2 Order on types

Order on scalar and external types

The order on scalar apd external types of theN3\L language is described inthe gu@®-V.1, p.82
A downward solid arrow‘(]) links a type with a type directly superior from the same domn{avo
types of a same domain atemparablg; the other arrows represent basic conversions, the sesaft
which is described below. The other conversions are olddigecomposition of conversions. The partial
order is denoted .

The notion of “comparable types” is extended to arrays aptbu

82 DOMAINS OF VALUES OF THE SIGNALS

_— e — =

Figure C-V.1: Order and conversions on scalar and exteypabt

Order on arrays

The order on scalar and external types is extended to arrays:

([0.m1 1] ::: [0.mg 1))! v (0.ny 1] ::: [0.n 1! if and only if
k=1
8i 1 i k) mj=n;
and v

Order on tuples

A product of types is a type, called tuple type with unnameldise which preserves the structuring.
There is no syntactic designation of such a type (it is nosipds to declare some object of type tuple
with unnamed elds); however, it is possible to manipulatgeats of type tuple with unnamed elds
(product of types). A tuple with unnamed elds with a singleraent is considered as isomorphic to this
element.

The product of types, ..., p (inthis order) is denotefl ;1 ::: n)-

The order on the types of signals is extended as follows desup

V-6. STRUCTURE OF THE SET OF TYPES 83

bundle(fX1g! 1 i f Xpg! n)v bundle(fYig! 1 0 f Ypg! p)ifandonly
if:
p=n
and 8i) (Xij=Yjet ;v ;)
(1 i n) Vv bundle(fYg! 1 o f Ypg!) ifandonly if:
(1 =0 v 0 p)
(2 0 v (2 2t n))
(1 i v (1 p) if and only if:
Y,
(n=p (@) (iv i)))
or
A9k (((i<k)) (v)
(R S) AN
(k+1=n)" (kg P)
or ((k+l<n) (k<p)) ((k141 20)V (ke 220 p)))))
Notation

The notation t is used to designate the upper bound of two comparable types .

V-6.3 Conversions

A conversion is a function for which the image of an objectid type of the argument is an object
of the type required by the context of utilization. The conversion fiimres for the types de ned in the
SIGNAL language have the name of the reserved designation of tleetexjtype or in general the name
of the expected type. In this document, these functions emetéd as follows, in order to describe their
semantics:

c : !

Direct conversion functions are available in the languagen if their semantics is described in terms of
composition of conversions.

3-a Conversions between comparable types

Between two directly comparable types v , the two following conversions are de ned:

1. the conversiol€ from a smaller type to a greater type lets the values unchanged;

2. the conversio® : ! which is the inverse of the previous one for the values of type

The conversion functions are extended to any pair of comparable types:
if 1v v 2thenCl = C, C?1;

C isthe identity function.

Implicit conversions

The only implicit conversions are the conversidbsfor which v . Implicit conversions do not
need to be explicited in the language.

84 DOMAINS OF VALUES OF THE SIGNALS

3-b Conversions toward the domain “Synchronization-type”

The conversions G, ., are de ned for each (exceptif is a polychronous tuple); Trivially, they
deliver the single value of typevent.

the conversions G .., depend of the implementation while respecting the follgvinles:

ong
0olean

-9 (0) = false
- do%r;?ean(l) = true

For aScalar-type distinct fromevent
_ ong
c:Doolean - oolean CIong

3-c Conversions toward the domain “Integer-type”

The conversio veri es:

The conversions C depend of the implementation while respecting the follgviules:

Short

Cis';]tg?ter (v) = v if vis greater thamin short and smaller thamax short (non strictly in both
cases),

long _ integer long
Cshort - hort Cinteger
for aScalar-typeor ENUMERATED-TYPE
Cs — ong C

hort hort long

The conversions G, depend of the implementation while respecting the follgyiles:

Ci'r?{‘e%er (v) = vif vis greater thamin integer and smaller thamax integer (non strictly in both

cases),

for aScalar-type which is not smaller thamteger (for the order de ned on the types), or for
anENUMERATED-TYPE

C;nteger = dr?tr:e%er CIong

The conversions Gong depend of the implementation while respecting the follguinles:

the conversiorG09°@" is de ned by the following rules:

— Gorean(false) = 0

| —
— Gong "(true) =1

the value ofC3racte" (C) is the numerical value of the code of the charaGer

the value ofqgrﬁg' (v) is the integer part of v if n is greater thammin long and smaller than

max long (non strictly in both cases),

for aScalar-type which is not smaller thatong (for the order de ned on the types)

Cong = Jﬁé" Cdreal

foranENUMERATED-TYPE equaltoA f a;;:::;amg, the conversiorG, . is de ned by:
Gong(@1) = 0,...,Gypg(@m) = m 1L

V-6. STRUCTURE OF THE SET OF TYPES 85

3-d Conversions toward the domain “Real-type”

For eachReal-type a given implementation distinguihes tha&fenumbers (in the same sense as in Ada),
which have an exact representation.

The conversions G, depend of the implementation while respecting the follgvinles:

if v, of typedreal, is a safe number in the typeal, Gl (v) = v

the conversion preserves the order on the real numbersdeatibetween the smallest and the
greatest safe number in the tygal,

for aScalar-type
- !
C;'eal - ergla Cdreal
The conversions C,.,, depend on the implementation while respecting the follgwirles:

the conversion preserves the order on the real numbersdeatibetween the smallest and the
greatest safe number in the typesal,

dcomplex ; _
Cieal (re@m) = re

complex _ complex complex
c dreal - C’éjreal c dcomplex

if v, of typelong, is a safe number in the typtreal, o3 (C) = v

for a Scalar-typedistinct of the previous ones,
C = Cpd C
real real long

3-e Conversions toward the domain “Complex-type”

There are no conversions toward the dom@aomplex-type except those internal to that domain. How-
ever, a given implementation can provide such conversiaotfons. Note that the conversion ofeal
re into acomplex (respectively, of areal re into adcompleX) can be obtained bye @Q0.

The conversion Cgrggfx depends on the implementation while respecting the fotigwile:

Cdcomplex(l,e@m) = fC%r:Ial (re); C%r;al (im)g

complex
3-f Conversions toward the typescharacter and string
The conversions G, ..cer depend on the implementation while respecting the follgwinles:

the value ofC2"9. . (v) is the character (if it exists) whose decimal value of itsec@dequal to
Vl

— ong
foraScaIar—type Ct:haracter - haracter CIong

There is no conversion toward the tygiging .

86 DOMAINS OF VALUES OF THE SIGNALS

3-g Conversions of arrays

For any tuple of strictly positive integers, ...,nm, and any conversio® ,
. [0..n 11 ::: [0.npm D! . .
the conversmn’.:f[ol_nl1 7 0 e 1yt IS de ned by:
[0..n 11 ::: [0.npm ID! _
[O..nl1 17 ::: [0.nm ID! (m=c¢ 7

3-h Conversions of tuples

Conversions of tuples with unnamed elds

For any conversion€ |, ...,C ",
; 1o) .
the co.r?_/ersmn’;((1 S0 is de ned by:
G oE Nxiiixa) =(CHxa);C L (%a)

Conversions of tuples with unnamed elds toward tuples withnamed elds

For any conversion€ }', ...,C " and any tuple with named elds of type
bundlg(fX1g! 1 ::: f Xmg!) thatde nes afunction (cf. sectionv-5, p. 78 et seq),
. e n) : .
the converS|0|f(burl1dle(fxlg UL f Xmg! m) 1S de ned by:
q) 1o n) — C(1oL n)
undle(fX1g! 1 0 f Xmg! m) (1 n)

V-7 Denotation of types

A type can be designated by an identi er, declared DECLARATION-OF-TYPES (it cannot be an
identi er of prede ned type). In particular, such a type meer can designate a generic type, which
can represent a type of the language, an external typeyiotual typethat can be “overridden” in its
compilation context.

Denotation of type A
1. Context-free syntax
SIGNAL-TYPE ::=
Name-type
2. Types

(a) The type designated byName-typeA is the type associated with in the declaration of the
typeA.

Declarations of types

type A = ; or
type A = external, or
type A;

1. Context-free syntax

V—7. DENOTATION OF TYPES 87

DECLARATION-OF-TYPES ::=
DEFINITION-OF-TYPE { I:lDEFINITION-OF-TYPE} E

DEFINITION-OF-TYPE ::=

Name-type
j Name-typeEl DESCRIPTION-OF-TYPE

DESCRIPTION-OF-TYPE ::=

SIGNAL-TYPE
j EXTERNAL-NOTATION [TYPE-INITIAL-VALUE]

TYPE-INITIAL-VALUE :=
Name-constant

2. Types

(@) The declaratiotype A = ; de nes the typeA as being equal to the type
(A) =

(b) Thedeclaratiotype A = external; speci es the type\ as an externally de ned type.
The actual de nition ofA is provided in the environment of the program.
Itis possible to specify, in the declaration of an extergpetA, a constant name (which must
be the name of an external constant of type-cf. sectionV-8, p. 88 et seq), that allows to
designate the default initial value of that type.
A given compiler may consider that such a constant name apgeas default initial value
of an external type constitutes an implicit declarationhi$ £xternal constant.

(c) If Ais de ned as an external type, then:
(A)=A
(d) Two external types with distinct nam@AsandB are considered as different types.

(e) When it appears in the formal parameters of a model (cft BasectionXI-5, p. 193 et
seq), the declaratiotype A; de nes aformal generic type whose actual value is provided
within the call of the model (cf. sectiovil-1.2, p. 99 et seq).

Otherwise, the declaraticdype A; speci esA as avirtual typein the current context of
declaration. It means thatis a formal generic type, whose actual value is de ned elszeh
(A is “overridden”) in the context or is provided in a module. (gértE, sectionXll-1, p.207
et seg). This actual value can be a type of the language or an extypa

3. Properties

(a) With the declarationgype A = ; andtype B = ;

then (A)= (B)= ().

Some implementations may not ensure this property.

4. Examples

() type T = [n] integer; declares the typ& as vector of integers, of size

88 DOMAINS OF VALUES OF THE SIGNALS

V-8 Declarations of constant identi ers

constant X 1=Eq,....Yj,....,.Xn =Enp;

A constant sequence is a sequence each element of whichehsartte value. Such a sequence can
be designated by an identi er.

1. Context-free syntax

DECLARATION-OF-CONSTANTS ::=

SIGNAL-TYPE

DEFINITION-OF-CONSTANT { DDEFINITION-OF-CONSTANT} E

DEFINITION-OF-CONSTANT ::=

Name-constant
j Name-constanEl DESCRIPTION-OF-CONSTANT

DESCRIPTION-OF-CONSTANT ::=

S-EXPR
j EXTERNAL-NOTATION

2. Types

@ @) (()= (X))
b @) (E)v (X))
(c) When the constant declaration refers to the externabtioot, (for example,Y; =

external;), it speciesY; as an externally de ned constant. It means that the valug of
should be provided in the environment of the program.

(d) When the constant declaration (for exampleYpy does not contain an expression, nor the
external notation, it speci e¥j as avirtual constantin the current context of declaration.
It means that the value of, is provided elsewhereY| is “overridden”) in the context or is
provided in a module (cf. paK, sectionXIl-1, p. 207 et seq).

3. Semantics

Any expression de ning a constant must be monochronous anctibnal (without side ef-
fect). With this reserve, the set of expressions admitted bympiler contains the operators
and intrinsic functions and can contain a set of functiorgedeling of a particular environ-
ment.

The elaboration of the expressi@h, in the contextGy of the declaratiorD, minus the
identi er X;, provides a constant value (determined at compile tl’méﬁi) = v,

the declaratiorD hides any higher declaration &f; for the contextG; and the included
contexts;

in a context wher® is visible, the elaboration of an occurrence of the idemtXg provides
the value' (X;) = v.

V-9. DECLARATIONS OF SEQUENCE IDENTIFIERS 89

4. Clocks An occurrence of use of; (or Yj) is considered as an occurrence of the designated con-
stant.

@ ! (E)=~

b ! (Xi)=~

© ' (v)=~
5. Examples

(a) The declaration
constant real Pl =3.14
de nes the identi erP! of typereal and with value (3.14).
(b) The declaration
constant[2,7 real UNIT=[[1.0,0.0],[0.0,1.0]]
de nes the identi erUNITas a unit real matrix.
(c) The declaration
constant RECTANGLE BASE
whereRECTANGId=AnN identi er of external type, de nes a constant of thgtedyBASEthe
value of which should be provided at code generation.
(d) The declaration
constant integer L=M+N
is incorrect ifMor Ndoes not designate a constant or a parameter; if it is coitatg nes
the identi er L as being equal to the sum of the constan{$}) and’ (N).

V-9 Declarations of sequence identi ers
ID 1, ..., IDj init V, .., IDp;

A sequence of values is provided with a type (the one of itselgs); this type is associated with
an identi er in a declaration. In such a declaration, an tdencan designate a static parameter (formal
“signal”), a signal, or a tuple of signals. Initializatiomlues can be associated with signals and tuples of
signals (D init V) in order to de ne their initial value(s) when these initialues are not de ned
elsewhere.

1. Context-free syntax

S-DECLARATION ::=

SIGNAL-TYPE
DEFINITION-OF-SEQUENCE { |:|DEFINITION-OF-SEQUENCE} E

DEFINITION-OF-SEQUENCE ::=

Name-signal
j Name-=signa S-EXPR
2. Types

(a) The declared names must be mutually distinct. The sapee tff) is given to the identi ers
ID 4, ...,ID p in the context of the declaration.

90 DOMAINS OF VALUES OF THE SIGNALS

(b) For a signal expression (“assignment”, passage otcgpatiameter or positional identi ca-
tion) associating a value with an identi er ID ; declared with type , we must have (v)
v

(c) The rules applying to initial values are exactly thossatided in the section “Initialization
expression” (cf. sectioNl-3.1, p. 110).

3. Semantics

ID 1, ..., ID ; declares the sequences (signals or parameters) ..., 1D . If
designates a polychronous tuple type then the identilérs, ...,ID , designate tuples
of signals (and not, strictly speaking, signals); the dgmepresented by these tuples are,
recursively, the elds of the tuples (the elds can be thetwes tuples). For example, if

designates a tuple type with named eldsndle (1 X4q; ...; m Xmi) ..
then each tupléD ; gathers the signals (or, recursively, the tuples of sigrddsignated by
IDi. X1, ...,IDj. Xy (cf. partD, sectionVIII-3, p. 154), which have respectively the
types 1,..., m-
The semantics of an initialization expression speci ed ideglaration is exactly the same
as that described in the section “Initialization expressi@f. sectionVI-3.1, p.110). The
association of an initialization with a signal declaratigpeci es a default initialization for
the corresponding signal. It can be overloaded by the diemiof that signal (in that case, it
iS unnecessary or only partly necessary).

4. Clocks

(a) The relations on the clocks of initialization expressi@re described in the section “Initial-
ization expression” (cf. sectiovil-3.1, p. 110).

5. Examples

(a) The declaratiomeal X, Y; declares the signak$andY of typereal.
(b) The declaratiofn] integer V; declares the vector of integevs of sizen.

V-10 Declarations of shared variables
shared ID 1 init Vq, ..., IDj, .., ID, init Vg

Shared variables are particular cases of signals or tupleigmals (cf. section/~9, p. 89 et seq).
A shared variable is de ned via partial de nitions (cf. st VI-1.1, paragraphl-c, p. 96 et seq). A
shared variable cannot be declared as input or output of &hobgrocess.

1. Context-free syntax

DECLARATION-OF-SHARED-VARIABLES ::=

SIGNAL-TYPE

DEFINITION-OF-SEQUENCE { DDEFINITION-OF-SEQUENCE} E

V-11. DECLARATIONS OF STATE VARIABLES 91

2. Types
(a) The declared names must be mutually distinct. The sapee tff) is given to the identi ers
ID 4, ...,ID p in the context of the declaration.

(b) For a signal expression (partial “assignment” assigjaa valuev with an identi er ID ;
declared with type , we must have (v) v

(c) The rules applying to initial values are exactly thossatided in the section “Initialization
expression” (cf. sectioNl-3.1, p. 110).

3. Semantics

shared ID 1, ..., ID ,,; declares the shared variablgs 4, ...,ID .

The semantics of an initialization expression speci ed trealaration is exactly the same as
that described in the section “Initialization expressi¢ef. sectionVI-3.1, p. 110).

V-11 Declarations of state variables
statevar ID 1 init Vq, ... IDj, .., ID, init Vg

A state variable is a typed sequence the elements of whighrasent as frequently as necessary (it is
available at a clock which is upper than the upper bound ofltheks of all the signals of the compilation
unit in which it is declared). A state variable is de ned viarpial de nitions the clock of which are well
de ned (cf. sectionVI-1.1, paragraphl-d, p. 97 et seq). It keeps its previous value until a new value
is de ned. It should have an initial value associated withdeclaration (if it has not, it takes as initial
value the default initial value of its type). A state varialohin be used only in a context which de nes a
context clock (the occurrence of a state variable is desdrib sectiorvVl-2.3, p. 108 et seq). A state
variable cannot be declared as input or output of a modelafgss.

1. Context-free syntax

DECLARATION-OF-STATE-VARIABLES ::=

SIGNAL-TYPE

DEFINITION-OF-SEQUENCE { DDEFINITION-OF-SEQUENCE} E

2. Types
(@) The declared names must be mutually distinct. The sapee t(/) is given to the identi ers
ID 4, ...,ID p in the context of the declaration.

(b) For a signal expression (partial “assignment” assingjaa valuev with an identi er ID j
declared with type , we must have (v) v

(c) The rules applying to initial values are exactly thossatibed in the section “Initialization
expression” (cf. sectioNl-3.1, p.110).

3. Semantics

statevar ID 4, ..., ID ; declares the state variabld3 1, ...,ID ,.

92 DOMAINS OF VALUES OF THE SIGNALS

The semantics of an initialization expression speci ed ttealaration is exactly the same as
that described in the section “Initialization expressi¢ef. sectionVI-3.1, p. 110).

Note: The INRIA POLYCHRONY environment allows in some cases that the type of a consdant,
sequence identi er, a shared variable or a state variabietiprovided explicitly in their declaration (the
correspondindSIGNAL-TYPE is simply omitted). The corresponding type must be deduozu the

context of use of the object.

Chapter VI

EXxpressions on signals

The values associated with signals are determined by emsatin signals; these equations are built by
composition of sub-systems of equations (named also ppesgfrom elementary equations.

This chapter presents the expressions of de nition of dg@-EXPR). This presentation is pre-
ceded by an introduction to the expressions of compositiatie mitions (P-EXPR).

VI-1 Systems of equations on signals

Composition of de nitions of signals

The equations of de nition of signals can be composed by tbtemtor@ (cf. chapteVIl, “Ex-
pressions on processes”, J85et seg). An expression on processes
Ei1 | E2
de nes the signals (or, equivalently, has as outputs theedi) de ned in each one of its sub-expressions,
and has as inputs the input signals of each one of these guwbssions which are not outputs of the
other one. The value of an input signal of a sub-expressidnchwis de ned in the other one, is the
value associated by this de nition. As a signal cannot hadewble complete de nition, a given signal
identi er representing a totally de ned signal cannot betmut of two sub-expressions. However, it
is possible to have severgartial de nitions, in different sub-expressions, for shared variables (glarti
de nitions are syntactically distinguished).

An expression on processes can be parenthesizy)n the left and b on the right (note

the presence of the sym).

A given output of an expression on processes can be hiddeughithe operat (cf. chapteVIl,
“Expressions on processes”, I85et seq). An expression on processes
E:i/ a1
has as outputs the outputsif distinct froma; and for inputs the inputs d& 1.

The signals are de ned by explicit elementary equation®BFINITION-OF-SIGNALS , CON-
STRAINT s (cf. sectionVI-5.3, p. 123 et seq), or by referring to systems of equations declared as
models of processeNSTANCE-OF-PROCESS).

VI-1.1 Elementary equations

A de nition of signals allows to de ne a signal or a set of sgja with the syntax given below. A
de nition of signals is an expression of processes.

94 EXPRESSIONS ON SIGNALS

1-a Equation of de nition of a signal
X :=E
1. Context-free syntax

ELEMENTARY-PROCESS ::=
DEFINITION-OF-SIGNALS

DEFINITION-OF-SIGNALS ::=
Name-signaE S-EXPR

2. Prole
An equation of de nition of a sighal has as output the de néghal and as inputs the inputs of the
expressiorke distinct of the output.

I'(X := E)=fXg
The inputs ofE are the signal identi ers that have at least one occurrenée. i
?X=6)=?E) !'(X:=E)

3. Types

@ (E)v (X)
4. Semantics

The signalX is equal to the signal resulting from the evaluatiorEofAn occurrence oK in the
expressiorE builds a recursive de nition.

5. De nition in SIGNAL
Though it is the most frequently form of equation used in thenNd.L languageX = E
is not the basic form. The si expresses that the equation is oriented, while in the basic f

(cf. partB, chapterlll, p. 31 et seq) the sign is used to express the fact that equations are
non oriented (cf. sectioW|-6, p. 125).
It is equal to the following process, where the dependeneemade explicit:

(j X = E
j E > X
D)

6. Clocks A signal represented by an identi er and the signal that és it are synchronous.

@ ! (x)=!(E)

7. Graph
@B X
8. Examples

(a) ifx,y, z designate signals:
X := y +z de nes the signal designated By equal to the sum of the signals designated
respectively by andz; this expression has as inpytandz and as outpux.

VI-1. SYSTEMS OF EQUATIONS ON SIGNALS 95

1-b Equation of multiple de nition of signals
(X1,...Xn):= E
1. Context-free syntax

DEFINITION-OF-SIGNALS ::=
Name-signal{ D Name-signal} E| S-EXPR

2. Prole
An equation of multiple de nition of signals has the inputsdaoutputs de ned by the following
rules.

The identi ers of de ned signals represent the outputs @& dguation:
P((X1,...Xn):= E)=fXq;:::;Xng

The inputs of the equation are the inputsofvhich are not outputs of the equation:
?(Xg,..Xn)= E)=?E®) !'((X1...Xn):= E)

3. Types
@ ((X...Xn))=((X1) 0 (Xa))
® (E)v((X)) :=:: (X))

4. Semantics

X1, ...,Xp designate signals or tuples of signals.

E can be viewed as a tuple nfelements: lef E1,... E) this tuple.

Each signal or tupl&; is respectively equal to the signal or tufide that corresponds to it
positionally as output o .

5. De nition in SIGNAL
(X1,...Xn):= E
is equal to the following process:

(] X1 := E1
j Xn = En
D)
As a particular case, when the de ned signal or tuple is umiquxX) := E is equivalent
to:
X =E

(the syntax without parentheses as describedatan be used wheX is a tuple).

6. Clocks A signalrepresented by an identi er and the sigiiglthat de nes it are synchronous. In
this case, there is:

@ ! (xi)=! (&)

96 EXPRESSIONS ON SIGNALS

7. Graph
(@ El X
8. Examples

(a) ifx,y, z, a designate signals ariRla model with one formal parameter, one input and three
outputs:
(X ,y,2) .= P{n}at+5) de nes the signals designated kyy andz, equal respectively
to the rst, second and third output of the modelinstantiated with the parametarand
takinga;+5 as input at each occurrenceafthis expression has as inpaand as outputs,
y andz;

(b) if w, v, b also designate signals:
(w,x,y,zVv):=(a ,P{n}(a+5) ,b) de nesthe signalsy,x,y,z andv, equal respectively
to the signakh, to the rst, the second and the third output of the prodgsand to the signal
b; this expression has as inpgsandb and as outputsy, X, y, z andv; it is equivalent to
the composition
(Iw wv):=(@ ,b)|(x .y.z):=P{nKat+3)]) :

(c) if x designates a tuple with named elds whose elds are respelgtix1 andx2, anda, b

designate signals:
(a,b):=(xx1 x.x2) de nesthe signals andb equal respectively to the rstand the

second component of the tupte

(d) if x designates a tuple with named elds aagb designate signals:
x = (a ,b) denes the tuplex the components of which are respectively equal to the
signalsa andb.

1-c Equation of partial de nition of a signal

Equations of partial de nition of a signal are a way to avdig tsyntactic single assignment rule, even
if semantically, this rule applies. Signals that are de neing partial de nitions should be declared
as shared variables (cf. sectidkr10, p. 90 et seq). Each one of the partial de nitions of a given
signal contributes to the overall de nition of this signdlhese partial de nitions can appear in different
syntactic contexts. All these partial de nitions have to fm@tually compatible. One default partial
de nition can appear for a given signal: it allows to complé¢he de nition of the signal by a default
value when the partial de nitions do not apply. The overadlrdtion of the signal is considered as
complete in a compilation unit.

Equations of partial de nition are syntactically distirighed by the use of the special symbol
. The use of this symbol is mandatory to allow the presenceifférent syntactic de nitions of

a given signal. The syntactic single assignment rule stilias when the assignment sym
is used. In particular, itis not possible to have both coepdie nition and partial ones for a given signal.

X = E
X ;= defaultvalue E

1. Context-free syntax

VI-1. SYSTEMS OF EQUATIONS ON SIGNALS 97

DEFINITION-OF-SIGNALS ::=
Name-signa S-EXPR

i Name—signa defaultvalue| S-EXPR

2. Prole

An equation of partial de nition of a signal has as output pgatially de ned signal and as inputs
the inputs of the expressida distinct of the output.

(X == E)=fXg

?X:= E)=?E) '(X:= E)

I'(X ::= defaultvalue E)=fXg

? (X ::= defaultvalue E)=?(E) !(X :=defaultvalue E)
3. Types

@ (E)v (x)

4. De nition in SIGNAL

Let the following composition represent the whole set oftipade nitions of a signalX in a
given compilation unit:

(j X == E:
j X = En
j X = defaultvalue En+1

1)

It is semantically equivalent to:

(] X = Ep default X

j X = Ep default X

j X = (Epsr when (X b (Ep b+ ... b+ E,))) default X
j X b= E1 b+ ... b+ E, b+ X

j

)

5. Clocks For the above set of partial de nitions of the sign@l any two different expressiorts;
must have the same value at their common instants if they susmle common instants. The clock

(@) 8i;j =1;:::;n ! (Eib E;)=! (when ((Ei whentE;) == (E; whenkE;)))
() ! (X)=! (E1b+ :::b+ Enb+ X)

cannot be a constant expression or a direct reference tteavat@able.
The clock ofE,+1 can bea context clock.

1-d Equation of partial de nition of a state variable

State variables (cf. sectiot-11, p. 91 et seq) can be de ned exclusively by equations of partial
de nition. These equations de ne theextvalues of a state variable. The last de ned value, which

98 EXPRESSIONS ON SIGNALS

is the only one that can be accessed at every instant, iggefér via the special notatiol ? (cf.
sectionVI-2.3, p. 108 et seq).

X = E
1. Context-free syntax
The syntax is the same as that of an equation of partial demif a signal.
2. Types
@ (E)v (x)

3. De nition in SIGNAL

Let the following composition represent the whole set otiphde nitions of a state variabl&
in a given compilation unit:
(] X = E;

j X = Ej
D)

It is semantically equivalent to:

(] next_ X = E; default next_X
j next_ X := E, default next_X
j X = next_X $
1) I next_X

4. Clocks Forthe above set of partial de nitions of the state variableany two different expressions
E; must have the same value at their common instants if they sussle common instants.
@) 8i;j ! (Eib E;)=! (when ((Ei whenbE;) == (E; whenkbE;)))
(b) The clock of any expressioB; has to be well de ned: it cannot be a context clock. In

particular, E; cannot be a constant expression or a non-clocked referenaeother state
variable.

(c) The clock ofX is upper than the upper bound of the clocks of all the sigrfaiseocompila-
tion unit in whichX is declared.
1-e Equation of partial multiple de nition

(X1,...Xn) = E
(X1,...Xp) ::=defaultvalue E

1. Context-free syntax

DEFINITION-OF-SIGNALS =

Name-signal{ I:l Name-signal} S-EXPR
i Name-signal{ |:| Name-signal} S-EXPR

VI-1. SYSTEMS OF EQUATIONS ON SIGNALS 99

2. Types
@ ((X1...Xn))=C (X1) =2 (Xa)
b (E)v((X)) :=:: (X))

3. Semantics

X1, ...,X, designate signals or tuples of signals declared as sharidbles, or state vari-
ables
(only signals or tuples of signals f@iX 1,... Xp) ::= defaultvalue E)

This is the same generalization bicand1-d
(only of 1-cfor (X 1,... Xp) ::= defaultvalue E) as that ofL-b with respect tdl-a

Each signal, tuple or state variabte is respectively partially de ned by the signal or tuple
v; that corresponds to it positionally as outputtaf

VI-1.2 Invocation of a model

The invocation of a model of process providesld® TANCE-OF-PROCESS by macro-expansiorf
the text of the model, or by reference to this model if the txthe model is de ned externally or is
compiled separately.

Depending on the fact that a model:

has or not parameters,
has or not inputs,
has or not outputs,

the invocation of the model can take different syntactierfer In all cases, the composition with the
context is done positionally, on the inputs and on the ostput

If the model has no outputs, and only in this case, its invonappears as an expression on processes
(ELEMENTARY-PROCESS); in any other case, an invocation of model appears as aessipn on
signals 6-EXPR).

The tableC-VI.1 gives the generic forms of the invocation of a model (which ba either an ex-
pression on processes or an expression on signals).

Positional de nition No inputs
of the inputs
Without parameters P(Eg4,... En) P()
With parameters || P{V1,... Vimn}(E1,... En) | P{V1,... Vi }()

Table C-VI.1: Syntactic forms of an invocation of model

The different forms are detailed below.

1. Context-free syntax

ELEMENTARY-PROCESS ::=
INSTANCE-OF-PROCESS

100 EXPRESSIONS ON SIGNALS

2-a Macro-expansion of a model

One has to take care that this basic form is used here to Heshe semantics of any invocation of model.
The composition with the context is made by identity of namdewever, this form is not necessarily
available as an external form in the language, except if theesponding model of process does not
have inputs.

P{Vi,...Vm}

The static parameters are parenthesize#@ and ; these parameters are types or constant
expressions mainly used as initial values of signals oryasize. Note that parameters can also be
models (cf. parg, sectionX|-8, p. 204 et seq).

1. Context-free syntax

INSTANCE-OF-PROCESS::=
EXPANSION

j Name-mode

EXPANSION ::=

Name-model

[S-EXPR-PARAMETER { DS-EXPR-PARAMETER}]

S-EXPR-PARAMETER ::=

S-EXPR
j SIGNAL-TYPE

2. Prole

! (P{ Vi,... Vin}) is equal to the set of the names of the outputs of the visildéadsion of

3. Types

(a) Let, inthis orderPy, ...,P; be the names of the formal parameters of the visible demarat
of P.

(b) The actual parameterS{EXPR-PARAMETER) of the invocation of the model must cor-
respondpositionally to the formal parameters of the declaration of the model peftt E,
sectionX|-5, p. 193 et seq). In particular, to the parameter types can only correspgpes
(SIGNAL-TYPE), and to the “constant sequences” parameters can onlyspome expres-
sions on sequenceS-EXPR).

© () 0 (e)v((P) x (P

@) (P{Vi...Mm})= ('P)

(cf. partE, sectionXI-5, p. 193et seq)

4. Semantics

P being the name of a model of visible process, the expresaipns. ., Vy, are the actual
parameters of the expansion, corresponddegitionally to the formal parameters of this

VI-1. SYSTEMS OF EQUATIONS ON SIGNALS 101

model. The expansioR{ V1,... Vm} is equivalent to the body of the visible declaratioriPof
in which each formal parameter has been substituted by thhespmnding actual parameter.

P() isthe expansion d® whenP has no parameters.

5. Clocks The actual parameters of sequengemust be constant expressions.
@ !)=~

2-b Positional macro-expansion of a model

P{Vi,...Vm}(E1,... En) or P(Eg,...En) withn 1

In the external form of the language, the input signals ase@ated with an instance of model,
respecting their “position”; a list of expressions betwéaa symbol and rede nes the input
signals declared in the model respecting the order of theskgtions.

1. Context-free syntax

INSTANCE-OF-PROCESS::=
PRODUCTION

PRODUCTION ::=
MODEL-REFERENCE S-EXPR{D S-EXPR}

MODEL-REFERENCE ::=

EXPANSION
j Name-model

2. Prole

(P{V1,... Vm}(E1,... En)) is equal to the set of the names of the outputs of the visible

[I’l
?(P{Vi,. - Vm}(E1...En))=" 2 (E) f Y15 Yq0
i=1

3. Types

(a) Let, in this orderPy, ..., P, be the names of the formal parameters ¥nd ..., X the
names of the inputs of the visible declaratiorPaf

O (V) =t (Vv ((P) i (R))
© ((E1) ::: (En)v((X1) i (Xp)
@) (P{Vi,...Vm} E1,...En))= ('P)

(cf. partE, sectionXl-5, p. 193 et seq)

4. Semantics
The formP (E4,... En) is used wherP has no parameters.

102 EXPRESSIONS ON SIGNALS

5. De nition in SIGNAL
P{ Vl!' . ,Vm}(El!' . ,En)

is equal to the process de ned below in whit§X;g is a set of signal names that do not belong
n

[
to the inputs of the expressiofs (| ? (Ei)), or to the sets of input or output namesRof
i=1

(j (S_Xl,..., SXp) = (E1,..., En)
() (Xgyeew Xp) = (SXg,..., SXp)
i P{Vi,..., Vm}
) X, o, Xp
i) I SXi, .., SXp

6. Clocks The actual parameters of sequengemust be constant expressions.

@ ! (vi)=~

2-c Call of a model

(SS1,...85) = P{V1,...Van}(Eq,... Epn)
(the formP{ V1,... Vim}(E1,... En) is used here generically to represent one of the forms deined
2-aorin 2-b; moreover, it can also appear as argument of any expressisigoals)

1. Context-free syntax

S-EXPR::=
INSTANCE-OF-PROCESS

2. De nition in SIGNAL
(SS1,...55) = P{Vi,...Vm} Eq,... En), with the modelP having the output signals

n
do not belong to the inputs of the expressidhs(? (E;)), or to the sets of input or output
i=1

(i (SSt., SS) = (SYi, SYy)
i (i P{Vi.., Va} Ei,.. Enp)
i (SYi, SYQ = (Yo, Yy
LYy o Y
j) I SY1, .., SYq

The tableC—VI.2 gives the different forms of the invocation of a model togetwith the priority of
their arguments (refer to the tabl€s-VI.3 andC-V1.4).

2-d Expressions of type conversion
T(E)

VI-1. SYSTEMS OF EQUATIONS ON SIGNALS 103

Scheme Type
Arguments ! Result

P{VP.. VI EY...ED

P{V,. .. Va}0 (1 0 m) (1 0)
P{VP,... V%) (1 it p)
P(EY...ED) (1 0 n)

P()

Table C-VI.2:INSTANCE-OF-PROCESSE %°

When the inputg&; are absent, it is a model without input (the tugler(::: n)) is then empty);

When the model has at least one input, the tydes. ., { being, in this order, those of the declaration of
the inputs ofP, there is

(2 0 v (Y =0)
The type ; is that of the signal declaration corresponding positilyrialoutput inP .

The conversions of values between distinct effective tyges be explicited as call of a model
(INSTANCE-OF-PROCESYS); the name of this model is the name of the destination typkeo€onver-
sion; the expressions of conversion can only appear asssipns on signals, but not as expressions on
processes.

1. Context-free syntax
S-EXPR::=
CONVERSION
CONVERSION ::=

Type—conversio S—EXPR

Type-conversion::=

Scalar-type
i Name-ype

2. Types

(a) If the conversiorC (TE) exists,
(T())= (7)

(b) If the conversiorC gTE)) does not exist] (E) is incorrect.

3. Semantics

If vis an element of the sequence of values representéd, liye corresponding element is

C gTE)) (v) in the sequence representedyE) (if the conversiorC éf)) exists).

If the type T or the type ofE is an external type, the applied conversion, when it exists,
depends on the environment while respecting the genered rdncerning conversions (cf.

104 EXPRESSIONS ON SIGNALS

sectionV-6.3, p. 83 et seq).

4. Clocks A conversion is a monochronous expression.

@ ! (T(E))="(E)
5. Examples

(a) integer(3.14) has the valué.

VI-1.3 Nesting of expressions on signals

The expressions on signals can be nested in the respect pifidhidies of the operators: any expression
with lower priority than the expression of which it is an amgent must be parenthesized. Parenthesizing
is possible but not necessary in the other cases. Non paséngld expressions which contain operators
with the same priority are evaluated from left to right, wslé is explicitly mentioned.

1. Context-free syntax

S-EXPR::=
S-EXPR

2. Prole
The expressionS-EXPR do not return a named output; their inputs are the set olutdigethe
union of the sets of inputs of their operands.

3. Semantics
In the respect of the rules of priority, an equat®n=: T(E4,... Ey) formed by a function (or
an operator) and sub-expressidas. . . En is equal to the composition

of the equations calculating these expressions in auxiliariables:

(Xi;l,...)(i;mi)::: E;

of the equationS :=: T(X1.1,... Xnn,) €qual to the equatio® :=: T(E1,...En) in
which has been substituted, to each expresEioithe tuple K. 1,. .. Xim;) of the auxiliary
variables in which it is evaluated,

and of the clock equations depending on the context of eaelobthese expressions.

Priorities and types of the operators on signals The tablesC-VI.3 andC-VI.4 contain a sum-
mary of the properties of expressions on signals. In thédeda

the priorities are described in the rst column (priority thie expression) and the second column
(priorities of its arguments) by usirfg' to describe an expression of prioritythe expressions are
evaluated in the decreasing order of priorities;

the third column describes the types of the arguments arfteafsult:

— any; represents any type (however, one must refer to the demitibthe operators for a
more precise description)
— bool; is the typebooleanor event

— compar; is any type in which there exists a partial order

VI-1. SYSTEMS OF EQUATIONS ON SIGNALS

105

Prio- Scheme Type
rity Arguments ! Result
| E° | [30) event |
= Elnext E? (0.n1] 0.npD ! any,
(0.m1] O.mpD! any, ! (0.ng] 0.np) ! any,t any, | @
E?2 ES: ES (0.11] [0.dp]) ! int("
(0.m1] mph ! any; ! (0] O.rn]) ! any,
ES3 ES default E?* any,; any, ! any;t any, a
E4 E*when E® any, bool; ! any,;
E® E®after E° event event
E® from E° I integer
E® count E°® event intq
E® E®b+ E',E®b E’ any,; any,
E’ E'b EB I event
E® | whenES [EV],[/: EY] bool;
| E® | if E°then E%else E° | bool; any; any, ! any;t any, a |
E10 EX. EYstep EX int; int, intz ! [0.n]! intyt int,
gl gll inty int, ! [0.n]! intqt inty
L Elxor ET? bool;, bool, ! bool;t bool
E12 E12 or El3
Eld Eld and El4
E not E* bool;
ED EX==ET any; any, a
EX«=E® compar; compar, ! boolean a
ET® EYOpEY any, any, ! boolean a,b
compar, compar, a,c
EL EV+EB EY EIB num; num, ! numgt num,
E17j+ E18 [0.m1]! any; [0.m2]! any, | [0.my+ mp+1]! any;t any, a
ES E® ETP EB/EDP num; num, ! numgt nums
E®] EP any; int; ! [0.m]! any,
E®¥ modulo EX® int; inty ! inty
ElB :E19 d
EL EXV EXD num; int; ! num;
EY @E? real; real, ! cmplx; e
E20 +E?, EZA num; ! numj
E?! var EZinit E?? any, any, ! any,; f
var E#? any,
E%lcell EZ%%init E?# any; bool; any, ! any; f
E%lcell E? any,; bool;
S-EXPR-DYNAMIC C-Vl.6

Table C-VI.3: Expressions on signals

106 EXPRESSIONS ON SIGNALS

Prio- Scheme Type
rity Arguments ! Result
E# | tr E%? \ ([0.11 [0.m])! any, ! ([0.m] [O.I])! any, |

E¥® | E#nnE* | any,; any, ! any,;t any, | a |
EX] R any, | |
E 25 EO,. v ,EO [0.my 1]! any; ... [0.mp 11! any, I [0..\"| my 1! any,
k=1
[0 my 11! any,
k=1
[EO,...,EO] any; ... any, I jon 11 .G any ; a
INSTANCE-OF-PROCESS C-VI.2
T(E?) any; ! (T) h
E26 E26[EO,. v ,EO] (([0.n1] i [0.nm])! anyq) (intg ::: int m) I any ;
([0.11] i [0.0n]) ! any,
([0.mq] i .mp] ! intq" I ([0.mq] [0.mp]) ! any;
E26.Xi bundle (fX 19! any, ::: f Xmg! anyp) I any
E27 (EO,...,EO) any, ... any, I (any, ::: any)
CONSTANT C-VI.5
Id (1d) i
(E”) (E)

Table C-VI1.4: Expressions on signals

[a] fortypes belonging to the same domain

[b] forOp= or==

[c] for Op <= or>= or< or>, a partial order being de ned in the typempar

[d] matrix products

[e] cmplx, is of typecomplexif both arguments are of typeal, it is of typedcomplexotherwise
[f] for any, v any,

[g] Iterative enumeration

[h] Conversion

[i] (Id) is the type of the declaration of the signal identiler

int; is an integer type (i.e., amorsport, integer, long)

real; is a real type (i.e., amongal, dreal)

cmplx; is a complex type (i.e., amor@mplex, dcomplex)

num; is a numeric type (i.e., amongt, real;, cmplx;);

when, on a same line, two notations of type have the same ,irtder they designate the same
type;

the last column is a reference to the notes that follow thie thbwercase letter) or a reference to
another table.

VI-2. ELEMENTARY EXPRESSIONS 107

VI-2 Elementary expressions

The expressions of elementary signals are the following:

1. Context-free syntax

S-EXPR-ELEMENTARY ::=

CONSTANT
j Name-signal
j Label

j Name-state-variabl

VI-2.1 Constant expressions

A constant expression iISSONSTANT, an occurrence of constant identi er, an occurrence of patar
identi er, a constant expression of tuple (cf. pBrtsectionVIll-1, p.153), a constant expression of array
(cf. partD, sectionlX-2, p. 159), or one of the following expressions having recursivelaeguments
constant expressions:

an INSTANCE-OF-PROCESS (only if it is the call of a monochronous function with consta
arguments), or CONVERSION,

amongS-EXPR-TEMPORAL aMERGING or anEXTRACTION ,
anS-EXPR-BOOLEAN,

anS-EXPR-ARITHMETIC,

anS-EXPR-CONDITION.

Clock expressionsS-EXPR-CLOCK) and dynamic expressionS{EXPR-DYNAMIC) cannot be part
of a constant expression.

A constant is a denotation of value oBaalar-type or of anENUMERATED-TYPE :

1. Context-free syntax

CONSTANT =

Boolean-cst

j Integer-cst

j Real-cst

j Character-cst
j String-cst

j ENUM-CST

These syntactic categories are described elsewhere (t# psectionll-2, p. 25 et seq).

1. Prole
A constant and consequently a constant expression havenadmed input, nor named output.

108 EXPRESSIONS ON SIGNALS

2. Types

(a) The type of a constant expression is evaluated in acooedaith the type of th&-EXPR
having the same syntax.

3. Clocks

(a) The clock of a constant expression and of its arguments is

The tableC—-VI1.5 contains a summary of these properties and gives the grafrihe constant lexical
expressions.

[Scheme \ Type |
true event
false boolean
Integer-cst Integer-type following its value
Simple-precision-real-cst real
Double-precision-real-cst dreal
Character-cst character
String-cst string

Table C-VI.5: Types of the constarfs”’

VI-2.2 Occurrence of signal or tuple identi er

An occurrence of signal identi er has as value the signat teanes this identi er, as clock, the clock
of this signal and as type the type of its most internal detian; the pro le which is associated with it
contains as input this single identi er and does not congaimramed output.

An occurrence of tuple identi er has as value the tuple ofglymals that de ne this identi er.

In the rules describing the context-free syntax of the lagguName-signalcan designate, following
the context, a signal name, a tuple name, or a eld name inla.tup

The occurrence of a label is more speci cally described iapthrVII, sectionVIl-5, p. 138et seq.

VI-2.3 Occurrence of state variable

The notationX ? allows to refer to the last de ned value of a state variakldcf. sectionv-11, p.91
et seq). State variables can be de ned exclusively by equationpasfial de nition, that de ne the
next values of the state variable (cf. sectMir-1.1, paragraphl-d, p. 97 et seq). For a declared state
variableX , the direct reference t§ is not allowed in expressions on signals; the only way torrife
the last de ned value of the state variable is by using thatnah X ?. The notationX ? designates the
value of the state variabl¥ at the beginning of the “current step” (current logical arg). Moreover,
this notation must be used in a context in which a contextkcipavell de ned.

X?
1. Types
@ (x?)= (x)

VI-3. DYNAMIC EXPRESSIONS 109

2. De nition in SIGNAL
Let H be the context clock oX ?, then, with the de nition ofX as it is given in sectioVI-1.1,

paragraphl-d, p. 97 et seq. X ? is equivalent to:
X when H

3. Clocks

(@) The clock ofX ?, which is equal to the clock ok, is upper than the upper bound of the
clocks of all the signals of the compilation unit in whighis declared.

VI-3 Dynamic expressions

Dynamic expressions allow the handling of values of sighaging distinct dates. They require the
de nition of the value of the signals at their initial instan

1. Context-free syntax

S-EXPR-DYNAMIC ::=

SIMPLE-DELAY
i WINDOW
i GENERALIZED-DELAY

The tableC—-VI.6 gives the different forms of dynamic expressions.

Scheme Type
Arguments ! Result

E?lwindow E%%init E2°| A; E; W; | W,

E 21 window E?2 Ar E; I W,
E2L$ E%?init E?? A; Ei1 Wi ! Ag
E2L1$init E?? Ar A, T A
E?1$E?? Ar Eun ! Ag
EZg A 1 A

Table C-VI.6:S-EXPR-DYNAMIC E?*

A1 any;

E1 constanM of Integer-type, strictly positive

W; [0.M 2]! A

Wy [0.M 1! Ay

E11 signali of Integer-type, positive or zero, bounded by a constaint
of implicit value 1

Wy [O.N 1! A,
A Av A

110 EXPRESSIONS ON SIGNALS

VI-3.1 Initialization expression
E init V
The initialization expression allows to de ne the initiadlue(s) of a signal.

1. Types

(a) E is a signal of any type.

(b) The type oV can be, depending on the context of the initialization:
atype suchthat v (E),
atype[0n 1]! suchthat v (E).

2. Semantics

If V has atype suchthat v (E) the value ol de nes an initial value for the expression
E init V.

If V hasatype [0On 1]! suchthat v (E), then the value o/ de nesn initial
values for the expressida init V: the value' (V[0]) de nes the value of this expres-
sion at its rst instant, the value (V[1]) de nes the value of the expression at its second
instant, etc.

If V de nes more values than required by the initialization of gxpressiork, the extra values
are not taken into account.

If V de nes less values than required by the initialization & &xpressiort, the missing values
are de ned by the default initial value of type

An initialization expression can be associated with a digitaer in an expression on signals, as it
is the case here, or in the declaration of a signal (cf. sest®, p. 89 et seq). When both forms
of initialization are de ned for a same signal, the one whiets the priority is that appearing in the
expression of de nition of the signal. The presence of atidhzation expression in the de nition
of a signal speci es, with the same semantics as aboudefaultinitialization for the signal, when
no initialization is speci ed in its expression of de nitio For a state variable (cf. sectidfq11,

p. 91 et seq), it is recommended that its initialization is describedténdeclaration, and not in its
expressions of de nition.

When several initialization expressions are associatéid avsignal in different partial de nitions,
they should be compatible.

3. Clocks
@ ! (E init Vv)=!(E)
) ! (v)=~

VI-3.2 Simple delay
E $init vy
1. Context-free syntax

SIMPLE-DELAY ::=

S-EXPR [S-EXPR]

VI-3. DYNAMIC EXPRESSIONS 111

2. Types

(a) E is a signal of any type.
) (Esinit vo)= (E)
© ()v (E)
3. Semantics
The semantics of the delay is described formally in Bagectionlll-6.2, paragrapt2-b, p. 42.
The value of the signdt $ init vg is at each instarit the value of the delayed sign@él at the
instantt 1. Initially, this value is the value de ned by the initialitan (' (vo)).

4. De nition in SIGNAL
When the initial value is omitted, it is equal to the “null"lua of type (E) (which implies that
it is de ned for any type, including external on@ (E):

E$=ES$init O (E)’
except if an initial value is associated with the de ned silgim its declaration (cf. sectiovil-3.1,
p.110).

5. Clocks

@ ! (vo) =~
) ! (E $init vo)=!(E)
6. Examples

(&) The values taken by for y dened byy := x $ init O are described below for the
corresponding values af in input:

x = 1 2 3 4
& & & &
y = 0 1 2 3

Note that the initial value is the rst value gf, not that ofx.

VI-3.3 Sliding window
E window M init TEq

1. Context-free syntax

WINDOW ::=

S-EXPR S-EXPR [S-EXPR]

2. Types

(a) E is a signal of any type.

(b) The size of the windowy , is an integer constant expression the value of which istgrea
than or equal to 1. If it is equal to 1, the initialization haseffect.

(c) (E window M init TEg)=[0.. (M) 11! (E)

112 EXPRESSIONS ON SIGNALS

d (TEo)=[0.n 1!
where v (E),n ' (M) 41,andn > 0
(in the particular case WheFe(M) = 2, the single initialization value can be given by an
element of type (TEg) = ,where v (E))

3. Semantics
For asignalX de ned byX := E window M init TEqgq:

T+ T M)) DT =E (y)ia0)
@ t+i<" (M)) Xi[i] =TEo[t' (M) +i+2])
4. De nition in SIGNAL

X := E window M init TEg
whose right side c{f:z represents an expression of sliding window, is equal to tbegss de ned

as follows, when (M) > 1:

(] Xo = E
j X1 = Xo $ init TEO[M 2]

= [XM 11 eees Xo]

XM 1= XM 2 $ init TEo[O]
X
I Xo, -y XM 1

J
!
i)

5. De nition in SIGNAL
E window M is equal, whent (M) > 1, to the following expression on signals:

E window M init - Og * () 271 (E)

6. De nition in SIGNAL

X = E window 1lis equal to the process de ned as follows:
X:=[E]
7. Clocks
@!(M)=~
(b) ! (TEo) =~
() ! (E window M init TEg)=! (E)
8. Examples
(a) The values taken by for y de ned byy := x window 3 init[-1,0] are described

below for the corresponding values»oin input:

X = 1 2 3 4
y [LOo1] [OGL2] [L,23] [234]

VI-3. DYNAMIC EXPRESSIONS 113

VI-3.4 Generalized delay
E$linit TEg

1. Context-free syntax

GENERALIZED-DELAY ::=

S-EXPR S-EXPR [S-EXPR]

2. Types

(a) E is a signal of any type.
(b) 1 is a positive or equal to zero integer, with an upper bound.
LetN be the upper bound (If is an integer constany is equal tal).
) (Es$linit TEo)= (E)
d (TEg)=[0.n 11!
where v. (E),n ' (N),andn > 0
(in the particular case wheFe(N) = 1, the single initialization value can be given by an
element of type (TEog) = ,where v (E))

3. De nition in SIGNAL
X =ES$Iint TEg
whose right side o@ represents an expression of generalized delay boundedebydkiimal
valueN, is equal to the process de ned as follows:

(j TX := E window N+1 init TEg
j X = TX[N 1]
) TX

4. De nition in SIGNAL
X =ES$I
is equal to the process de ned as follws:

(j TX := E window N+1
j X = TX[N 1]
j) I TX

5. Clocks
@!@)="(E)
() ! (TEo) =~
! (E s1)=!()
6. Examples

(@) The values taken by for y de ned byy :=x $ 3 init[-2,-1,0] are described
below for the corresponding values»oin input:

114 EXPRESSIONS ON SIGNALS

x = 1 2 3 4 5 6
y = 2 1 01 2 3
(b) The values taken by for y dened byy :=x $iinit[-2,-1,0] are described
below for the corresponding valuesofandi in input:
i =1 3 3 1 2 1
x =1 2 3 4 5 6
y = 0 1 0 3 3 5

VI-4 Polychronous expressions

The polychronous expressions are built on signals whicle pagsibly different clocks.

1. Context-free syntax

S-EXPR-TEMPORAL::=

MERGING
j EXTRACTION

i MEMORIZATION
i VARIABLE

i COUNTER

VI-4.1 Merging
E, default E»

1. Context-free syntax

MERGING ::=

S-EXPR S-EXPR

2. Types

(@) (E1)and (E,) are signals of a same domain.
(b) (Eidefault E,)= (Ei)t (E»)

3. Semantics
The semantics is described formally in pBrtsectionll-6.3, paragrapt8-b, p. 43.

4. Clocks

@@ ! (Ey default E)=!(E1)+(@@ !'(Ey)) !'(Ex) if! (Ex)6 ~

() ! (E; default Ep)=! (El)+(@ ! (Er)) ! (E; default Ey))
if | (E2) =~

5. Graph
When (E;default E;)6 booleanand (E;default E,)6 event

(@) E} Ejidefault E»

VI-4. POLYCHRONOUS EXPRESSIONS 115

1 ! (E
(b) E ! (E) E, default E,
6. Properties

(@) (Epdefault Ej)default Ez=E;default (E,default E3)
(b) E; default E,=E;default (E,whennot bE; default bE))
© ((E1) !'(E2)=bB)) (Eidefault E,=E,default Ej)
@ ((E1) '(E2) ((E1)=~)) (Erdefault E,=Eq)

7. Examples

(a) the values taken by de ned by Y := E1 default E2 are described below for the
corresponding values &1 andE2 in input:

ElL = 1 3 ? 5 7
E2 = 2 4 6 ? 8
Y =1 3 6 5 7

VI-4.2 Extraction
E when B

The values of a signal can be produced by extraction of theegabf another signal when the values
of a Boolean signal are equal e .

1. Context-free syntax

EXTRACTION ::=
S-EXPR S-EXPR

2. Types

(a) E is a signal of any type.
(b) (B)v boolean
() (EwhenB)= (E)

3. Semantics
The semantics is described formally in pBrtsectionlll-6.3, paragrapl8-a p. 42

4. Clocks

@@! (e whenB)=!(E) '(B) (1 B) if!(E)6~
() ! (E when B)=!1(B) (1 B) if!(E)=~

5. Graph
When (E whenB) 6 booleanand (E whenB) 6 event

(@ B E whenB

116 EXPRESSIONS ON SIGNALS

6. Properties

(@ ((B)=even)) (B whenB =B)
(b) (E when B;) when B, =E when (B; when B»)
(c) E when (B when B) =E when B

7. Examples

(a) the values taken by when Care described below for the corresponding valueX ahd
Cininput:

X
C
C

I
i

3?2 5 2
2 T F F
2 2 2 2

~N 4~

X when

VI-4.3 Memorization
E cell Binit Vp

The memorization allows to memorize a given signal at thekctte ned by the upper bound of the
clock of the signal and the clock de ned by the instants atoltd Boolean signal has the valuae .

1. Context-free syntax

MEMORIZATION ::=

S-EXPR S-EXPR [S-EXPR]

2. Types

(a) E is a signal of any type.
(b) (B)v boolean
() (Ecell Binit Vo)= (E)
d (w)v (E)
3. De nition in SIGNAL
X = Ecell Binit V

whose right side represents an expression of memorizatiok Gt the instants at whicB
istrue, is equal to the process de ned as follows:

(j X = E default (X $ init Vo)
j X b= E b+ (when B)
)

4. De nition in SIGNAL
When the initial value is omitted, it is equal to the “null”’lue of type (E) 0 (E):

Ecell B=Ecell Binit O E)

except if an initial value is associated with the de ned silyin its declaration (cf. sectiowvl-3.1,
p.110).

VI-4. POLYCHRONOUS EXPRESSIONS 117

5. Clocks
@!(E cell B int V)=!(E)+@ !(E) '(B) (1 B)
6. Examples

(a) the values taken by cell C init O are described below for the corresponding values
of XandCin input:
X = ? 0?2
C = T F T
3 ?2 3

X cell C init O =

oY gl

? 7
T ?
5 7

o -
T e
w - w

VI-4.4 Variable clock signal

var E init Vg

Thevar operator allows to use a signal at any clock de ned by theednt

1. Context-free syntax

VARIABLE ::=

S-EXPR [S-EXPR]

2. Types

(a) E is asignal of any type.

() (var Einit Vo)= (E)

© ()v (E)

3. De nition in SIGNAL
Let:

F an expression on processes containing an occurreageof the expression on signals
var E init Vg,
H the context clock ofrar; in F,
FF the expression on processes equdt tm which XX has been substituted var; .

F is then equivalent to:

(j FF

j X = E default (X $ init Vo)
j XX = X when H

j X b= E b+ H

i)y I X, XX

4. De nition in SIGNAL
When the initial value is omitted, it is equal to the “null”’lue of type (E) 0 (E):

var E=var Einit O E

except if an initial value is associated with the de ned silyin its declaration (cf. sectiovl-3.1,
p.110).

118 EXPRESSIONS ON SIGNALS

5. Clocks

@@ ! (var E init \p)=~

VI-4.5 Counters

H1 modality H, or Hicount M

The counter expressionsipdalityafter orfrom , or counter modulocount) allow the number-
ing of the occurrences of a clock.

1. Context-free syntax

COUNTER ::=
S-EXPR|after | S-EXPR
i S-EXPR[from | S-EXPR
j S-EXPR]|count|S-EXPR

2. Types

@@ (Hy)= (H,)=event
(b) M is an integer constant expression.
(¢) (H1 modality H,) = integer
(d) (Hicount M) =integer
3. De nition in SIGNAL
N := H,after H,

whose right side represents an expression of counter of the evdntafter the reinitializa-
tion H,, is equal to the process de ned as follows:

(j counting_active ::= Hj
j count_state ::= newCount
j newCount := (0O when Hy) default incrCount
j incrCount := (count_state? + 1) when counting_active? when H;
j N := (newCount when H;) default (0 when H1)
j) where
statevar boolean counting _active init false;
statevar integer count_state init O;

integer newCount, incrCount;

The signalN counts the number of occurrences of the sigHal (o;) since the last occur-
rence of the signat, (0,); but the occurrences; which are simultaneous to occurrenaesare
not counted.

4. De nition in SIGNAL
N := H;from H,
whose right side oEl represents an expression of counter of the evidntsince the reinitial-
izationH,, is equal to the process de ned as follows:

VI-4. POLYCHRONOUS EXPRESSIONS 119

(j counting_active = Hj
j count_state ::= newCount
j newCount := (1 when H,; when H;) default (0 when H,) default incrCount
j incrCount := (count_state? + 1) when counting_ active? when Hj
j N := (newCount when H;) default (0O when H1)
j) where
statevar boolean counting _active init false;
statevar integer count_state init 0;

integer newCount, incrCount;

The signalN counts the number of occurrences of the sigHal (0,) since the last occur-
rence of the signaH, (0y); the occurrence®; which are simultaneous to occurrenagsare
counted.

5. De nition in SIGNAL
N := Hycount M
whose right side represents an expression of counter of the evidntsnodulo’ (M) is
equal to the process de ned as follows:

(Jj N = (0 when ZN >= (M 1)) default (ZN + 1)
j ZN = N $init (M 1)
j N b= H;

The signalN has 0 as initial value and is incremented by 1, modul@V), at each new
occurrence of the signéd 1.

6. Clocks
(@) ! (Hy modality Hy) ="! (H4)
() ! (M) =~
) ! (Hy count M)="! (Hy)
7. Examples

(a) the values taken byl from E2 , E1 after E2 andEL count 3 are described below for
the corresponding signalsl andE2 in input:

El = ? ?

E2 = ? 7 ? 7 ?
ElfromE2 = ? 1 2 1 2 3 ? 1
E1l after E2 = ? 1 2 0 1 2 ? 1
E1 count 3 = ? 0 1 2 0 1 7?2 2

VI-4.6 Other properties of polychronous expressions
See also properties in sectivit-4.1, p. 114 et seq.and sectionV1-4.2, p. 115et seq.
(E1 default E») when B = (E; when B) default (E» when B)
((B1)=event)) (E when (B; default B,)=(E whenB;)default (E when B))

120 EXPRESSIONS ON SIGNALS

VI-5 Constraints and expressions on clocks

A CONSTRAINT is an expression of processes which contributes to the remtisin of the system of
clock equations of the program. It is the tool for constr@irigramming. Such an expression can take
as arguments expressions on clocks or expressions onssignal

1. Context-free syntax

ELEMENTARY-PROCESS ::=
CONSTRAINT

VI-5.1 Expressions on clock signals
1-a Clock of a signal
bE

The clock of a signal (of any type) is obtained by applying dperatob to this signal.
1. Context-free syntax

S-EXPR-CLOCK ::=
SIGNAL-CLOCK
SIGNAL-CLOCK ::=

@ S-EXPR

2. Types

(a) E is a signal of any type.
(b) (kE) =event

3. De nition in SIGNAL

E ==
Remark: this de nition uses the operator of relatren de ned on any type (cf. sectioWl-7.2,
p. 127 et seq).

4. Examples

(a) the values taken InX are described below for the corresponding valueX of input:
X =1 2 3 4
bX = T T T T

Remark: the expressibi and the conversioavent (E) have the same result.

VI-5. CONSTRAINTS AND EXPRESSIONS ON CLOCKS 121

1-b Clock extraction
whenB or [B] or [/: B]
The extraction of thérue values of a Boolean condition are obtained by applying trexatpr unary

when on the condition; the extraction of tif@se values of a Boolean condition are obtained by applying
the operator unarwhen on the negation of the condition:

1. Context-free syntax
S-EXPR-CLOCK ::=
CLOCK-EXTRACTION

CLOCK-EXTRACTION :=
when|S-EXPR

j ES-EXPRIIl
j ES-EXPRIIl

2. Types

(@) (B)v boolean
(b) (whenB) =event
3. De nition in SIGNAL

when B, or equivalently{: B], is equal to:
bB when B

4. De nition in SIGNAL
[/ B] isequalto:
bB when not B

5. Clocks
@@ ! (when B)=!(B) (1 B)
® ! (:B1)=!(B) (1 B)
©!(: B1)=!(B) @ B)
6. Examples

(a) the values taken lfy C] (orwhen C) and[/: C] are described below for the correspond-
ing values ofCin input:

C = F
when C = [:C]

[/:C]

]
N~ o

T
-
?

— VT

T
? T
T ?

1-c Empty clock

o0]
The empty clock is the clock that does not “contain” any insta

122 EXPRESSIONS ON SIGNALS

1. Context-free syntax

S-EXPR-CLOCK ::=

2. Types
(@) (t0) = event

3. De nition in SIGNAL
0 is the lexical expression of the empty clock; it is equah®golution of the following equation:
when not (k0) b=1k0

4. Clocks
(@) ! (bo)=b

VI-5.2 Operators of clock lattice
E1 bOp =
1. Context-free syntax

S-EXPR-CLOCK ::=
S-EXPR S-EXPR
i S-EXPRE' S-EXPR
i S-EXPRE' S-EXPR

2. Types

(a) E1 andE> are signals of any types.
(b) (E1 bOp E,)=-event

3. De nition in SIGNAL
X = E1bt E>
de nes a signal equal to the upper bound of the clocks of theadsE 1 andE»; this expression is
equal to the process de ned as follows:

(j X := DbE; default bE;
D)

4. De nition in SIGNAL
X = Elb E»
de nes a signal equal to the lower bound of the clocks of tigaaisE 1 andE»; this expression is
equal to the process de ned as follows:

VI-5. CONSTRAINTS AND EXPRESSIONS ON CLOCKS 123

(] X := bEi when bE,
D)

5. De nition in SIGNAL
X = E1b E»
de nes a signal equal to the complementary clockegt E, inbE1; this expression is equal to
the process de ned as follows:

(j X := when ((not bE,) default bE;)
D)

6. Clocks

@ ! (Ex b+ Ex)=! (E)+@ ! (EL)) ! (Em)
b ! (Ex b Ex)=!(E) ! (En)
©@!'(E1b E)=!(E) ((E) !(E))

7. Properties

(@) Exbt (E2bt E3) = (E1b+ E2)b+ E3

(b) E]_b'l' E2=E2b+ E]_

() E b+ 0 =bE

(d) Eb+ E =tE

(e) Eab (E2b E3)=(E1b E2)b E3

(f) Elb E2=E2b E]_

(g) Eb b0 =KD

(h) Eb E =tE

() (Eib E2)bt Ez=(E1b+ E3)b (E2bt Ej)
() (Eib+ Ez)b Ez=(E1b E3z)bt (E2b Ej)

VI-5.3 Relations on clocks
E, bOp E

The following expressions are expressions on processesiluiag constraints between clocks of
signals.

1. Context-free syntax

CONSTRAINT ::=
S-EXPR { S-EXPR}
i S—EXPR{ S-EXPR}
i S—EXPR{ S-EXPR}

i S-EXPR { S-EXPR}

124

EXPRESSIONS ON SIGNALS
. Prole
A relation on clocks of signals is a process with no output\aitd:
[n
?(EL bOp ... bOp En)= ?E).
i=1
. Types

(a) The argumentg; are signals of any types, possibly distinct.

. De nition in SIGNAL

E:1 bOp E, bOp EE

(wheréOp is one of the operatobs= ,b<,b> andd# , and where&eE is an expression on clocks
or recursively a relation on clocks), builds the compositas the expressiong; bOp E;j, for
any pair of distinct indices andj , and thus expresses the conjunction of the associate@rslat
It is recursively de ned by the composition of the followimgpressions of processes:

(. E1 bOp E2
i E, bOp EE
i E, bOp EE
)

. De nition in SIGNAL

El b= E2
constrains the clock of the expression on sigriaisto be equal to that oE»; this expression,
whenH; 62? (E; b= Ey), is equal to the process with no output de ned as follows:

(. H1:= (bE1) == (bE)
j) | Hi

. De nition in SIGNAL

E:i b< E»

constrains the clock of the expression on sigial$o be smaller than (or equal to) thatbs; this
expression is equal to the process with no output de ned l&sis:

E]_ b= E1 b E2

. De nition in SIGNAL

Ei1 b> E>»

constrains the clock of the expression on sigialgo be greater than (or equal to) thattef; this
expression is equal to the process with no output de ned lksifs:

E]_ b= E]_ b+ E2

. De nition in SIGNAL

E1 b# E, species the mutual exclusion of the clocks of the expression signal€E; and
E,; hence! (E1) ! (E,) =B. This expression is equal to the process with no output di @
follows:

b= Eib E;

VI-6. IDENTITY EQUATIONS 125

VI-6 ldentity equations

Identity equations are expressions on processes deggrdmoality constraints between the se

not yet
imple-
mented
in
_PoLy-
CHRONY

guences of values (and clocks) of two expressions.
1. Context-free syntax

CONSTRAINT ::=

S-EXPR S-EXPR

2. Prole
An identity equation is a process with no output and with:

?EL= Ex)=?EL)I[? E2).

(a) E1 andE» are of comparable types.

4. Semantics
If E1 andE, can be viewed respectively as tup(es11,. .. E1n) and(E21,... E2n), the identity
equationkE; :=: E, constrains the sequences of values of the expres&ionand E,; to be
respectively equal.
An equationE; :=: Ej5 is the basic identity equation between signals in the laggef. parB,
chapterlll, p. 31 et seq). Itis a non oriented equation, that does not induce depemdebetween
E, andEo,.

5. Clocks
If E1j andE» designatesignals,they are synchronous. In this case:
@ ! (Eu)="! (Ez)

6. Properties

(@ E1:= E»
is equal to the following process:
(j (when (Eyp == Ez1)) b= En

j (when (Ein == E2n)) b= Ein
i)

VI-7 Boolean synchronous expressions

The Boolean expressions are synchronous expressions radssigfhe operators de ning such expres-
sions are the standard operators on Boolean elements egtémdequences of elements. The Boolean
expressions (or expressions with Boolean result) areregtkgressions of the Boolean lattice, or rela-

tions.

126 EXPRESSIONS ON SIGNALS

VI-7.1 Expressions on Booleans
1-a Negation
not E;

1. Context-free syntax

S-EXPR-BOOLEAN ::=

S-EXPR

2. Types

(@) (E1)v boolean
(b) (not E;) = boolean

3. Semantics
The operator of negation has, on the occurrences of sigtmissual semantics.

4. Clocks

@@ ! (not E1)=! (Ey)

1-b Operators of Boolean lattice
E, Op E;
1. Context-free syntax
S-EXPR-BOOLEAN ::=
S-EXPR| or | S-EXPR

j S-EXPR|and|S-EXPR
j S-EXPR|xor |S-EXPR

2. Types

(@) (E1)v boolean
(b) (E2)v boolean
(c) (E; Op E;) =boolean

3. Semantics
The expressions on Boolean signals have, on the synchrawausrences of these signals, their
usual semantics; however, they are not primitive operatbiise SGNAL language.

4. De nition in SIGNAL
X = E;and E>
is equal to the process de ned as follows:

(] X =
j E1 b
i)

(when E;) default (not bE;)

E1
E>

VI-7. BOOLEAN SYNCHRONOUS EXPRESSIONS

127

5. De nition in SIGNAL
X = Ejor Es
is equal to the process de ned as follows:

(j X :=(E1 when not E;) default bE;
j E]_ b= E2
j)

6. De nition in SIGNAL

X = Epxor E»
is equal to the process de ned as follows:

(j X = not (E]_ == E2)
i)
7. Clocks
@ ! (E1)="! (E2)
(b) ! (E1 Op Ez)=! (Ey1)

VI-7.2 Boolean relations

The Boolean relations are equality, difference, and samct non strict greater and lower relations.

Two classes of relation operators are distinguished atwpid their denotation:

the operators which have a pointwise extension on eleméatsays (cf. parD, chapterX, p.179

et seq), denoted respectively= |, ‘::‘, |> | =] | < |eti<=] for example, the operat

applied on two vectors has as result a vector of Booleans;

the operators which have a Boolean result, whatever is e @y thesignalson which they are
applied; in this class are only de ned the operator of equadenote and the operator of

inferior or equal relation order, denot (these operators are pointwise extendefhimilies

of signals:polychronous tuples with named elds and tuples with unnanetds).

E1 Op =
1. Context-free syntax

S-EXPR-BOOLEAN ::=
RELATION

128

EXPRESSIONS ON SIGNALS

2.

3.

RELATION ::=
S-EXPRE S-EXPR
j S-EXPR]==|S-EXPR
i S-EEXPR|[> |
i S-EXPR]> =]
i S-EXPR] < |
i S-EEXPRf< =]
j S-EXPR[==|S-EXPR
j S-EEXPR|<< = |S-EXPR

A v

||‘A‘||‘V
» e e
m m m m
X X X X
T T T T
A X0 O X

Types

(a) (E1 Op E) =boolean
(b) ForE1 == Ey:
E1 andE; aresignalsof a same domain, which is any domain.
(c) ForE; = EzandE; == Ej:
E1 andE; are signals of a same domadcalar-type or ENUMERATED-TYPE .
(d) ForE; << = Ej:
E, andE; are signals of a same domédstalar-type (other than aComplex-type), or of

ENUMERATED-TYPE , or of a same type for which the environment de nes this ofera
while respecting the properties enounced in this section.

(e) ForEy > E2,E1 >= Ep, E1 < Ep,andE; <= Ej:
E. andE, are signals of a same domdstalar-type (other than aComplex-type), or of
ENUMERATED-TYPE .

Semantics

Two objects of array types are equal if and only if both ardagge the same dimension, are
of comparable types and the elements of same index are tesheequal.

Two objects of monochronous tuple types are equal if and ibhigth objects are of compa-
rable types and the elements of corresponding elds areecsely equal.

In the order de ned on the values of tyjpeolean false is lower thantrue.

The order de ned on the values of typlaracter is the order on the decimal values of their
encoding.

The order de ned on the values of tygeing is the corresponding lexicographic order.
The order de ned on the values of #NUMERATED-TYPE is the syntactic order of their
declaration in the de nition of the type (cf. sectidq3, p. 76 et seq).

With these precisions, the operators of relation have thmial semantics. The operat@ and

denote the relation of equality; the operators = |and|< =| denote the relation inferior or
equal.
The comparisons are made in the greatest type (of a same mjoridien ifv, is an element of
the sequence of values representedlyand if v, is the corresponding element in the sequence

VI-8. SYNCHRONOUS EXPRESSIONS ON NUMERIC SIGNALS 129

of values represented &,
the corresponding elementig Op E in the sequence representediby Op Eo.

4. De nition in SIGNAL
The expressioft; /= E» is equal to the following expression:
not (E1 =E»)

5. De nition in SIGNAL
The expressioft 1 < E; is equal to the following expression:
(not (E1=Ey))and (E1 <=Ey)

6. De nition in SIGNAL
The expressiofit1 >= E» is equal to the following expression:
E,<=E;

7. De nition in SIGNAL
The expressioft1 > E is equal to the following expression:
E,<Eq

8. Clocks
(@ ! (E1) =! (E2)
(b) ! (E1 Op Ez)=! (E1)
9. Graph
When theE; are not of a domaisynchronization-type
(@ Ef Ei1 Op E;
(b) EY E1 Op E2
10. Properties
The relatio is an order relation on all the types of signals for which désned: it has all
the properties of an order relation:
(a) re exivity
(b) transitivity v
(c) anti-symmetry: €1 «=E») (Ex«=E;))) (E1==E))
11. Properties
The relatio is an order relation on the domains of values on which it isngel; it is:
(a) re exive,
(b) transitive, v
(c) anti-symmetric: €1 <=E,) (E2<=E;)) (E1=Ey)

VI-8 Synchronous expressions on numeric signals

The synchronous expressions on numeric signals are de gegblmtwise extension of the standard
arithmetic operators on sequences of elements.

130 EXPRESSIONS ON SIGNALS

VI-8.1 Binary expressions on numeric signals
E1 Op E;
1. Context-free syntax

S-EXPR-ARITHMETIC ::=
S-EXPRE S-EXPR
j S-EXPR:|S-EXPR
j S-EXPR:|S-EXPR
i S-EXPRE'S-EXPR
j S-EXPR@S—EXPR
j S-EXPR:|S-EXPR
i DENOTATION-OF-COMPLEX

2. Semantics
If the result of an expression cannot be represented in fie tyf this expression, its value is a
value of type depending on the implementation.

If v1 is an element of the sequence of values representedtbywnd if v, is the corre-
sponding element of the sequence of values represent&g liye corresponding element in the
sequence represented By Op Ej is:

v1 Op Vo

3. Clocks
(a) ' (El):! (Eg)
() ! (E1 Op Ez)=! (E1)
4. Graph
(@ E{ E1 Op E»
(b) EX E; Op E>z
Operators+ , ,= E; Op E»
1. Types

(@) (E1)and (E.) are of anyNumeric-type in a same domain,
() (E1 Op E2)= (Ed)t (E2)

2. Semantics
When an expression of division is of domairieger-type, the division is the integer division.

VI-8. SYNCHRONOUS EXPRESSIONS ON NUMERIC SIGNALS 131

Operator modulo E; modulo E;

1. Types

(@) (E1)and (E.) are of domairinteger-type.
In addition,E» must be a constrained integer (strictly positive and witlupper bound).
() (E; modulo Ejz)= (Ez)

2. Semantics
If r isde ned byr := a modulo b,
then at each instant, the foIIQ)/ving property is true:
(9anintegery) ((a=b g+r) (O r<b))
Operator E1 E>
1. Types
(a) (E1)is aNumeric-type.
(b) (E>) is aninteger-type.
© (E: Ez)= (Ed)

Operator @ E;@E;
A pair of synchronous elements Beal-typede nes a signal of domaiComplex-type
1. Context-free syntax
DENOTATION-OF-COMPLEX ::=
S-EXPR| @|S-EXPR
2. Types

(@) (E.)is aReal-type
() (E.)is aReal-type,

) if (E1)t (Ez)=real, then (E1@E,)=complex
it (Ey)t (E2)=dreal, then (E;@E-)=dcomplex

3. Examples

(@) 1.0 @ (1.0) de nesacomplex constant.

VI-8.2 Unary operators
Op E;

1. Context-free syntax

S-EXPR-ARITHMETIC ::=

S-EXPR
j D S-EXPR

132 EXPRESSIONS ON SIGNALS

2. Types
(a) (E1)is aNumeric-type.
) (op E1)= (E1)

3. Semantics
If the result of an expression cannot be represented in e tyof this expression, its value is a
value of type depending on the implementation.

If v1 is an element of the sequence of values representé&d by
the corresponding element in the sequence represent&g bl ; is:

Op vy
4. Clocks

@ ! (op E1)=! (E1)
5. Graph

(@ EL Op Ex

VI-9 Synchronous condition

if Bthen Eqelse E»

The synchronous condition is an expression on signals \aitiesclock.

1. Context-free syntax

S-EXPR-CONDITION ::=

S-EXPR S-EXPR S-EXPR

2. Types

(@) (B)v boolean

(b) E1 andE; are signals of a same domdatalar-type, External-type or ENUMERATED-
TYPE.

(c) (if Bthen Ejelse Ez)= (Ei)t (E»)
3. De nition in SIGNAL
X =if Bthen Ejelse E,

whose right side represents an expression of synchronous condition, id &mjtree process
de ned as follows:

(j X :=(E1 when B) default E,
j B b= E; b= E»
i)
4. Clocks
@ ! (Er)="! (E2)

VI-9. SYNCHRONOUS CONDITION 133

(o) ! (B)="! (E1)
() ! (if B then E; else Ejy)=! (E1)

Chapter VII

Expressions on processes

The expressions on processes allow to compose systems atfi@tion signals with the following
syntax:

1. Context-free syntax

P-EXPR::=

ELEMENTARY-PROCESS
j HIDING

j LABELLED-PROCESS

i GUARDED-PROCESS

j GENERAL-PROCESS

GENERAL-PROCESS::=

COMPOSITION
j CONFINED-PROCESS
j CHOICE-PROCESS
j ASSERTION-PROCESS

VII-1 Elementary processes

An elementary process is an instance of process (cf. se¢tieh2, p. 99 et seq), a de nition of signals
(cf. sectionVI-1.1, p. 93 et seq), a constraint on clocks (cf. sectidfi-5, p. 120et seq) or on values
(cf. sectionVI-6, p. 125), or an expression of dependence (cf. f@rsectionXl—6.2, p. 196 et seq).

VII-2 Composition

The composition of two process® and P, produces a process for which each execution observed
on the variables oP; (respectively,P,) is an execution oP; (respectively,P,). This composition is
similar to the aggregation of two systems of equations imglsione.

P1j P2

1. Context-free syntax

136 EXPRESSIONS ON PROCESSES

COMPOSITION ::=
[G| PEXPR{[j |P-EXPR} 1[)) |

2. Prole

L(Pyj P2)=!(P)[! (P)
?CLiP)=PP) (P (?P) (P

3. Types

(a) If their names are identical, an outpubf P (respectivelyP,) and an inpuk of P, (respec-
tively, P1) have also the same type.
(b) If their names are identical, an inpuf P, and an inpuk of P, have also the same type.
4. Semantics

A signal, input ofP; (respectivelyP,), having as hame the name of a signal, outpiR.0frespec-
tively, P;) and totally de ned in it, has as de nition iR, (respectively, irP,) its de nition in P,
(respectively, irPq).
If the de nitions of such a signal are partial de nitions, iy and inP 2, its resulting de nition is

the combination of both partial de nitions, as it is sped & sectionVI-1.1, paragrapt-c, p. 96
et seq.

5. Clocks

(a) If their names are identical, an outpubf P4 (respectivelyP,) and an inpuk of P, (respec-
tively, P1) have also the same clock.

(b) If their names are identical, an inpuf P, and an inpuk of P, have also the same clock.

VII-3 Hiding

The hiding is an expression that modi es the pro le of an eegsion of processes by hiding some of its
outputs.

P/ A .., An
1. Context-free syntax

HIDING ::=
GEN ERAL-PROCESS Name-signal D Name-signal}
j HIDING Name-signal{lleame-signal}

2. Prole

2@/ AL ., A)=?(F)
!(P I Aq, .., An):!(p) f ALiiiAng

VIl-4. CONFINING WITH LOCAL DECLARATIONS 137

3. Semantics

The hiding operation allows to hide outputs of the prodesshe outputs of the resulting process

are the outputs d? which do not appeain the listA, ..., An.
TheA; can be names of tuples: in that case, the hiding applies ljfarathe tuples.

4. Examples
Let P be a process witA, BandC as inputs anck andY as outputs.

(@ P /'Y hasonlyXas output;
(b) P / Z isequal toP.

VIl-4 Con ning with local declarations
Local declarations can be associated with any expressiprooésses.

1. Context-free syntax

CONFINED-PROCESS::=
GENERAL-PROCESS DECLARATION-BLOCK

DECLARATION-BLOCK ::=

{ DECLARATION } *

The DECLARATION s are local to th€ONFINED-PROCESS, they are described in paf, sec-
tion XI-2, p. 191 et seq.(chapter “Models of processes”).

Local declarations of sequences

The signals (or tuples) that appear in a lisSeBDECLARATION s associated with an expression of

processes are hidden in output of tBi®NFINED-PROCESS.

P where 1 A4, ..., Angs o m A1, ..., A, ... end

m

The named\y, ..., An,, ..., A1, ..., A, mustbe mutually distinct.

m

1. Prole
? (P where 1 Aq, .., Anyi oo m A1, ..., An, .. end)=
? (P)
(P where 1 Ay, .., Angi o m A1, ..., An, .. end)=
L(P) f Ao Ang i At AnL g
2. Types
The expression
P where 1 Aq, ..., Angi o m A1, ..., An, end

establishes a new syntactic contexfaf
The declarations

138 EXPRESSIONS ON PROCESSES

where 1 A1, ..., Angi oo m A1, ..., An, end
are called “local declarations” fd?.

(a) In this context, the type(i) is that associated with the signds, ... ,Ay,, in accordance
with the rules de ned in par€C, chapteV, “Domains of values of the signals”.

3. De nition in SIGNAL

P / Al, eny Anl, sany Al, any Anm
with, in the context oP, the associations of types de ned above.

The following rules help to specify the context of visibjiliestablished by the local declarations of a
con ned process (see also in p&tsectionXI-2, p. 191 et seq).

An identi er of sequenceX (or an identi er of constant, or an identi er of type) used am ex-
pression on processes that does not contain a declaratioriso$aid external to this expression of
processes.

An identi er of sequence (or of constant, or of typX) local to an expression of procesdes
or external toP and declared in a list)tbECLARATION s D, is local to theCONFINED-
PROCESSP where D end.

An identi er of sequence (or of constant, or of typ€) external to an expression of procesBegs
and not declared in a list ®ECLARATION sD, is external to th&C ONFINED-PROCESSP
where D end.

Let A be an identi er of input signal of an expression of proce€Rdsised but not de ned i),
thenA must be external te.

Let B be an identi er of output signal of a mod®l , thenB must be an output signal de ned
(at least partially) in the expression of processes agwutigithM , external to this expression of
processes.

Any sequence used iNMODEL but not declared in the interface of tMODEL must be either
local to the associated expression of processes, or ekterttee MODEL (visible in a syntactic
context that includes it). In the same way, any constant e tgienti er used in 8aMODEL must
be either local to the associated expression of processegtarnal to thaMODEL .

VII-5 Labelled processes
It is possible to label an expression of processes:
XX o P

1. Context-free syntax

LABELLED-PROCESS ::=
Label E P-EXPR

VII-5. LABELLED PROCESSES 139

Label ::=

Name

The labelled proces¥X :: P has the same semantics as the pro&edsut the labeXX de nes
a context clock for the proces$s, and implicit signals are added to the graph.

The labelXX associated witlP? can be used to designate the procBs$n some expressions
(dependences, for example).

In particular, the labeKX can be used to de ne or to reference a characteristic clo¢k:ahetick
of P. For that purpose, the label is considered as a signal ofagpe label, for which it is always
possible to reference its clock (in the usual wagsX for example).
This clock of the labeX X (thetick of the proces®) is recursively de ned as the upper bound of the
ticks of the components of the process.

Thetick of an equatiorX := E is the clock ofX .

Thetick of an equatiorX ::= E is the clock ofE.

Thetick of the invocation of a process model is tiek of this process model. There is a particular
case when the called process model is an external process:mod

In that case, if the (external) process model is declaredeasgban action (cf. park, sec-
tion X1-1.2, p. 186), thetick of its invocation is xed through the closest label of the aoation:

it is equal to the clock of this label (which can be xed by ejilequations, for instance). This
clock must be greater than the upper bound of the clocks ahthés/outputs of the action.

Otherwise (if the external process model is not declarechasction), thetick of its invocation is
equal to the upper bound of the clocks of its inputs/outputs.

Thus, no “visible clock” inP is greater than the clock of the lab€K .
The clock of the labeKX represents the context clock Bt

The other effect of labelling a process is to add the two Yalhgy signals to the graph: let us denote
them respectively? XX and! XX , although these notations are not available in the syntakef
language.

Both? XX and! XX have the clockbXX as their common clock. The implicit signalXX is
a signal that precedes all the nodes of the graph of the métethere is a dependence fromXX
to each one of the signals designatedPinSymmetrically, the implicit signal XX is a signal which
is preceded by all the nodes of the graphRaf there is a dependence from each one of the signals
designated ifP to the signal XX .

This feature is used to specify explicit dependences betyweacesses (cf. paH, sectionX|-6.2,

p. 196et seq).

The labels declared in a model of process (cf. EaectionXl-3, p. 192 are visible (i.e., can be
referenced) everywhere in this model, but not in its inctudedels of processes: a label is in some way
local to a model.

In one model, a label cannot have the same name as anothae wbject (signal, parameter, con-
stant, type, model).

140 EXPRESSIONS ON PROCESSES

VII-6 Guarded processes

An expression of processes may be guarded by a clock (or aassipn that provides a clock):
onH.:: P

The guarded processy Hy ;. P provides a guard (the clock de ned Iby;) which is atick for the
process, the inputs of which are Itered by this guard.

1. Context-free syntax

GUARDED-PROCESS::=

S-EXPREl P-EXPR
j Label E P-EXPR

?0nHi: P)=?2H)[?(P)
'{onHy: P)=!(P)

3. Types

(@) (H1)=event
or H; is a label (associated with some other process).

4. De nition in SIGNAL
The guardH, de nes a context clockH; which provides aick (cf. sectionVII-5, p. 138 et
seq) for the guarded process: in this process, no “visible clae be greater than this context
clock. The inputs of the proces$s are ltered by this guard. Then the above guarded process is
equivalent to:

(j € = e when bH;
j € := e when bH;
il
(i P[)e, .., €9/ en]
j la b= H;
)
i 1€, ., €9
where P [€)/ey, ..., €d/e,] represents the proces$d in which new identi erse«,O are substi-

tuted to the identi ersg; which are inputs oP.
The new identi erse® are mutually distinct and do not appear elsewhere.

Vil-7. CHOICE PROCESSES 141

not yet
VIl=7 Choice processes ol
mented
A choice process is an expression of processes that allowsrgpose de nitions according to the
different values of a signal (or of a signal expression suctl@acked occurrence of state variable) PoLy-
case E in CHRONY
{Vl;]_, . Vl;nl} . Pl
{Vin:1, - Vinnm b Pm
else Pm+1
end

The “else” part is optional.

Other forms of enumeration of values can also be used in ffereht branches of the choice process.
They are described below.

1. Context-free syntax

CHOICE-PROCESS ::=

S-EXPR { CASE }* [ELSE-CASE]

CASE ::=
ENUMERATION-OF-VALUES ElGENERAL-PROCESS

ELSE-CASE ::=
GENERAL-PROCESS

ENUMERATION-OF-VALUES ::=

S-EXPR {D S-EXPR}
[|[S-EXPR] D [S-EXPR]
I [S-EXPR] D [S-EXPR] E
I [S-EXPR] D [S-EXPR]
I [S-EXPR] D [S-EXPR] E

=

2. Prole

? (case E in ... end)=?(E)] [2 (P) [' (P)
I (case E in ... end):[L (P)

3. Types

(a) E has aScalar-typeor ENUMERATED-TYPE and
8ij (Vij)v (E)

ot yet implemented in ®LYCHRONY: intervals of values.

142 EXPRESSIONS ON PROCESSES

4. Semantics
EachENUMERATION-OF-VALUES enumerates some subset of constant values which are in
the same domain as the signal de nedby signal on which the choice is based, and which are
possible values dt .
All the enumerations of values of the different branchee (tduard” values of the choice) must
be mutually exclusive. When there is an “else” part, theedéht sub-types corresponding to the
guard values of the different branches form a partition efttipe ofE.
The enumerations of values can take the form of explicit esrations (used for the description
below), or of intervals. The four possible forms of intesvale usable only if the values of the type
of E are totally ordered: they de ne intervals of values that banfor both sides of the interval,
opened or closed. The bounds of an interval are optional ¢bttee two must be present): if the
lower bound is absent, the interval represents all the gado®aller than the upper bound (included
or not); if the upper bound is absent, the interval represahtithe values greater than the lower
bound (included or not).

5. De nition in SIGNAL
In each branch, the guard of the choice (i.e., the conditapmasenting the instants at which the
signal de ned byE on which the choice is based takes as value one of the valuesezated in
the considered branch) de nes a context cl@&kwhich provides dick (cf. sectionVIl-5, p.138
et seq) for the process de ned by the corresponding branch: in phixess, no “visible clock”
can be greater than this context clock. For this branch,nhets of the proced3; are ltered by
this guard. Then, using guarded processes (cf. sewibi®, p. 140), the above choice process is
equivalent to:

(i (j Bi:=when ((E =Vyg)or..or (E = Vi)
j on B P1
j) I By
j

i (j Bm = when ((E = V1) or ... or (E = Vimng))

j on By i Pny
j) I Bm
i (] Bm+1 = when ((E /= Vi1) and ... and (E /= Vmnn))
j on Bm+1 0 Pmst
1) I Bma

1)

Note that it is possible that a given shared variable or stateéable be de ned in different
branches of the choice process. In this case, corresporadiogtions may appear as partial
de nitions.

6. Clocks The values/;; are constant expressions:

@ ! (v)=-

(b) The clock of the signal de ned by the expressi@nhas to be well de ned: it cannot be a

Vil-7. CHOICE PROCESSES 143

context clock. In particulal: cannot be a constant expression or a non-clocked reference t
a state variable.

Example

Consider the statechart:

4 @\
e
0 e
“® - °
Nt
~ %

Note that transition labelled by eveatfrom stateQ has a higher priority (1) than transition labelled
by eventb (priority considered as 0 by default). Moreover, extermahsitions from a substate are

considered of higher priority than inner ones.
This statechart may be described by the following prograrmodgss models and modules are de-
scribed respectively in paB, chapterXl, p. 183 et seq,. and parte, chapterXll, p. 207 et seq):

module P_statechart =

type P_states = enum (Q, R, S);
type Q1_states = enum (U, V);
type Q2_states = enum (X, Y, 2);

process P_chart =
(? event Tick;
event a, b, i, j, m, n;
I P_states P_currentState;
Q1 _states Q1_currentState;
Q2_states Q2_currentState;
)
(I (| case P_currentState in

{#Q}: (| P_nextState ::= (#R when a) default (#S when b) |)

{#R}: (] P_nextState ::= #S when b |)
{#S}: (| P_nextState ::= #Q when a |)

end
| P_nextState ::= defaultvalue P_currentState

| P_currentState := P_nextState $ init #Q
| P_currentState "= Tick
)
| clk_Q chart := when (P_currentState = #Q)
| start_ Q_chart := when (P_nextState = #Q) when (P_currentS tate /= #Q)
| Q1_State = Q2_State "= clk_Q_chart ~+ start Q_chart
| (| case Q1 _State in

144 EXPRESSIONS ON PROCESSES

{#U}: (| Q1_newState :
{#V}: (| Ql_newState :
end
| Q1_newsState ::= defaultvalue Q1_State
| Q1 _newsState "= Q1_State
| Q1 _nextState := (#U when start Q_chart) default Q1_newSt ate
| Q1 State := Q1_nextState $ init #U
| Q1 currentState := Q1_State when clk_Q chart

)}
| (| case Q2_State in

#V when i |)
#U when j |)

{#X}: (| Q2_newState ::= #Y when m |)
{#Y}. (| Q2_newState ::= #Z when n |)
{#2}: (| Q2_newsState ::= #X when j |)

end
| Q2_newsState ::= defaultvalue Q2_State
| Q2_newsState "= Q2_State
| Q2_nextState := (#X when start_Q chart) default Q2_newSt ate
| Q2_State := Q2 _nextState $ init #X
| Q2_currentState := Q2_State when clk_Q_chart
)
)

where
shared P_states P_nextState;
shared Q1 states Q1 newsState;
shared Q2_states Q2 newsState;
event clk_Q_chart, start Q chart;
Q1 _states Q1_State, Q1_nextState;
Q2_states Q2_State, Q2_nextState;

end;

end;

(note that the program could be better structured usingakpmcess models).

Another description of the same statechart is the follovang, which uses state variables:

module P_statechart =

type P_states = enum (Q, R, S);
type Q1_states = enum (U, V);
type Q2_states = enum (X, Y, 2);
process P_chart =
(? event Tick;
event a, b, i, j, m, n;
| P_states P_currentState;
Q1_states Q1_currentState;
Q2_states Q2_currentState;
)
(I (| P_currentState := P_State? when Tick
| case P_currentState in
{#Q}: (| P_State :
{#R}: (] P_State ::= #S when b |)
{#S}. (| P_State ::= #Q when a
| start Q chart ;= a

)

(#R when a) default (#S when b) |)

VII-8. ASSERTION PROCESSES 145

end
)
| clk_Q chart := when (P_currentState = #Q)
| (I Q1l_currentState := Q1 _State? when clk_Q chart
| Q1_State ::= #U when start Q_chart
| case Q1_currentState in
{#U}: (] Q1_State ::= #V when i |)
{#V}: (| Ql_State = #U when j |)
end
)
| (| Q2_currentState := Q2_State? when clk_Q_chart
| Q2_State ::= #X when start_Q_chart
| case Q2_currentState in

{#X}: (| Q2_State := #Y when m |)

{#Y}: (| Q2_State ::= #Z when n |)
{#Z}. (| Q2_State ::= #X when j |)
end
)
1)
where

statevar P_states P_State init #Q;
statevar Q1_states Q1_State init #U;
statevar Q2_states Q2_State init #X;
event clk_Q chart, start Q chart;
end;
end;

See also another description using automaton processestif, gectionXl-1.6, p. 187 et seq.

VII-8 Assertion processes

An assertion process is a process with no output which specassumed properties in a model. It
can be used in particular to specify assumptions on inputseomodel or guarantees on outputs. The
assertions are expressed as constraints.

assert GPrj .. jJPa)
1. Context-free syntax
ASSERTION-PROCESS::=

[asser{[(j |[CONSTRAINT{ [j |CONSTRAINT}][]) |

2. Prole

l'(assert (j Prj ... jPnij)=;
?@ssert (G PLj.. jP))=?2C)[...172Fn)
3. De nition in SIGNAL

assert GPij.. jPnl

146 EXPRESSIONS ON PROCESSES

is equivalent to:
(j assert (G P11}

j assert (G Pn)
D)
We distinguish the different sorts of constraint equatiaisck relations (cf. sectioW1-5.3, p. 123
et seq) and identity equations (cf. sectidi—6, p.125).

VII-8.1 Assertions of clock relations
assert (j E1 bOp E» bOp EE)

(wherebOp is one of the operatols=,b<,b> andd#) is recursively de ned by:

1. De nition in SIGNAL

(j assert (j E1 bOp E; j)
j assert (j E; bOp EE j)
j assert (j E; bOp EE j)

)]

In the following de nitions, we use alock_assert process which is de ned below (cf.
sectionVIl-8.3, p. 148et seq). Note that this process is not provided in the syntax of éimgliage.

assert (j E1 b= Ez2))
asserts that the clock of the expression on sigBals equal to that o .

1. De nition in SIGNAL

clock_assert(E1i, E))
Example The following example adds an assumption of clock equivaen

process two_oversampling =
(? integer ul, u2;
I boolean bl, b2;
)
(I b1 := oversampling(ul)
| b2 := oversampling(u2)
| assert (| when bl *= when b2 |)

1)
where
process oversampling =
(? integer u;
! boolean b;

)

VII-8. ASSERTION PROCESSES

147

(I z := u default v
| vi=(2z$%$int1l) -1
| b =v<=0
| u = when b
1)

where

integer z, v;
end
end
assert

(1 E1t b<E2)

asserts that the clock of the expression on sigBals smaller than (or equal to) that Bb.
1. De nition in SIGNAL

clock_assert(Ei,E1b E»)

assert (j E1 b>E2)

asserts that the clock of the expression on sigBals greater than (or equal to) that 65.
1. De nition in SIGNAL

clock_assert(E1,E1b+ E))

assert () E1 b# E»2)

asserts that the clocks of the expressions on sighabndE, are mutually exclusive.
1. De nition in SIGNAL

clock_assert(0,E1b E))

VII-8.2 Assertions of identity equations
assert (j E1 = E2))

asserts that: 1/ the clocks of the expressions on sighalBndE, are equal; 2/ at this common clock,
the values of these expressions are equal.

1. De nition in SIGNAL

148 EXPRESSIONS ON PROCESSES

(j clock_assert(Ei, E»)

j assert(E; == E»)

)
This de nition uses the assertion on Boolean signal whictidsied below (cf. sectiorV11-8.3,
p. 148et seq).

VII-8.3 Assertion on Boolean signal

The syntax of alNSTANCE-OF-PROCESS(cf. sectionVI-1.2, p.99 et seq) is used to assert that a
given Boolean signal must have the vatuge each time it is present. It is a process with no output (it
has the syntax of a process call with no output).

assert(B)

1. Context-free syntax

INSTANCE-OF-PROCESS::=
S-EXPR

2. Prole

I (assert(B))=;
? (assert(B))=7(B)

3. Types
(@) (B) =boolean

4. Semantics
A property speci ed by an assertion can be assumed by thé& clalculus.

5. De nition in SIGNAL
assert(B)
is equal to the process de ned as follows:

(j B b= when B
)]
6. Examples

(a) The process
assert(A<5)
expresses that the valuesfiust be always lower than 5 (whéis present).

The processssert(hl=h2) does not specify that the clocks (signals of tygent) hl and
h2 are equal. In the same way, the procassert(xb y =h0) does not specify that the signals
x andy are exclusive.

VII-8. ASSERTION PROCESSES 149

This is the reason why we introduced the process (or “maciogk_assert ,whichis de ned
as follows:
process clock_assert = (? event hil, hz2, !)
(j bl := hl default not (hl b+ h2)
j b2 := h2 default not (hl b+ h2)
j assert(bl = b2)
D)

where boolean bl, b2;

end,

Using theleft_tt process (cf. park, sectionXlll-3, p. 214), an equivalent de nition is the
following:

process clock _assert = (? event hl, hz2, !)

(j bl = left_tt(hl, h2)
j b2 = left_tt(h2, hl)
j assert(bl = b2)

i)

where boolean bl, b2;

end;

Using this process, for instancgpck_assert(h1, h2) , the equality of the clocke1l andh2
can be assumed by the clock calculus.

Again, note that the proces$ock assert is not provided in the syntax of the language: it is
only used as intermediate macro for the de nition of assarprocesses.

The keywordassert may be used in two different contexts:

— in anASSERTION-PROCESS it takes a composition dEONSTRAINTS as argument,
— in anINSTANCE-OF-PROCESS, it takes a Boolean signal as argument.

Example

The following example uses the intrinsic proceasfine_sample de ned in part E, sec-
tion XIlI-2, p. 211 et seq. and, given general properties of af ne relations such a&sdhe encoded
in the assertion, allows to synchronize resulting clockenef the clock calculus does not implement
the corresponding synchronisability rules.

process affine_relations =
{ integer nl1, n2, n3, phil, phi2, phi3; }
(? integer e;
! integer s;
)
(| s1 := affine_sample {phil, n1} (e)
| s2 := affine_sample {phi2, n2} (e)
| s3 := affine_sample {phi3, n3} (s2)
| s ;= s1 + s3
| (| b := ~sl default not (s1 "+ s3)
| bb := 7s3 default not (s1 "+ s3)
| assert ((b = bb) when (n2 * phi3+phi2 = phil) when (n1 = n2 *N3))

)]

(7]

~

)]

150 EXPRESSIONS ON PROCESSES

where
integer s1, s2, s3;
boolean b, bb;
end

Part D

THE COMPOSITE SIGNALS

Chapter VIII

Tuples of signals

An expression of tuple is an enumeration of elements of fugyla designation of eld.

1. Context-free syntax

S-EXPR-TUPLE::=

TUPLE-ENUMERATION
j TUPLE-FIELD

VIlII-1 Constant expressions

A constant expression of tuple is &EXPR-TUPLEwhich has recursively as arguments constant ex-
pressions, or any expression de ning a tuple the element¢ghath are constants.

VIlII-2 Enumeration of tuple elements
A tuple represents a list (nite sequence) of signals oreapl
(E1,...,Epn)

1. Context-free syntax

TUPLE-ENUMERATION ::=

S-EXPR {D S-EXPR}

2. Types
@ ((Ex....En))=((E1) ::: (En))
3. Semantics
The tuple(E1, ..., Epn) is equal to<vyq;:::;vy > where<vy;:::;vy, > is the sequence of
signals or tuples resulting from the evaluation of the esgi@nsE, ... ,E,.

The semantics is described formally in pBrtsectionlll-7.1, p. 44 et seq.

154 TUPLES OF SIGNALS

VIII-3 Denotation of eld

X. Xj
1. Context-free syntax

TUPLE-FIELD ::=
S-EXPRD Name-eld

2. Types
(@ (X)=bundle(fX1g! 1 ::: f Xmg! m)
) (X.Xi)= i
3. Semantics
If X is a tuple with named elds<q, ..., X, X. X; designates the signal or the tuple corre-

sponding to the eld with nam;.

In particular, the denotation of eld may apply on B M\STANCE-OFPROCESSwhen the output
of the corresponding model is a tuple with named elds. It naéggo apply on an array element if
the elements of the array are monochronous tuples with nastasi

The semantics is described formally in pBrtsectionlll-7.1, p. 44 et seq.

VIll-4 Destructuration of tuple

The syntax of anNSTANCE-OF-PROCESSis used to denote the call of prede ned functions of de-
structuration of tuples:

tuple(X)

— If X is atuple with named elds of typbundle(f X1g! 1 0 f Xmg! m),
tuple(X) is the corresponding tuple with unnamed eldsX1, ..., Xn), of type
(1 0 m)

— If X is a tuple with unnamed elds, the components of which ar¢himorderX 1, ..., Xm,
tuple(X)) is the tuple with unnamed eldguple(X31),...,tuple(Xu))

— If X is not of tuple type, thetuple(X) is equal toX .
rtuple(X)

— If X is atuple with named elds of typbundle(f X1g! 1 0 f Xmg! m),
rtuple(X)) is the tuple with unnamed elds
(rtuple(X1q),...,rtuple(X))

— If X is a tuple with unnamed elds, the components of which ar¢hisorderX 1, ..., Xm,
rtuple(X)) is the tuple with unnamed elds
(rtuple(X1),...,rtuple(Xm))

— If X is not of tuple type, thertuple(X)) is equal toX .

VIII-5. EQUATION OF DEFINITION OF TUPLE COMPONENT 155

VIII-5 Equation of de nition of tuple component

A tuple can be de ned component by component. An equatioreafition of component of tuple is an
expression of processes the syntax of which extendDHEEINITION-OF-SIGNALS given in partC,
sectionVI-1.1, p. 93 et seq.The general form can contain both de nitions of componeritsples and
global de nitions of tuples and signals.

1. Context-free syntax

DEFINITION-OF-SIGNALS ::=
COMPONENT E S-EXPR
j COMPONENT |[::=]S-EXPR

j COMPONENT S-EXPR

j COMPONENT { DCOMPONENT} ElS-EXPR

j COMPONENT { DCOMPONENT} S-EXPR

j COMPONENT { DCOMPONENT}

S-EXPR
COMPONENT ::=

Name-signal
i Name-signaD COMPONENT

2. Types
@ ((X1.A1 ... X0 A))=((X1. A1) i (Xa. An))
® (E)v ((X1.A1) i (Xn. An))

3. Semantics

X1. A1, ..., Xn. Ay designate signals or tuples of signals, respectively compis of the
tuplesX 4, ..., Xn.

Each signal or tuple&X. A; is respectively equal to the signal or tuplethat corresponds
positionally to it in output oE.

4. Clocks A signaland the signa; that de nes it are synchronous. In that case:

@! (xi.A)=! ()

Chapter IX

Spatial processing

Spatial processing is obtained by manipulations of arrays.
The following operators are provided:

operators of de nition by enumeration
(ARRAY-ENUMERATION , CONCATENATION , ITERATIVE-ENUMERATION);

an operator of de nition of indiced IDEX);
operators of access to elements of arraddRRAY-ELEMENT , SUB-ARRAY);
an operator of array restructuratioARRAY-RESTRUCTURATION);

operators of sequential de nition
(SEQUENTIAL-DEFINITION , ITERATIVE-ENUMERATION);

global operators on matrices such as transposilf&@ANSPOSITION) and productsARRAY-
PRODUCT).

Moreover, structures of iteration are also de ned on preesdTERATION-OF-PROCESSES),
with an associated operator of de nition of multiple indexULTI-INDEX).

1. Context-free syntax

S-EXPR-ARRAY ::=

ARRAY-ENUMERATION
CONCATENATION
ITERATIVE-ENUMERATION
INDEX

ARRAY-ELEMENT
SUB-ARRAY
ARRAY-RESTRUCTURATION
MULTI-INDEX
SEQUENTIAL-DEFINITION
TRANSPOSITION
ARRAY-PRODUCT
REFERENCE-SEQUENCE

158 SPATIAL PROCESSING

IX—1 Dimensions of arrays and bounded values

Dimensions of arrays

The syntax of alNSTANCE-OF-PROCESSis used to denote the call of prede ned functions with
constant result giving the dimension of an array and thedizedimension:

dim(T)
If T hasatypd[0.n; 1] ::: [0.nn 1])! where isaScalar-typeor External-type

or ENUMERATED-TYPE ,

then' (dim(T))=m.
If T has atype where is aScalar-typeor External-type or ENUMERATED-TYPE ,

then' (dim(T))=0.
size(T,I)
If T hasatypd[0.n; 1] ::: [0.ny, 1] ! where is aScalar-typeor External-type

or ENUMERATED-TYPE ,

andifli ' (1) m,

then' (size(T,))=n,

else' (size(T,)) is not de ned: itis an error in the program.

size(T) is, by de nition, equivalent to
size(T,1

Bounded values

The syntax of anNSTANCE-OF-PROCESS s used to denote the call of a prede ned function
used to deliver bounded values.

bOUﬂdS(E1, Eo, E3)
The values oE; are compelled to evolve between thatof andE ;.

1. Types
(a) E1, E» andE3 are signals of a same domdacalar-type (other than a&Complex-type), or
ENUMERATED-TYPE .
(b) (bounds(E1,EzE3))= (Ei))t (E2)t (Es)
(c) The pointwise extension is described in chaptep. 179et seq.

2. De nition in SIGNAL

X :=bounds(E1, Es E3)
whose right side o represents an expression of bounded values, is equal tordicess

de ned as follows:

(] X =1if E; < E, then E; else if E,. > Es then Ej3 else E;
j)

IX—2. CONSTANT EXPRESSIONS 159

3. Clocks

@ ! (Ex)=! (E2)
() ! (Eo) =" (Es)
(c) ! (bounds(E;, E,, Esz))=! (E1)

IX—2 Constant expressions

A constant expression of array is 8EXPR-ARRAY which has recursively as arguments constant
expressions, or any expression de ning an array the elesyawhich are constants.

IX—3 Enumeration

The enumeration of the elements of an array de nes a vecttindprdered list of its elements.

[El, feay En]
1. Context-free syntax

ARRAY-ENUMERATION ::=

m S-EXPR {D S-EXPR }

2. Prole
[I’l

?(Ey,... El)=" ?E)

3. Types
¢]
@ ([EiEn])=[0.n 1]! | (Ei)

4. Semantics
[E1, ...,En] designates the vector tirecomponents of which are, in this ordér, ... ,E, (cf.
partB, sectionlll-7.2, p. 46 et seq).

5. Clocks
@! ((Eq ..., Enl)=!(E}) 8i=1;:::;n
6. Examples

(@ WithM1:=[[M11,M12,M13 [M21,M22,M23] ,
M1[Q] is equal tg M11,M12,M13 .

160 SPATIAL PROCESSING

IX—4 Concatenation

The concatenation allows to concatenate arrays along ito tstedimension.

Eij+ E2
1. Context-free syntax

CONCATENATION ::=

S-EXPR S-EXPR

2. Types

@@ (Eu)=[0.m; 1!
) (Ez)=[0.my 1!
) (Eij+ Ex)=[0.mi+my 2! 1t >

3. De nition in SIGNAL

X = E1j+ Ejisequal to the process de ned as follows:
X =[EifQ],....Ea[m1 1] ,Eo[O],...,Eox[mz 1]]
4. Clocks

@ ! (E)=! (E2)
) ! (E1 j+ E2)=! (Ev)

IX—-5 Repetition

The repetition is a simple form of iterative enumeration ethallows the nite repetition of a value.

Ej N
1. Context-free syntax

ITERATIVE-ENUMERATION ::=

S-EXPR S-EXPR

2. Types
@ (E)=

(b) N is a positive integer expression, with a strictly positiygear boundN may -
© (Ej N)=[0.Npmax 1]!

3. Semantics
At a given instant, all the elements of the vector de nedby N have the same value, which is

the value ofE .

IX—6. DEFINITION OF INDEX 161

The semantics is described formally in p&risectionlll-7.2, p. 46 et seq, using the “iterative enu-
meration of array”. The maximum number of iterations is givsy N, and the iteration function
which is used here is the identity function with rst valuestiialueE itself.

4. Clocks

@!(E)='(N)
®!(E] N)=!(E)

IX—6 De nition of index

Ei.. Eo step Es

1. Context-free syntax

INDEX ::=

S-EXPREl S-EXPR [S-EXPR]

2. Types

(a) E1 andE; are bounded integers such that the differeBge E, has always the same sign
(at every instant)8t, E1; Ep; or8t,E;; Ey.
lower_bound(E1), upper_bound(E1), lower_bound(E») andupper_bound(E>) will de-
note respectively the lower bounds and upper bounds,GndE-».

(b) Ejzis an integer constant different from 0, such that
if 8t, =T E o then' (E3) >0
and if8t,E;; Ep then' (E3) < 0.
When the step expressiofg, is omitted, its value is implicitly equal to 1.
(© If' (Es)> o0,
(Ey.. Eostep E3)=
[0..((upper_bound(Ez) lower_bound(E1))=" (E3)+1) 11! (Ei)t (E2)
If' (Es) < 0,
(Ey.. Eostep E3)=
[0..((upper_bound(E;) lower_bound(E2))=(" (E3))+1) 11! (E)t (E2)
In any case, the size of the vector must be strictly positive.

3. Semantics
The vector of integers de ned bl;.. E, step Egz has as successive elements the vakigs
Ei+ ' (E3),Ex+(2 ' (E3)), etc., up to the last value betweBn, andE; (included).
The semantics is described formally in pBrtsectionlll-7.2, p. 46 et seq, using the “iterative
enumeration of array”.
The iteration function is the functioh such thaf (x) = x + ' (E3). The rstvalue isE;.
If ' (Es) > 0, the maximum number of iterations is given by
N=(E, Ej)/"' (Es)+1
If ' (E3) < 0, the maximum number of iterations is given by
N=(E1 Ez)/ (' (Es)+1L

4. Clocks
@ ! (E1)=! (E2)="! (E1.. E; step Ea)

162 SPATIAL PROCESSING

() ! (Es)=~

A constant index is an index which is de ned using only consexpressions.

IX—7 Array element

An array element is obtained by indexing following the synté the rst rule below. Every index of
array must be a positive bounded integer, whose upper bausttictly inferior to the sizen of the
considered dimension; the second rule provides a syntabocél‘recovery” which de nes the value of
the expression for the values of index outside the segment [01].

1. Context-free syntax

ARRAY-ELEMENT ::=

S-EXPRIIl S-EXPR {D S-EXPR} m

j S-EXPRIIl S-EXPR{D S-EXPR} m ARRAY-RECOVERY

ARRAY-RECOVERY ::=

S-EXPR

IX—7.1 Access without recovery
T[E1,....Em]

1. Prole

2 (1w En) =2 7€)

2. Types
(a) Foralli, E; is a positive (or zero) integer, with an upper bound. hethe value of its upper
bound.
) (T)=(@0.ny 1 ::: [0.ny 1))!

(remark: can be an array type.)
) (T[Ei....Em])=

3. Semantics
If vi, ..., Vvm represent respectively the self-corresponding elemeantise sequences of values
represented b¥, ..., Em, the corresponding element in the sequence representé&d By,
Em] isT(KVy;:ii;Vm >).
The semantics is described formally in pBrtsectionlll-7.2, p. 46 et seq.

4. Clocks
@ ! (E)=!(1),....1 (Em)="!(T)
® ! (T[Ex ., Eml)=!(T)

5. Properties

(@ (Eq,...,Em oftypeintegey) (T[E1;:::;Em] = T[E1] :::[Em])

IX-8. EXTRACTION OF SUB-ARRAY 163

IX—7.2 Access with recovery
T[E1,...,Em] nnV

1. Types
@@ (T)=@o.ny 1 ::: [0y 1)! 1
(b) Foralli=1;:::;m, (E;)is aninteger-type.
© (V)= 2

d (T[EiEm]lnnV)= 1t

2. De nition in SIGNAL
X :=T[E1 ...,Em] nnV
whose right side represents an expression of access to an array elementewdbery, is
equal to the process de ned as follows:

(] Xp := T[E1 modulo ny, ..., Em modulo npy]
j B1i=(0 <= Ej)and (Ep <= (nm1 1))
j Bm = (0 <= Ep) and (Em <= (nn 1))
j B :=(B; and ... and Bm) when bT
j X2 = V when bT
j X = (X1 when B) default X2
J) / Xl! X2! B! Bl! ey Bm
3. Clocks
@ ! (E)=!(1),....1 (Em)=!(T)
) ! (v)=1(T)
© ! (T[Ey, ..., Emlnnv)=!(T)

IX—8 Extraction of sub-array

The expression of extraction of sub-array is a generatimativith the same syntax, of the expression
of access to an array element (cf. sectlfr-7, p. 162 et seg). Only the form where the accesses
are obtained via “generalized indices” (represented agy/suof integers) is given here; when they are
integers, the description of the corresponding expresdsigiven in sectiorX—7.

T[11,...,1n]

1. Context-free syntax

SUB-ARRAY ::=

S-EXPRIIl S-EXPR {D S-EXPR} m

164 SPATIAL PROCESSING

2. Types
@ (1)=...= (In)=(0.b0] ::: [0.B]!
with an integer type, and the basic integer values ol thare positive or zero.
(b) More generally, the list of indicds, ...,I, can be speci ed by any expression denoting a
function([0..y] ::: [0.b])! " (with aninteger type).
© (T)=(0.a1] ::: [0.an])!
(can be an array type).
@ (T[le....00])=(0.b0] ::: [0.by])!
3. Semantics
T[l41,...,Ih] extracts some sub-array from

The semantics is described formally in pBitsectionlll-7.2, p. 46 et seq.(non de ned values,
represented byil in the semantics, are any values of correct type).

If T has at leash dimensions (and has the basic typéor the elements corresponding to these
rst dimensions), it can be traversed using jointlyindicesl 1, ..., |, (one per dimension), that
allow to extract elements of type

Each one of the indices is an array with the same number ofrdifoes, lefp.

The result, leiX , has the same number of dimensions as the indices, whicHtsbasic elements
have the type (type of the extracted elements).

(laljuzzsiplsiisstaliniis;ipl)inT.
4. Clocks

@ ! ()= (r),....0 (1)="(7)

! (T[4, ..., Ih])="(T)

5. Properties

(a) If V is a vector of type [On 1] ! and ifl is an index dened byt := 0.. n 1, then
the expressiony andV[|] are equivalent.

6. Examples
(a) ([[10,201,[30,40]D[1,0] value is30.
(b) (0..10)[2..4] value is[2,3,4]

(c) if Misan n matrix, thenM[0..n 1,0..n 1] is the vector containing its diagonal.

IX—9 Array restructuration

The array restructuration allows to de ne partially (in tgeneral case) an array, by de ning some
indices-de ned coordinate points of this array. Non de nedues are any values of correct type. This
operator is the “reverse” of the operator of extraction df-awray (cf. sectionX—8, p. 163 et seq) in

the following informal way: letT be the result of I1,...ln) : S; if the indices are such that each

IX-9. ARRAY RESTRUCTURATION 165

element ofS is used only once by the de nition, théf[|4, ...,14] valueisS.
(l1,-..1n): S
1. Context-free syntax

ARRAY-RESTRUCTURATION ::=
S-EXPREl S-EXPR

2. Types
Depending orl 4, ...,l, being integers or arrays of integers, one of the following sérelations
on types applies:
(@) For anyk, (I k) is a positive or null integer, with an upper bound. lagtthis upper
bound.
(s)=
((11,...00): S)=([0.a1] ::: [0.a4])!
(b) (11)=...= (1In)=(@0.b] ::: [0.b])!
with anintegertype,andfdt i n, min Ii(K) O
k2Dom(l;)
More generally, the tuple of indicesl1,...ln) can be specied by any expression
denoting a functiorf[0..ly] ::: [0.by])! " (with aninteger type).
(S)=(0.ci] ::: [0.G])!
withcy by;iii;cp by
((11,...0m): S)=([0..24] ::: [0.a4])!
withforl i n,ag = max i (K)
k2Dom(l;)

3. Semantics
(I1,-..1n): S species a partial de nition of array, using the coordingteints de ned by the
tuple of “generalized indices(14, ...,1,) and the values of obtained by skimming through
these coordinates.
The semantics is described formally in pBrtsectionlll-7.2, p. 46 et seq.(non de ned values,
represented bgil in the semantics, are any values of correct type).

LetT be the array de ned by the expressiphy,... J,): S. Iftheindiced 4, ...,l, are such that
they allow to scan exactly the arrdy(each position is visited only once using these indicegn th
the restructuratiod := (l1,...Jn): S de nesthe arrayl such that the extraction of sub-array
T[1l1,...,Ih] (cf. sectionlX-8, p.163et seq) is equal tcS.

In other wordsT [11[Ky.... Kol ..., In[Ki,oo. kpll = S[Ku.... ko] -

which is used.
4. Clocks

@!@()="(s),..... (1n)="(s)
® ! ((11,... 15) @ S)=!(s)

166 SPATIAL PROCESSING

5. Examples

@z2:1 is a vectof any, any,1] .
whereany represents any well-typed valuail(in the semantics).
Its type is [0.2] ! integer since the maximal value of 2 is 2.

(b) (1,2) : 3 is a matrix[[any, any, any],[any, any,3]]
Its type is([0..1] [0..2]) ! integer.
(© 1 : [[1,2],[3,4]] is a 3-dimensions array

[l any, anyl[any, any]}.[[1,2].[3,4]]]
Its type is([0..1] [0..1] [0.1])! integer.

(d) [3,6] : [2,4] is a vectof any, any, any,2, any, any,4] .
(e) ([0,1],[2,1])) : [4,5] is a matrix[[any, any,4],[any,5, any]] .

IX—10 Generalized indices

The syntax of aHNSTANCE-OF-PROCESSis used to denote the call of a prede ned function that
delivers generalized “unit” indices. Such indices can lefser standard array traversal in extraction of
sub-array (cf. sectiotX-8, p. 163 et seq) or array restructuration (cf. sectio¥—9, p. 164 et seq).

indices(ai,...an)

Let the expressiomdices(aj,...an) de nejointly nindicesl, ...,I,:
(Iq,...)n) :=indices(az,...an)
1. Types
(a) The elaborated values af (' (a1)),...,a, (' (an)) are strictly positive integers.
(b) Forallj =1;:::;n,
(;)=qo." (&) 121 ::: [0." (an) 2!

where is aninteger-type.

2. Semantics

forallk suchthad k ' (a) 1,

3. De nition in SIGNAL
(I1,...) :=indices(ai,...an)
may be obtained by the process de ned as follows:

() (Maye, Mp) = 0.. & 1,...,0.. an 1
j iterate (Il q,..., 1) of
(Pa[11y, Mgl e, In[11y, HpD) = (C o, .. ln)
end
[T Iy

(cf. sectionIX-12, p. 168and sectioriX-13, p. 168et seq).

IX—11. EXTENDED SYNTAX OF EQUATIONS OF DEFINITION 167

4. Clocks
@! (a)=~....! (an)=~
(b) ! (indices(ay::::ian))=~
5. Examples
(a) if Misa4 5 matrix, thenM[indices(3,4)] isthe3 4 submatrix ofMthat contains
the three rst lines and the four rst columns of the mativk
not yet
: e full
IX—11 Extended syntax of equations of de nition imple-
mented
The following syntax extends the syntax @EFINITION-OF-SIGNALS given inVIII-5, pagel55: in
PoLy-
1. Context-free syntax CHRONY

DEFINITION-OF-SIGNALS ::=
DEFINED-ELEMENT ElS-EXPR
j DEFINED-ELEMENT S-EXPR

j DEFINED-ELEMENT defaultvalue| S-EXPR
j DEFINED-ELEMENT { DDEFINED-ELEMENT}

E| S-EXPR

j DEFINED-ELEMENT { DDEFINED-ELEMENT}
S-EXPR
j DEFINED-ELEMENT { DDEFINED-ELEMENT}

DEFINED-ELEMENT ::=
COMPONENT

j COMPONENT [[| S-EXPR{[, |S-EXPR}

An equation
X[11,...lm]l:= E
is another way to write:
X =(1lg,...0m): E

The de nition is similar when the symb is used.

If one equation de nes only partially an array, this arraywd# de ned using several equations,
de ning different parts or elements of this array.

Independently of non de ned elements (representedibyn the semantics), like any signal, a given
element cannot be de ned by distinct values at a same instant

All the elements of an array have the same clock, which isltfekof the array. In particular, if some
element is unde ned at a given instant at which other elemarg de ned, this element is considered to
have any well-typed value.

'not yet implemented in ®.yCHRONY: multiple partial de nitions for different elements of anray.

168 SPATIAL PROCESSING

IX—12 Cartesian product

The cartesian product is used mainly to de ne jointly indicéo be used in the provided structure
of iteration of processes (cf. sectidk—13, p. 168 et seq). Intuitively, the sequence of iteration is
represented by the rst dimension of the indices (which ageters). Thus, it is different from the

generalized indices used in extraction of sub-array (ctti@e IX-8, p. 163 et seq) or array restruc-
turation (cf. sectioniX-9, p. 164 et seq), which are, in the more general case, multi-dimensiorgites.

Il,...,ln

1. Context-free syntax

MULTI-INDEX =

S-EXPR{[, |S-EXPR}

2. Types
(@) 8k, (Ix)=[0.m 19!
e e
® (Ig,...00)=[0. m 1! 1 o [0 me 1!,
k=1 k=1
3. Semantics
The cartesian product I4, ...,I, de nes atuple oin vectorsll 4, ...,1l , the size of which
is equal to the product of the sizes of the vectars...,|,. These vector$l 1, ...,Il , are such

that the tuples obtained by their elements of same indexitdessuccessively the respective values
of the elements of 4, ..., |, in embedded loops such that the most external one enumdhates

elements of 1 and the most internal one enumerates the elemerts. of
The semantics is described formally in pBrtsectionlll-7.2, p. 46 et seq.

4. Clocks

@! ()=...=1(1,)

(b) Each one of the de netl ¢ has the same clock &g.

IX—13 Iterations of processes

Structures of iteration are provided as process expression

1. Context-free syntax

not yet
fully
imple-
mented
in
PoLy-
CHRONY

GENERAL-PROCESS::=
ITERATION-OF-PROCESSES
ITERATION-OF-PROCESSES ::=

array | ARRAY-INDEX P-EXPR[ITERATION-INIT]
j [iterate | ITERATION-INDEX P-EXPR[ITERATION-INIT]

2not yet implemented in ®LYCHRONY: creation of the implicit added dimension when necessanyitipie associated
indices.

IX—13. ITERATIONS OF PROCESSES 169

ARRAY-INDEX ::=

Name S-EXPR

ITERATION-INDEX ::=
DEFINED-ELEMENT

j DEFINED-ELEMENT { DDEFINED-ELEMENT}

j S.EXPR

ITERATION-INIT ==

P-EXPR

REFERENCE-SEQUENCE ;=
S-EXPRIIlIIl

The structure of array is used in theG8IAL language to represent a notion of iteration.

The signals which are de ned iteratively have a virtual aiddial rst dimension (with respect to
their declaration), the size of which is the number of iters. Moreover, a virtual index 1 in this rst
dimension is used to represent the initial value of the amsid signal, at the beginning of the iterations.
The current value of the signal at a given iteration step nm&w lunction of its value at the previous
iteration step.

Note that this representation of bounded iterations usimgdditional spatial dimension is only a
means to represent simply such iterations within the exgstemantic contextin practice, this added
dimension has not necessarily to be created.

Let us rst consider the following form:

iterate (l1,...1p)of P with Pjny end

whereP is a process expression with equations that may contairottesvfng occurrences of signal
expressions:

in the left hand side:

The equations which are under the scope of a structure atiber (“iteration of processes”) in a
given unit of compilation are rewritten as a new system okgigus according to the context of rewritting
established by the embedding of iteration structures. Alexing function (which can be represented
as some list of constant indexes—cf. secti®r6, p. 161 et seq) corresponds to such a context. The
indexing function is a function:

I 2 [0.(ny ::: np) 1! [0.ng 1] ::: [0.np 1] (where then; are integer constants).
For simplicity, let this function be represented here byttigle of constant indexds, ..., 1, (in this
order): each index has a size equahio ::: np. Wenotem = ng ::: ng.

Let us consider also the following “generic” forms of eqoas inPj; :
X[u(ly:inslp)]l= E

170 SPATIAL PROCESSING

and inP:

X[f(y:onipl= kX[?][h(g,...)] Y901, 1p)];::0)

(X, Y represent any variable¥-may beX — de ned in the iteration, the functions, g, h, u... on
indexes can represent tuples. . . ; note that besides thesmyation of the iteration in an added dimension
for the signals, each de ned element has several de nitalosg the iteration.)

Considering this iteration context, the equations afi@dtte this context are rewritten in the follow-
ing way (“expanded”, in some way), as a composition of eguatiXX , Y Y... are new variables,
corresponding to the variables de ned in the iterationhviite same type as the corresponding variable,
but with an additional rst dimension of siza + 1):

initialization equations:

X[u(ly; i lp)]= E

is rewritten as the composition of equations:
8i1;::1;ip: 8" (I4[ia])izzs;" (1plip]),

XX 1 UL uC (13l i (alipl o= E

where 1refers to the virtual rst index of the added dimension.

equations of the body:

XX g]= XX 1l

nal results:
X = XX[m 1]

This rewritting is some sort of preprocessing. In partigulae typing of a program has to be consid-
ered on the rewritten program.

As mentioned above, the iteration indexes can be represastsome list of constant indexes. A
particular case is to have such a list de ned as a tuple lieguftom the cartesian product of indexes.
More generally, the iteration indexes can be speci ed by expression denoting a function
[0.(ny i np) 1]! [0.ng 1] ::: [0.np 1] (where then; are integer constants).

For a given set of equations, the context of iteration ishdistaed, in some unit of compilation,
by the whole embedding structure of the iterations contagirthese equations. As it will be easier to
understand it in a regular context, let us consider as t{pixample the embedding of two structures of
iteration, the indexing functions of them, taken sepayatale given by cartesian products of indexes:

let 14, ...,1p for the most external one, andlp+1, ..., lp+q for the inner one. Then, for
the equations which are under the scope of both structur@sration, the indexing function (which
determines the rewritting) is given by the following card@sproduct: |1, ...,lp+q . Thisrule is

generalized following the same principle for any indexingdtion and for any embedding of structures
of iteration.

Particular case. In order to allow “incomplete” iterations (for instance tvisome iteration index
depending on the value of another iteration index), it maglmved to de ne only partially, for a given
iteration, indexes used as iterators. In that case, the teoned” values are not considered for the

IX-13. ITERATIONS OF PROCESSES 171

resulting indexing function : more precisely, tuple§iy,...iy) where at least ong is “non de ned”
are not considered. In that case,= n; ::: npis notthe actual size of iteration but only its upper
bound.

The “array” notation is a special case of the “iterate” omdgrited from the previous version of the
SIGNAL language.
array | to N of P with Pj,; end
whereN is an expression de ning a constant integer (and for whit¢tas not to be declared)
is equal to the process de ned as follows:
(j 1 =0. N
j iterate | of P with Pj,t end
DA

Examples

array | to N 1 of
array J to N 1 of
U[l,J] = if I=J then 1 else 0
end
end de nesUas a unit matrix.

array | to N 1 of
array J to N 1 of
T[I,J] = if J>=I then | +J else O
end
end
de nesT as a triangular matrix.

array | to N 1 of
D[] := M[L,I]
end
de nesD as a vector equal to the diagonal of matvix

array | to N 1 of
T[] = if 1=K then A else (T$)[I]
end
de nes the vectoil which at each instant keeps the values it had at the previstanit, except in
Kwhere it takes the values #f(K andA can be signals).

array | to N 1 of

V[I] = T[] + V[?][I 1] nn0
end
de nes the vectolV in which each element, of indexcontains the sum of the rstelements of a
vectorT.

array | to N 1 of
R := op(T[IL.R[?])

with R := vO

end

172

SPATIAL PROCESSING

de nes in R the scalar obtained by threductionof the vectorT by the operatoop (vO is the
initial value).

array | to N 1 of

Y[I] := FILTER(Y[?][I 1] nnX)
end
de nes a cascade dfl processe$ILTER connected in series. The process mdelkiTER is
declared with one input and one output of some basic type.h tgaut of an instance of the
proces$-ILTER is supplied by the output of the previous procBHSTER (the signalX provides
the input of the rst proces&ILTER). The vectory is delivered as output.

array | to N of

F = if 1=0 then 1 else | F[?]
end
de nes inF the factorial ofN. Note that herelNis a constant.
It is also possible (in a different way) to specify in theGBAL language the computation of
factorial for an “unbounded” integer signidlby “inserting instants” between consecutive instants
of the input signaN (oversampling).

array | to N 1 of
FOUND := if FOUND[?] /= 1
then FOUND[?]
else if ELEM = TABLE[]
then |
else FOUND[?]
with FOUND = 1
end
speci es the research of the elem&itEMin an unsorted ABLE

With fulladd a model of function de ned as follows (cf. pa chapterXl, p. 183 et seq):
function fulladd =

(? boolean cin, x, y; ! boolean cout, s;)

(| s := x xor y xor cin

| cout := (x and y) or (y and cin) or (cin and Xx)

)

then the following model of function de nes an unsigned batiler:
function byte adder =
(? [8] boolean X, Y; ! [8] boolean S; boolean overflow;)
(| array i to 7 of
(overflow, SJi]) := fulladd (overflow[?], X][i], YI[i])
with overflow := false
end

Using the model of functioexchg :
function exchg =
(? integer a, v;
(| aa = v | w :=

I integer aa, w;)
a

IX-13. ITERATIONS OF PROCESSES

173

)

then the following model of function de nes Wa circular permutation o¥:
function Rotate =
{ integer n; } (? [n] integer V; ! [n] integer W;)
(| array i to n-1 of
(aa, WIi]) := exchg (aa[?], VIi])
with aa = V[n-1]
end

1)

where integer aa; ... end

The following model of function sorts the vectaiin increasing order i :
function Sort =
{ integer n; } (? [n] integer A; ! [n] integer T;)
(| array j to n-2 of
array i to (n-2)-j of
(I T =T
next (i : if T[?][i] > T[?][i+1]
then T[?][i+1] else T[?][i])
next (i+1 : if T[?][i]] > T[?][i+1]
then T[?][i] else T[?][i+1])
)
end
with T == A
end

)

(the sequential expression is de ned in sectigr14, p. 174).

It can be written as follows, usinggrate
function Sort =
{ integer n; } (? [n] integer A; ! [n] integer T;)

(1 j:=0.n2
| iterate | of
(| 1= 0..(n-2)j
| iterate i of
(I'T:=T7]
next (i : if T[?][i] > T[?][i+1]
then T[?][i+1] else T[?][i])
next (i+1 : if T[?][]] > T[?][i+1]
then T[?][i] else T[?][i+1])
)
end
)
with T == A
end

174 SPATIAL PROCESSING

where [n-1] integer j, i;
end;
(note that this is an example with “incomplete” iteratians)

Some other examples are given in the de nition of operatorsnatrices (cf. sectiohiX—16, p. 176
et seq).

IX—14 Sequential de nition

The sequential de nition is used mainly for the rede nitiohelements of arrays.

Tinext Ty

1. Context-free syntax

SEQUENTIAL-DEFINITION ::=
S-EXPR S-EXPR

2. Types
@ (Ti)=(0.ci] ::: [O.g)! 1
() (T2)=(0.b] ::: [0.b])! >
withc, Iby;:ii;¢ byand pand » are comparable types

(T, andT, are, in the general case, arrays with the same number of diarex) but on each
of them, T, may be smaller thafii,)

() (Tinext T2)=([0.ci] ::: [0.c])! 1t >

3. Semantics
T1 next T, de nes, in the general case, the array which takes the vdiue at each point at
which T, is de ned (i.e., is semantically different fromil), and the value of'; elsewhere.
The semantics is described formally in pBrtsectionlll-7.2, p. 46 et seq.

4. Clocks

@ ! (1) =1 (T2)
) ! (Ty next Ty)=!(Ty)

5. Examples

@T:=T$ next K:A
de nes the vectorT which at each instant keeps the values it had at the previwianit,
except inK where it takes the values 8f(K andA can be signals).

IX—-15 Sequential enumeration

The sequential enumeration is a form of iterative enumandtiat allows to de ne arrays using sequential
multi-dimensional iterations.

1. Context-free syntax

IX—15. SEQUENTIAL ENUMERATION 175

ITERATIVE-ENUMERATION ::=

m ITERATION { D PARTIAL-DEFINITION }

PARTIAL-DEFINITION

DEFINITION-OF-ELEMENT
j ITERATION

DEFINITION-OF-ELEMENT ::=
m S-EXPR{D S-EXPR} ElS-EXPR

ITERATION ::=

PARTIAL-ITERATION { I:lPARTIAL-ITERATION}
DEFINITION-OF-ELEMENT
j PARTIAL-ITERATION { DPARTIAL-ITERATION}

E| S-EXPR

PARTIAL-ITERATION =

[Name] [S-EXPR] [S-EXPR] [S-EXPR]

Let us consider the following de nition of an arrdy by sequential enumeration:
T:=[D1,..., Dml]
(note: this is not an enumeration such as described in sddtied, p. 159).
This de nition is equivalent to:
T:=Djinext ...next Dy
whereD ; should be a complete de nition of the array.
Let us now consider the following general form of a given (the typing rules for lower bounds,
upper bounds and steps are those of seddeit, p. 161):
{i1in byto cystep dy, ..., ipin Bto cystep doy:[f(ig;:ii5ip)]: E
It can be considered that the de nition Dfy is obtained by the following composition:
(] 11 := b.. cg step di
j iterate i, of
(j-...
(Jip = by.. ¢ step dp

j iterate ip of Dy[f(ig;:::;ip)] == E end
)
)
end
)i, ip
If the denotation of the indice§ f (i1;:::;ip)] , is omitted, itis equivalent tf{ iy,...Jp)] .

If the lower bound of an index is omitted, it is by default ebiee0. An upper bound can be omitted
if it corresponds without ambiguity to the upper bound of ¢beresponding dimension of the array. If a
step is omitted, it is by default equal to 1. The name of anxrae be omitted if it has not to be used
explicitly.

A Dy with the simple form:
[I]: E

176 SPATIAL PROCESSING

can be considered as being de ned by the equation:
Dk[!l]:= E

IX—16 Operators on matrices

IX—-16.1 Transposition

1. Context-free syntax

TRANSPOSITION ::=

S-EXPR

Transposition on matrix

tr E
1. Types
@@ (E)=(o0.1 1 [0.m 1])!
) (r E)=(0.m 11 [0.1 1!

2. De nition in SIGNAL
X :=tr E
whose right side represents an expression of transposition of matrix, igleqithe process
de ned as follows:

array ito m 1lof

array jtol 1lof
X[ijl= E[].]
end
end
3. Clocks

@! (@ e)=!(E)
Transposition on vector

To create a matrix-column, it is possible to create a mditnx-and then to transpose it as follows:
tr[V]

IX—16.2 Matrix products

1. Context-free syntax

ARRAY-PRODUCT ::=
S-EXPREl S-EXPR

IX—-16. OPERATORS ON MATRICES 177

2. Types

(a) The elements of the operands of an expression of matdkust have a basic type which is
aNumeric-type.

3. Clocks

(a) The operators of matrix product are synchronous.

2-a Product of matrices
E:1 (E>
1. Types

@@ (Ey)=(o.1 11 [0.m 1)!
) (E2)=(0.m 1] [0.n 1))!
(¢ (Ei1 :Ez)=(0.1 11 [0.n 1! 4t -

2. De nition in SIGNAL
X:=E; ‘Ep
whose right side oEl represents an expression of product of matrices, is equaktprocess
de ned as follows:

array itol 1of
array jton 1lof
array kto m 1of
X[ijl= X[?Il ijl+ Eilik] Ez[kj]
with X[ij]:= 0
end
end
end

2-b Matrix—vector product
Ei1 E>
1. Types

@@ (Ey)=(o.1 11 [0.m 1)!
b (Ez)=[0.m 1!
© (E1 :Ex)=[0.1 19! 1t
2. De nition in SIGNAL
X = E;1 E»
whose right side gf:= | represents an expression of matrix—vector product, isléqlae process
de ned as follows:

array itol 1of
array kto m 1lof

178 SPATIAL PROCESSING

X[i]= X[?I[i]+ Ea[i,k] E2[K]
with XT[i]:= 0
end
end

2-c Vector—matrix product
Ei1 E>
1. Types

@ (E))=[0.1 1! ;
) (E2)=(0.1 11 [0.m 1)!
€ (E; :Ex)=[0.m 1! 1t
2. De nition in SIGNAL
X = E;1 E»
whose right side o represents an expression of vector—matrix product, isleglae process
de ned as follows:

array jto m 1of
array kto | 1lof
X[il:= X2 j1+ Eilk] E2[kj]
with X[j]== 0
end
end

2-d Scalar product
Ei1 E>
1. Types
@ (Ei)=[.1 1! .

b (Ez)=[0.1 1!
) (E1 :E2)= 1t -

2. De nition in SIGNAL

X:=E; ‘Es
whose right side represents an expression of scalar product, is equal tatlvess de ned
as follows:
array itol 1of
X = X[?]1+ Eai[i] Ea[i]
with X =0

end

Chapter X

Extensions of the operators

not yet
. fully

X-1 Rules of extension imple-

mented
The operators de ned in theiISNAL language are termwise extended to arrays and tuples, pabthict in
there is no possible ambiguity between the new operatoltirggdrom the extension and some other POLY-
operatiod. CHRONY

The extension of a given operator de nes a new operator, ad¢hmwise extension may be applied

recursively.

The semantics of the extension on tuples is described fiyrmmgbart B, sectionlll-7.1, p.44 et seq.
The semantics of the extension on arrays is described ftyringbart B, sectionlll-7.2, p. 46 et seq.

Instances of processes and conversions follow the sangeatiextension than operators.

A given extension is either an extension on tuples, or ameite on arrays. Mixed extensions are
not de ned. If the types of the arguments of an operator ah ghat both extension on tuples and
extension on arrays can be applied, the extension on tupfg®s rst.

When an extension is applied, the rules associated with fiexator (type relations, clock
relations...) apply element by element. Moreover, for thrayes, the constraint that all the elements
have the same clock has to be respected.

For tuples, there are different categories of tuples: mbrwwus tuples, which are signals, and
polychronous tuples, which are gatherings of signals (th&ye not, in general, one proper clock).
Monochronous tuples are tuples with named elds and polycbus tuples may be tuples with named or
unnamed elds. Whatever is the type of the arguments, thdtsesf an extension on tuples are always
tuples withunnamedelds (remind that a tuple with unnamed elds can always beigised to a tuple
with named elds with a compatible type). Moreover, if thet@xsion applies on tuples with named
elds, the operator applies on the elements of these tuptegpendently of their names in the consid-
ered tuples. In other words, ¥ is such a tuple with named elds on which the extension agplikis
extension applies effectively daple(X).

The possibly existing extensions for the operators of theN&L language are deduced from the
examination of authorized types for the arguments of thpegaiors.

For example, the operatE is de ned onsignalsof any types (in particular, on arrays and on

monochronous tuples with named elds) and has always a Boalesult. Thus the extensionjaf |on
arrays or on monochronous tuples with named elds has nogsapOn the other hand, this extension
is de ned on polychronous tuples (in that case, the resw@tgslychronous tuple with unnamed elds of
Booleans).

ot yet implemented in ®LYCHRONY: extensions to tuples; some extensions to arrays.

180 EXTENSIONS OF THE OPERATORS

Concerning the other equality opera, it is de ned only on signals of scalar types. Thus the
extension on arrays (for example) can apply and in this dhgeresult is an array of Booleans. The
extension on tuples (monochronous or polychronous) epfiie.

The extension of the operatathen on polychronous tuples applies, on the rst argument as asll
on the second one. But the extension on arrays is not de ndtkigeneral case on the second argument
since the resulting array would have elements with diffecéocks.

X-2 Examples

If V1andV2 are two vectors, the expressivii V2 de nes the termwise product of the vectors
V1andV2.

If Kis a scalar an/ a vector, the expressidd V de nes the vector each element of which is
equal to the product df with the corresponding element gf

If M1and M2 are two matrices, the expressidbhil M2 de nes the termwise product of the
matricesMlandM2

If P designates a process model which de nes two outplasdy,
the expressio?() when C de nes the signalX when CandY when C

If P designates a process model with two inputs,
the expressio® ((A,B) when C) species a subsampling by the conditi@on each one of
the inputs ofP.

Part E

THE MODULARITY

Chapter Xl

Models of processes

The language allows to describe signals (synchronizedesegs of typed values) and relations between
signals by equations; these equations can be grouped #&ogatparameterized models of systems of
equations: themodels of processesThe call of a model in a system is, in principle (when the cor-
responding model is not compiled separately), equivalerthe direct writing of the equations of this
model.

XI-1 Classes of process models

A process model establishes a designation between a name setdof parameterized equations; any
reference to this name is formally replaced by the desigheggiations.

The set of equations may be simply de ned by the keywexternal (cf. sectionXll-1, p. 207
et seq). In that case, it is apxternalprocess model (or model of external process). Its de nisbould
be provided in the environment of the program.

The set of equations may also be empty. In that case, ivigti@al process modellt means that
its actual de nition is de ned elsewhere (the virtual presemodel is “overridden”) in the context or is
provided in a module (cf. sectioxll-1, p. 207 et seq).

If the process maodel is external, or if the considered maglebmpiled separately, the replacement
of a reference to this model by its equations remains parfaich a partial replacement is limited to
the EXTERNAL-GRAPH of the called process (cf. sectiofi—6, p. 195 et seq). The result of the
invocation of a model of external process or of a separatatypiled process model (which could be not
in accordance with its description) can be only theordiicaéscribed. Theick characteristic clock of
the invocation of an external process model is describe@iit(sectionVIl-5, p. 138et seq.

For a model of external process, its graph properties aabledted by theeEXTERNAL-GRAPH .
For a described process model, the graph properties arblisiséa by the composition of the
EXTERNAL-GRAPH and the body of the model. A good situation is that ERETERNAL-GRAPH
veri es the properties deduced from the body of the model.

The following classes of processes are distinguished:

A process is saigdafeif it is an iteration of function(on the inputs), such as highlighted in pBrt
sectionlll-8.1, p. 52

It does not make any “side effect”:

184 MODELS OF PROCESSES

(I Y= £(X) [Y2 := £(X)]) (I Y= (X))] Y2:= Y1)

Two different instantiations of aafeprocess with the same input values will provide the same
results. Such a process is memoryless. It cannot call ettpracesses that are not safe.

A process is saidleterministic automates-or more shortlydeterministie—(or memory safg if
it is a function of sequences, from initial states, trajeew of the inputs and trajectories of the
clocks of the outputs (considered, in some sense, as injnits}rajectories of the outputs.

This corresponds to the notion deterministic procesgon the inputs), highlighted in pa@,
sectionlll-8.3, p. 52 et seq.

Its only possible “side effects” are changes to its privatmary.

Two different instantiations of deterministic automatoprocess with the same sequences of input
values (and output clocks), and in the same initial condigjavill provide the same sequences of
outputs. It cannot call external processes that are not safe

Any safeprocess igleterministic automaton.

A process isinsafein all other cases.
Two different calls of amunsafeprocess are never supposed to return the same results.

The following SGNAL processes are examplesunfsafeprocesses:

— X = a or X
— (| x := a default ((x$1 init 0)+1) | b:= x when bb |)/x

The class of the process described by a process model magdisqat by a speci ¢ keyword in the
EXTERNAL-GRAPH of the model.

In addition, it is possible to specify complementary naarsiardized information in thBIREC-
TIVES (cf. sectionX|-7, p. 198 et seq).

Besides the above characterization of processes, diffel&sses of process models are syntactically
distinguished. These are models of:

processes,
actions,
procedures,
nodes,
functions,
automata.

Any process model called in the program must have a dedaratsible in the syntactic context of
the call.
A processMODEL is de ned according to the following syntax:

1. Context-free syntax

XI-1. CLASSES OF PROCESS MODELS 185

MODEL ::=

PROCESS
j ACTION

i PROCEDURE
i NODE

i FUNCTION

i AUTOMATON

PROCESS::=

process Name-modeB

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E

ACTION ::=

Name-modeB

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E

PROCEDURE ::=

Name-modeB

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E

NODE ::=

Name-modeB

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E

FUNCTION ::=

Name-modeB

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E

AUTOMATON ::=

Name-modeB

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E

BODY ::=
DESCRIPTION-OF-MODEL

DESCRIPTION-OF-MODEL ::=

GENERAL-PROCESS
j EXTERNAL-NOTATION

XI-1.1 Processes

A procesqdescribed by a model of process) belongs to the most getlass of processes.

There are no required particular relations regarding da@skwell as dependences. It is the job of the
compilation (clock calculus, dependence calculus) tolmsize these relations.

A process may besafe, deterministic automatorgr unsafe. This may be specied in the

186 MODELS OF PROCESSES

EXTERNAL-GRAPH . By default, unless it can be proved different, it is consedeasunsafe.

Xl-1.2 Actions

Actions are processes that are called (activated) at a spock, that may be designated via a label,
which is thetick of the action (cf. parC, sectionVIl-5, p. 138et seq). Syntactically, the invocation (or

activation) of an action has to be under the scope of suched, liaba labelled process.

An action (described by a model of action) has to respect some refategarding its clocks and

dependences:

Its tick is the clock designated by the label under the scope of wiiehattion call is. If the
action is not an external one, thisk is also equal, as usual, to the upper bound ofities of its
components.

Thetick of the action is not necessarily available through the fater of the model of the action.

For the dependence relation, each input of an action precedeh output of that action at th
product (intersection) of their clocks.

An action may besafe, deterministic automatorgr unsafe. This may be specied in the
EXTERNAL-GRAPH . By default, unless it can be proved different, it is consedeasunsafe.

XI-1.3 Procedures

e

Procedures are special cases of actions. fidkeof a procedure is de ned as the upper bound of the

clocks of its inputs and outputs (the procedure is calletliatitk).

A procedure must have at least one input or one output.

Xl-1.4 Nodes

Nodes are essentialgndochronouprocesses (cf. paRB, sectionlll-8.2, p.52).
Roughly speaking, an endochronous process knows when itohasad its inputs, thus it is al
tonomous when run in a given environment.

not yet
fully
imple-
mented
in
- PoLy-
CHRONY

It may be shown that if the clock relations associated witliargss can be organized as a tree

of

clocks, the root of the tree representing thest frequentlock (which is the single greatest clock) of the

system, then this process is endochronous.

Besides the property that it is endochronousode (described by a model of node) has to respect

some relations regarding its clocks and dependences:

Its tick (cf. partC, sectionVII-5, p. 138et seq) is necessarily the clock of an input or output of

the node.

For the dependence relation, each input of a node precede®etput of that node at the product

(intersection) of their clocks.

A model of node must provide an abstraction (cf. seck®#6, p. 195et seq) of its interface clock
functional hierarchy.

A node must have at least one output.

A node may beafeor deterministic automatorl his may be speci ed in thEXTERNAL-GRAPH .
By default, unless it can be provedfe,it is considered adeterministic automaton.

XI-1. CLASSES OF PROCESS MODELS 187

XI-1.5 Functions

A function is a process that speci es #@rration of functionsuch as de ned in pamB, sectionlll-8.1,
p.52

A function (described by a model of function) is a particular case ofenadd has to respect all
the relations respected by a node regarding its clocks apeindiences (cf. sectioxi-1.4, p. 186). In
addition, all the inputs and outputs of a function must héseestame clock.

A function must have at least one output.

A function is constant on time and does not produce any sigetefin particular, it cannot contain
delay operators (or other operators derived from delag},de ne some memory.

Note that it is nevertheless possible to specify some asseron the input signals (for instance) of
a function. For example, the equatigi= when (x > 0) speci es that when it is presemnt, must be
positive.

A function is necessarilgafe(this has not to be speci ed in ttEXTERNAL-GRAPH).

XI-1.6 Automata

Automata are processes representing explicitly nitdeseutomata. In these automata (automaton pro-
cesses), labelled processes (cf. gagectionVIl-5, p. 138et seq) represent states and specirtrinsic
processegcf. chapterXlll, p. 211 et seq) are used to represent other automaton features such as tran
sitions. Usual equations can be used in these automatoegs®s to specify constraints or to de ne
computations.

A basic statement for these automaton processes is thatctahge is supposed to take time: at a
given level, an automaton is in a single state at each logistént and there is no immediate transition.

An automaton isclocked it is controllable by an external clock (that can be expljcits control
clock Thetick (cf. partC, sectionVIl-5, p. 138et seq) of the automaton is at most equal to this control
clock. By default, the control clock of the automaton is ddoahe upper bound of the clocks of its
input signals (including the inputs possibly non declamedhie interface of the automaton process but
declared in some upper level and referenced in the autonpatmess—cf. sectiokl—4, p. 192et seq).

For the dependence relation, each input of an automatomgesceach output of that automaton at
the product (intersection) of their clocks.

An automaton process is necessadgterministic automaton.

The following simple example illustrates how an automatmtpss can be speci ed:

automaton vauto =

(? boolean C1; ! integer RESULT;)

(I 0 gon S_1 :: ACTIONS S1 () |) % actions in S_1 %
| (| on S_2 1 ACTIONS_S2 () |) % actions in S_2 %
)

| (I Automaton_lInitial_State(S_1) % the initial state %
% transitions %
| Automaton_Transition (S_1, S_1, [/:C1])
| t 1 2 :: Automaton_Transition (S_1, S 2, [:C1])
| Automaton_Transition (S_2, S_2, [:C1)])
| £ 2 1 :: Automaton_Transition (S_2, S 1, [/:C1])
% actions on some transitions %
lont12:(..
| ont21:(..]J|
)

188 MODELS OF PROCESSES

% definition of the output %
| (| RESULT := RESULT_1 default RESULT_2 |)
1)
where
label S 1, S 2, % states %
t12 t21;
process ACTIONS Si1
process ACTIONS_S2
end

(! integer RESULT 1;) ... ;
(! integer RESULT 2;) ... ;

This automaton has two statés, 1 andS_2, declared as labels and speci ed as labelled processes.
The initial state $ 1) is designated through the intrinsic procésstomaton_Initial_State
Here, the actions associated with the s@td (resp.,S_2) are supposed to be de ned in the process
ACTIONS_S1(resp., ACTIONS_S2, which produces an outp®ESULT_1(resp.,RESULT_2. The
outputs of the automaton (here, the sigR&SULT are de ned by usual equations. The transitions
between states are speci ed thanks to the intrinsic prodessmaton_Transition . The rstinput
of the process corresponds to swirceof the transition, the second input totigsget and the third input,
which has to be of typevent, is thetrigger of the transition. A fourth input, optional, can represent
a static priority. Like any process, a transition can bellade Then, referring to these labels, actions
can be associated to transitions. Here, actions are as=beigh two of the transitions, in the form of
guarded processes.

The following intrinsic process models are used to expriesgie nition of an automaton process.
They are supposed to be used in a consistent way.

process Automaton_Initial_State = (? S1; !);
Description: This process de nes the initial state of theoanaton as bein&1.

process Automaton_lIsin = (? S; ! boolean b);

Description: This process provides a non clocked Boolegmasiwhich istrue when the automa-
ton is in states.

process Automaton_Transition = (? S1, S2; event trigger; !) ;

or
process Automaton_Transition = (? S1, S2; event trigger;
integer prio; !);

Description: This process speci es a transiti®h -[trigger]-> S2
As Automaton_IsIn(S1) represents a Boolean signal whichrise when the automaton is in
stateS1, the clock of the transition is equal io([Automaton_IsIn(Sl)] b trigger)

The inputprio is optional. It provides a (static) priority to the speci é@nsition. Its value must
be a constant integer. When this input is not speci ed, therjy of the transition is supposed
to be equal to 0. A reable transition 1 from a given state has a higher priority than a reable
transitiont_2 from the same state if the priority associated with is greater than the priority
associated with 2 . Values of priorities can be negative.

For two transitions having a common source, the trigger @hilyhest priority transition is implic-
itly removed from the trigger of the lowest priority traneit.

XI-1. CLASSES OF PROCESS MODELS 189

process Automaton_SetClock = (? event clockExpr; !);

Description: This process de nes the clock (or control &joof the automaton as being
clockExpr . By default, the clock of the automaton is equal to the uppemd of the clocks of
its input signals.

process Automaton_Clock = (? ! event vAutomatonclk;);

Description: This process returns wAutomatonclk the clock (or control clock) of the au-
tomaton.

process Automaton_SetCurrentStateld = (? id; !);

Description: This process speci es the internal statealdée of the automaton (used to represent
the state of the automaton) as beidg

The speci cation of an automaton process is translatedti@@GNAL language without automaton
processes.

An enumerated typeStateType) is used to represent the states of the automaton. The
enumerated values are those given by the names used as dstseecond arguments in the
Automaton_Transition intrinsic process calls which specify the transitions & #utomaton. For
the example described above, the enumerated typgads: StateType = enum (S_1, S_2);

An internal state variable (by defaultCurState) is used for the management of the state of the
automaton. Its type is the enumerated t@iateType . Its name may be de ned using the intrinsic

processAutomaton_SetCurrentStateld . It is initialized with the initial state provided in the
Automaton_Initial_State intrinsic process. For the above example, the internat statable is
declared asstatevar StateType _CurState init StateType#S_ 1,

The evolution of the automaton, speci ed with tReitomaton_Transition intrinsic process
calls, is managed by assignments to the internal statebleridor example, a transition speci ed by
Automaton_Transition (S_1, S _2, e) is translated as:

_CurState ::= StateType#S_2 when (_CurState? == StateType #S 1) when e

where_CurState? is the expression that expresses the value of the statdlari@urState at the
previous instant (cf. pai€, sectionVIl-2.3, p. 108et seq).

Concerning the actionB; associated with a given sta® (for example ACTIONS_ S1() in state
S 1), their translation can be expressed using guarded presést partC, sectionVIl-6, p. 140). The
position of the automaton in a given st&ede nes a context clock (the clock of the labs]) for P;.
This clockH;, which is the guard of the guarded process H; :: Pj, is de ned by the condition
when (_CurState? == StateType# Si) . Thus, each input of the proceBsis Itered by this
condition.

For actions associated with transitions, they are usuabigdgprocesses, whose guard is the clock of
the transition.

Example

The statechart described in p&jsectionVIl-7, p. 141 et seq.can be alternatively speci ed using
automaton processes:

automaton P_chart =
(? event Tick;
event a, b, i, j, m, n;
! integer IP_currentState, 1Q1_currentState, 1Q2_curren tState;

)

190 MODELS OF PROCESSES

(I ((] Automaton_Initial _State(Q)
| Automaton_Transition (Q, R, a, 1)
| Automaton_Transition (Q, S, b)
| Automaton_Transition (R, S, b)
| Automaton_Transition (S, Q, a)

)

| IP_currentState := 0 when Automaton_IsIn(Q)
default 1 when Automaton_IsIn(R)

default 2 when Automaton_IsIn(S)
default -1
| IP_currentState "= Automaton_Clock()

1)

| InQ := when Automaton_IsIn(Q) when Automaton_Clock()

| Q1_chart(InQ)
| Q2_chart(InQ)

)

where
event InQ;
label Q, R, S;

automaton Q1 chart =
(? event Tick;
I integer 1Q1_currentState;
)
(I (| Automaton_lInitial_State(U)
| Automaton_Transition (U, V, i)
| Automaton_Transition (V, U, j)

)

| 1Q1_currentState := 0 when Automaton_Isin(U)
default 1 when Automaton_IsIn(V)

default -1
| 1Q1_currentState = Automaton_Clock()
1)
where
label U, V;

end;
automaton Q2_chart =
(? event Tick;
I integer 1Q2_currentState;
)
(I (| Automaton_lInitial_State(X)
| Automaton_Transition (X, Y, m)
| Automaton_Transition (Y, Z, n)
| Automaton_Transition (Z, X, j)

1)

| 1Q2_currentState := 0 when Automaton_IsIn(X)
default 1 when Automaton_Isin(Y)

default 2 when Automaton_Isin(Z)

default -1
| 1Q2_currentState = Automaton_Clock()
)}
where
label X, Y, Z;

end;
end;

XI-2. LOCAL DECLARATIONS OF A PROCESS MODEL 191

XI-2 Local declarations of a process model

The local declarations of a process model may be declagtbrsignals (or tuples), declarations of
shared variables, declarations of state variables, dditlas of constants, declarations of types, decla-
rations of labels, declarations of references to signath wxtended visibility, or declarations of local
models.

1. Context-free syntax

DECLARATION ::=

S-DECLARATION
DECLARATION-OF-SHARED-VARIABLES
DECLARATION-OF-STATE-VARIABLES
DECLARATION-OF-CONSTANTS
DECLARATION-OF-TYPES
DECLARATION-OF-LABELS
REFERENCES

MODEL

A given zone of local declarations constitutes a gil@rel of declarations; this level is that of the
process expression that de nes this zone. When this expressthe expression that de nes the process
model, this zone is said the zone of the local declarationh@fmodel. When this expression is the
expression that de nes the external graph of the modelzitni is said the zone of the local declarations
of the external graph.

The zones of declaration of the formal parameters and ofnjgt$s and outputs of a process model
constitute a samievelof declarations, the one of the model.

The levels of declarations are ordered in the following way:

the level of a model is greater than the level of the local @letions of the external graph;

the level of the local declarations of the external graphréatgr than the level of the local decla-
rations of the model;

the level of a model is greater than the level of any sub-esgine of this model;
the level of an expression is greater than the level of anyesyibession of this expression;
the level of a model is greater than the level of any local mhddelared in this model.

A local declaration of a model in a given level is visible (atmdis, this model can be called as
INSTANCE-OF-PROCESYS) in this whole level and in all lower levels, everywhere inist hidden by
a declaration with the same name in a lower level. In padicid modelQ declared in the zone of the
local declarations of a mod®@! can be called in the expression associated Ritind in the expressions
associated with the other sub-modelsRaf For these expressions, it possibly hides a model with the
same name that, without it, would be visible.

The set of sub-models declared in a modatannot contain two models with the same name. More
generally, any two objects (models, types, signals, etedladed in a same level of declaration cannot
have the same name (see below).

The parameters declared in a process model are visible lfasdray be referenced) in this whole
process model (in particular, the other parameters, thesmmnd outputs, etc.) and in all the embedded
process models, everywhere they are not hidden by a decfarith the same name in a lower level.

192 MODELS OF PROCESSES

The constants declared in a given level are visible in thislevkevel and in all lower levels, every-
where they are not hidden by a declaration with the same naméower level.

The types declared in a given level are visible in this whelel and in all lower levels, everywhere

they are not hidden by a declaration with the same name in erltswvel.

The declaration of labels and their visibility obey to specules, which are more detailed in sec-

tion XI-3, p. 192

As a general rule, the local declarations of signals (omsiptincluding shared variables—and state

variables correspond to the con ning of these objects (efit 8, sectionVIl-4, p. 137 et seq) to the

corresponding level and the lower ones. However, the Viisiloif signals, tuples and state variables obey

to speci c rules, which are more detailed in secti¥ir-4, p. 192et seq.

The names of declared objects (models, signals or tuplet sariables, parameters, constants,
types, labels) can mutually mask themselves. In a given,lévere cannot have two such identical

names.

Note that the scope of the declarations is statically de bgdhe syntax: it does not depend on

instantiations of process models.

A given compiler may adapt the visibility rules for some skes of objects in the following way:
in the level where it is declared, a given object can be usédiora syntactic position thdbllows its
declaration (in this case, the order of declarations isisignt). The rules for names rede nitions may
be adapted accordingly.

XI-3 Declarations of labels
1. Context-free syntax

DECLARATION-OF-LABELS ::=

Namedabel{ I:l Namedabel} El

The labels declared in a process model, at any declaratigh ¢¢ this model, are visible (and can

be referenced) anywhere in this model, except in its interfgparameters, inputs and outputs, external
graph). The labels declared in the external graph of a psateslel are visible (and can be referenced)

anywhere in this model.

However, the labels declared in a process model are noteisitthe sub-models of that model.

A label declared in a model cannot have the same name as amyofijlect declared in that model (it
cannot be masked).

XI-4 References to signals with extended visibility
1. Context-free syntax

REFERENCES::=

not yet
fully
imple-
mented
in
PoLy-
CHRONY

Name-signal{ D Name-signal} II|

The rules for the visibility of signals in the previous venss of SGNAL were that this visibility was

always limited to the process model in which the signal wadaded, excluding the sub-models of that

model.

XI-5. INTERFACE OF A MODEL 193

This version offers the possibility to extend the visilyilitf signals (or tuples) and state variables,
with the same rules as for most of the other objects of theuagg. In that case, a signal (or tuple, or
state variable) declared in a given level is visible in thisole level and in all lower levels, everywhere
it is not hidden by a declaration with the same name in a loexall A signal with extended visibility is
assimilated to a shared variable (cf. p@rtsectionV=10, p. 90 et seq) with at most one de nition (but
it can be declared in the interface of a process model).

However, some freedom is left to the compilers to accept ar(possibly according to specic
options) signals with extended visibility. The three faliag cases may be distinguished:

1. Signals with extended visibility are not allowed.

2. Signals with extended visibility are allowed, but the o§such a signal must be explicitly refer-
enced as such when it crosses a frontier of process modetesgpiect to its declaration.

Such a use is pointed by a “ref” declaration, under the scoépenich is the considered use (with
the general scoping rules, restricted here to the conslqemzess model).

A signal with extended visibility cannot be used if it has véédden by the declaration of another
object with the same name.

A “ref” declaration cannot mask some object with the sameeaam

3. Signals with extended visibility are allowed, and theieumay be explicitly referenced (previous
case), though it is not mandatory.

XI-5 Interface of a model

The interface of a model contains an optional descriptioitsdformal static parameters, followed by a
description of its visible part. This one is composed of ths|(possibly empty) of its input and output
signals, and an optional description of the external behadfithe model.

1. Context-free syntax
DEFINITION-OF-INTERFACE ::=
INTERFACE

INTERFACE ::=
[PARAMETERS] INPUTS OUTPUTS EXTERNAL-GRAPH

PARAMETERS ::=

[{ FORMAL-PARAMETER } *]

FORMAL-PARAMETER ::=

S-DECLARATION
j DECLARATION-OF-TYPES

INPUTS ::=
[{ S-DECLARATION } *]

OUTPUTS =
m[{ S-DECLARATION } *]

194

MODELS OF PROCESSES

The formal parameters of the interface of a model can cotypm parameters. These type param-
eters necessarily appear under the form of names of typd®muwtiaDESCRIPTION-OF-TYPE
de nition (cf. partC, sectionv-7, p. 86 et seq).

. Types

The list of inputs (respectively, outputs) declared in thieiface of a process model namid
constitutes a tuple the type of which is denotel@P) (respectively, (!P)).

The type of the tuple of inputs and the type of the tuple of otg@re tuples with unnamed elds.
Thus:

(a) if the inputs and outputs of a process mdeelppear as
(? R =S m Em; ! 1 S1; .. n Sni)
(to simplify the presentation, we consider that each dedign of type quali es one single
name of signal or tuple; the generalization to the case vtk bf names is trivial)
then
g?P)=(() =t ()
P)=C (1) =2 (o))

. Semantics

A model must have at least one input, or one output, or one aamation with non null clock
with some external process.

The names of parameters, input signals and output signashleunutually distinct.

The declarations of the input signaliNPUTS) and the output signalOQUTPUTS) of a model
are declarations of sequences. The declarations of foramahpetersFARAMETERS) can con-
tain declarations of parameter typ&HCLARATION-OF-TYPES) and declarations of constant
sequencesS-DECLARATION). In particular, the declarations of sequences can cohtpies of
parameters or signals. The declaration of a model sets uptexton which:

the parameter types de ne formal types, in a way similar @ declarations of types de-
scribed in partC, chapteV, “Domains of values of the signals”, Bl et seq,

a type is associated with the declared parameters, inpoalsigand output signals, in a
similar way to the association of a type to local signals of@pss (cf. parC, chapteVIl,
“Expressions on processes”, B35 et seq), according to the rules de ned in the chapter
“Domains of values of the signals”.

The invocation of a model sets up an expansion context intwhic

an effective type is associated with the parameter types similar way to the de nition of

type obtained by ®ESCRIPTION-OF-TYPE (cf. partC, sectionV-7, p. 86 et seq): if
is the effective parameter corresponding, positionadiythe formal parameter typggpe

A; then the typé is de ned as being equal to the typen the context of this invocation of

model;

a value (or a tuple of values) is associated with each identf formal parameter, and a
signal (or a tuple of signals) is associated with each nanmgpat or output signal (or tuple).

The declaration of a process model induces the existencegofeam order on the parameters
(whatever they are parameter types or not), an order on fhe signals of the model, and an
order on its output signals. Each one of these orders is tier @f speci cation of the objects of
the considered class (parameter, input or output) in tleefate. Any positional invocation of the

XI-6. GRAPH OF A MODEL 195

model is made respectively to these orders.

Example: a process modelthe interface of which is speci ed as

{Y1; ... Y} (? Aq; ... Ap; ! Bi; ... Bm;)
can be called such as
(BB, ..., BBn) = P {YVY, .. YV} (AAq, ..., AAL)

where each signal or parame¥X ; corresponds to the signal or parameter

XI-6 Graph of a model

The EXTERNAL-GRAPH of a model allows to specify clock and graph properties ofrtiuglel, such
as the properties necessary and suf cient to be able to isentbdel after a separate compilation. These
properties may be provided by the designer or calculatetidgdmpiler. They refer to input and output
signals of the model.

1. Context-free syntax

EXTERNAL-GRAPH ::=
[PROCESS-ATTRIBUTE] [SPECIFICATION-OF-PROPERTIES]

PROCESS-ATTRIBUTE ::=

safe
j | deterministic
j | unsafe

SPECIFICATION-OF-PROPERTIES ::=

GENERAL-PROCESS

The PROCESS-ATTRIBUTE allows to qualify the corresponding model safe(keywordsafe),
deterministic automator(keyword deterministic), or unsafe (keyword unsafe)—cf. sec-
tion XI-1, p. 183 et seq.It must be in accordance with the syntactic class of the model

The SPECIFICATION-OF-PROPERTIES of an EXTERNAL-GRAPH uses a process expres-
sion that can make reference to the formal parameters antlamg output signals of ttdODEL . Any
other identi er used in this expression is that of a localewbj(signal, process model, etc.), that must
have a declaration in this expression.

When theEXTERNAL-GRAPH is that of a described process model, the process de nedéy th
model is obtained, at the semantic level, by the composifdhe process de ned by thEXTERNAL-
GRAPH and of the process de ned by the body of this model. By comwsitvn, the process de ned by
theEXTERNAL-GRAPH is thus an abstraction of the process de ned by composietf itsth the one
of the body of the process model. A particular case may beribdar which the properties established
by the EXTERNAL-GRAPH are deduced from the properties veri ed by the body of the ehdide.,
the process de ned by thEXTERNAL-GRAPH is an abstraction of the process de ned by the body
of the model).

When theEXTERNAL-GRAPH s that of an external process model, the properties it dusscr
establish the properties of the model for any invocatiorhi tnodel.

196 MODELS OF PROCESSES

In that case, the invocatiod { Vi, ..., Vi} of an external process model
process X = {Fy; ... Fi;}
(? Ez .. Em;
ISy .. Sh;)
spec C;
is equal to the process de ned as follows:
(b X {Va, .., Vi
j C

D)

If G is the syntactic context of expansion established by thecemion of the model of external
process by the association of a value with each identi eroofrfal parameter, and by the association of
a signal with each input or output signal name, then, thedation of this model results in the context
of expansiorG, equal toGC, enriched by the equations (in particular, clock equatiars dependences)
resulting from the construction of tiEEXTERNAL-GRAPH .

XI-6.1 Speci cation of properties

The SPECIFICATION-OF-PROPERTIES is described by a usual process expression, the elementary
expressions of which are typically an instance of proce$sdwmay be, in that case, an instance of a
model of synchronization), a de nition of signals, a cloakuation, or an expression of dependence.

XI-6.2 Dependences

An expression of expliciDEPENDENCES may appear in thEXTERNAL-GRAPH of a MODEL ,

but also in its body. The purpose of a speci cation of depewés in the external graph is to make
explicit dependences between input and output signalseahibdel, or to establish these dependences in
the case of a model of external process. The explicit depmedebetween signals are de ned with the
following syntax:

1. Context-free syntax

ELEMENTARY-PROCESS ::=
DEPENDENCES

DEPENDENCES::=

SIGNALS { SIGNALS}
j SIGNALS SIGNALS S-EXPR

SIGNALS ::=

ELEMENTARY-SIGNAL
j ELEMENTARY-SIGNAL { DELEMENTARY—SIGNAL}

ELEMENTARY-SIGNAL ::=

DEFINED-ELEMENT
j Label

We distinguish rst the case where some of the “signals” fdrichh dependences are speci ed are
labels (cf. pariC, sectionVII-5, p. 138 et seq). In that case, for a labe{X , the designated signal is

XI-6. GRAPH OF A MODEL 197

either! XX (that is preceded by all the signals that are de ned in thegss labelled bXX), or ?
XX (that precedes all the signals that are de ned in the proledsdled byXX), depending thakX
appears at the left side or at the right side of the dependemo®. In the following,! XX and? XX
are only notations used to designate the correspondinglsign

If XX is alabel:

XX > E
1. De nition in SIGNAL

I XX > E
E > XX
1. De nition in SIGNAL

E > ? XX
Then, with the designated signals:
Eq1 > Eo» > Eg
1. De nition in SIGNAL
(I Ea > E»
j E2 > Eg3
)]
Note that for the particular case where a |ak&l appears as
Ex > XX > E3
this expression is equivalent to:
(j Ez > 2?2 XX
j XX > Eg3
D)
{X1, ..., Xn} > E
1. De nition in SIGNAL

(] X1 > E
i Xn > E
i)
E > {Yl, vy Ym}

1. De nition in SIGNAL

(Jj E > Y

198 MODELS OF PROCESSES

{E > {Yy, .., Ym}} when B
1. De nition in SIGNAL

(] {E > Y1} when B

j {E > Yyt when B
D)

{X > Y} when B

1. Types
(@) (B)v boolean

2. Semantics
The result of the expression { X > Y} when B
is to add to the dependence graph a dependenceXrdmY labelled by the conditio,
representing the clock at whidh has the valugrue.
The semantics of such a dependence is described formalbrilB psectionlV-3.1, p. 62 et
seq.

3. Graph

@x By

4. Properties
@xt By=x XPYDLBly
5. Examples

(@ (] S1 :: ERASE (X)
| S2 1 DISPLAY (X)
| S1 > S2)
allows to sequentialize the actioBRASEandDISPLAY.

XI-7 Directives

TheDIRECTIVES allow to associate speci c information, @ragmas,with the objects of a program.
This information may be used by a compiler or another tool.

A PRAGMA contains aName, the list of the designations of objects with which it is asated,
and aPragma-statement

PR {X1,..., Xp} " YYY"
1. Context-free syntax

DIRECTIVES ::=

[pragms] PRAGHA)

XI-7. DIRECTIVES 199

PRAGMA ::=

Name-pragma
[[{ | PRAGMA-OBJECT{ [, |PRAGMA-OBJECT} [}]I
[Pragma-statement]

PRAGMA-OBJECT ::=

Label
j Name

Pragma—statement::=
String-cst

2. Semantics
The pragma with namB R and with (optional) statemefity Y Y" is associated with each one of
the objects designated B§, ..., X,.
The designations (that should reference objects whichisileler at the level of the model, model
type or module) can be:

labels (in that case, the designated object is a procesessipn),

names of signals, parameters, constants, types, etc.gtigndted object is the correspond-
ing signal, parameter, constant, type, etc.).

By default (when there is no designated object), the pragnaasociated with the current process
model (cf. sectiorXl-1, p. 183 et seq), model type (cf. sectioiX|-8, p. 204 et seq) or module
(cf. sectionXll-1, p. 207 et seq).

A pragma has no semantic effect. It can be ignored by a compitet can trigger a specic
processing.

3. Examples
The following pragmas are recognized in the INRIAIR CHRONY environment:

(a) General information

Comment
— Associated with the current model.
— Comment on this model.

(b) Compilation directives
Main
— Associated with the current model.

— Ina module, means that the corresponding model is an “enint’mf this module:

it may constitute @ompilation unit(cf. sectionXll-1, p. 207 et seq).
Unexpanded

— Associated with the current model (used for traceability ande generation pur-
pose).

— Means that the model is not expanded when it is called. Thesponding process
must be endochronous, its greatest clock must be the cloak ofput signal, and
every output signal is preceded by every input signal. Meggadf the model has
inner memorization or static parameters, then no more thanrestance is allowed

200 MODELS OF PROCESSES

in its calling process. If the model refers to outer sharathtsdes or state variables,
then no more than one instance can be active at each instahts icase, the actual
greatest clocks of two instances of the same unexpandedgsotust be exclusive.
SIGNAL_Thread
— Associated with the current model
— Means that the model represents a “thread”. It is used iricodat to denote the
translation to 8sNAL of AADL ! thread components. The rst input signal of the
model is supposed to be the “dispatch” signal of the thrdsallast output signal is
supposed to be the “complete” signal of the thread (end afidian, waiting for a
new dispatch). The corresponding model should be comp#édiaexpanded” (see
above).
DefinedClockHierarchy
— Associated with the current model.
— Means that the corresponding process is endochronouspwithock constraints,
and that its clock hierarchy is explicit (it may be the resfla previous compila-
tion). When itis compiled, its clock hierarchy can be rebwithout clock synthesis.

(c) Partitioning information

RunOn

— Associated with the current modét, or with a list of labels of labelled processes
partitioning the subprocesses of this model.

— The statement of this pragma is a string representing aaanisiteger valué.

— If the pragma is associated with the current mdeleéach “node” (or vertex) of the
internal representation & (this internal representation is a graph) is attributed by
the value.

If the pragma is associated with a list of labels, each “nqde’vertex) of the in-
ternal representation of the processes labelled by oneesétlabels is attributed by
the value.
When a partitioning based on the use of the pragtuaOnis applied on an appli-
cation, the global graph of the application is partitionedaading to then different
values of the pragmd@unOnso as to obtaim sub-graphs, correspondingricsub-
models. The tree of clocks and the interface of these sukelaoday be completed
in such a way that they represent endochronous processes.

Topology

— Associated with a list of input or output signals.

— The statement of this pragma is a string representing aaainisteger value. This
value must be a value used also in a pradgtonaOn

— Read or write “nodes” (or vertices), corresponding to thestdered input or output
signals, of the internal representation of the process h{tds internal representa-
tion is a graph) are attributed by the vaiue
This pragma may be used when a partitioning based on the tise j@fagmadrunOn
is applied on an application.

(d) Separate compilation

BlackBox
— Associated with the current model.

1Architecture Analysis & Design Language.

XI-7. DIRECTIVES 201

— Quali es the “black box” abstraction of a model (may be theukof a compilation).
Only the interface of the model, including its external draip represented: its body
is empty.

GreyBox
— Associated with the current model.

— Quali es a “grey box” abstraction of a model. It contains atieznal graph that
represents clock and dependence relations of the intetfatelso a restructuring
of the model intoclusterstogether with a representation of teehedulingof these
clusters (clock and dependence relations between thestrdy Each cluster is
represented as a “black box” abstraction which is such tnairgout of the cluster
precedes any of its outputs.

Cluster
— Associated with the current model.

— Quiali es the “black box” abstraction of a model. It may be addo theBlackBox
pragma to represent the fact that the abstracted model islaster in a “grey box”
abstraction.

DelayCluster
— Associated with the current model.

— May qualify one of the clusters of a “grey box” abstractionemttode generation is
expected from this abstraction: in that case, one of thaarisisthe “delay cluster”
(represented, like the other ones, by its “black box” alstima), groups together
the delay operations of the model and is preceded by eachfdhe other clusters
(in the generated code, memories will be updated at the eadeninstant).

(e) Code generation directives

The pragmas C _Code, C_Code Import , C_Code declare , CPP_Code
CPP_Code_Import , CPP_Code_declare , Java Code, Java Code_Import
Java_Code _declare are speci c to code generation.

They are associated with the current model.

Their statement is a possibly “parameterized” string re@néing a piece of code in the con-
sidered implementation language (see below for the dasnripf parameters).

For C_Code, CPP_Code andJava_Code : each call of the model is translated by the
associated string in the generated code, after substitofithe encoded parameters by the
corresponding signals in the considered call.

ForC_Code_Import ,CPP_Code Import ,andJava Code_Import :the associated
string is inserted as import in the generated code.

ForC_Code _declare ,CPP_Code _declare ,andJava_Code_declare :the asso-
ciated string is added as a declaration in the generated code

C_Code, C_Code_Import ,C_Code_declare are used for C code generation.

CPP_Code CPP_Code Import , CPP_Code_declare are used for C++ code
generation.

Java_Code ,Java_Code Import ,Java_Code declare are used for Java code
generation.

(f) Distribution
Target
— Associated with the current model.

202 MODELS OF PROCESSES

— The statement of this pragma is a string representing somencmication system
(for example,"MPI").

— When distributed code is generated, the corresponding eormation system is
used.

Environment

— Associated with an input or output signal, which corresgottdan input or output
of the application.

— The statement of this pragma is a string representing adbtg.

— The logical tag represents the channel used for the comatioricwith the environ-
ment when distributed code is generated.

Receiving

— Associated with an input signat, of the current process mod®&l;. This input has
to be received from another process moéel,of the application.

— The statement of this pragma is a string constant composesoosubstrings: the
rst one, say"sl" , represents a logical tag; the second one,'sady , is the name
of the process modél,.

— When distributed code is generated, the component comedsmp to the process
modelP; receives the signal from the component naméd2" , using the channel
represented by the logical tagl” .

Sending

— Associated with an output signa, of the current process modé&l;. This output
has to be sent to another process molg],of the application.

— The statement of this pragma is a string constant composesoosubstrings: the
rst one, say"'sl" , represents a logical tag; the second one,'say , is the name
of the process modét,.

— When distributed code is generated, the component comedsmp to the process
model P, sends the signat to the component name®2" , using the channel
represented by the logical tagl” .

(g) Pro ling directives
Morphism

— Associated with the current model (“operator”).

— This pragma is used to describe homomorphisms of progranieiSGNAL lan-
guage. An homomorphism associates a new program initheAs language with
an original one. A typical example is pro ling for performamevaluation, for which
the homomorphic program represents time evaluation footlgnal program. A
new signal is associated with each original signal and a nmwator is associated
with each original operator. For example, an opera@uostPlus " can be associ-
ated with the operator+".

Associated with a model represented as an “operator”, gngnpaMorphism spec-
i es the homomorphic image of eadeferenceto this operator. The statement of
the pragma is a “parameterized” string representing thesgen See below for the
description of parameters.
Note
Although they do not belong to the of cial syntax of theGBIAL language, operators
may be described as follows:

XI-7. DIRECTIVES 203

MODEL ::=
OPERATOR

OPERATOR ::=

Operator-nameEl

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E

Operator-name::= Name+mnodel
j Operator-symbol

whereOperator-symbol represents reserved words or symbols of operators.
ProcessorType

— Associated with the current model.

— The statement of this pragma is a string representing a namexample,"DSP",
that should be the name of a BSP.LIB containing a module that de nes the cost
of each operator by particular models.

— When pro ling (performance evaluation) is required on aeggivprogram imple-
mented on some processor represented as a model witRrdwessorType
pragma, a morphism of this program is applied, that de nesw program repre-
senting cost evaluation of the original program. The imagd@® original program
by this morphism uses the library designated by the pragmatéopret the cost
evaluation operators.

(h) Link with the SIGALI prover
Sigali
— Associated with the current model.
— The statement of this pragma is a “parameterized” stringritay represent the way

a call of this model has to be viewed by the SIGALI prover. Sekww for the
description of parameters.

— This pragma is in particular associated with models corthin a speci c library
dedicated to the SIGALI prover. The calls of these modelgaternal calls that are
interpreted when translated into the SIGALI representatithese are models used
for veri cation purpose or for controller synthesis.

Parameters of pragmas

The statements of some of the pragmas (for example, codeag@medirectives, pro ling
directives, link with the SIGALI prover) are strings that ynbe “parameterized”. Gener-
ally, such a string describes a model of translation in wiparameters serve to transmit the
names of designated objects. In this case, the pragma isi@gsbwith a model (process
model, “operator”) and describes the translation that bdsetassociated with eadall of
this model (i.e., with each reference to this model). Theltegy translation is obtained after
substitution of the encoded parameters by the correspgrudijects in the considered call.

The following encoded parameters are recognized:
— &pj (wherej is a constant integer value) representsjfieparameter of the call;
— &ij (wherej is a constant integer value) representsjfAanput signal of the call;
— &0j (wherej is a constant integer value) representsjtheoutput signal of the call;

204 MODELS OF PROCESSES

— &n represents the name of the model,
— &mrepresents the name of the higher level model which is thecticompilation unit.

A few parameters are followed by other parameters to whiefi &pply:

— &t represents the type of the considered object (for exargpédl represents the type
of the rstinput signal of the call);

— &b represents the scalar basic type for an object which is ay;arr

— &lexp represents a list of objects (for exampfdexp&o represents the list of output
signals of the call);

— &ck represents the clock of the considered object;

— &hrepresents the image of the considered object in the carsitit®momorphism when
the translation describes an homomorphism (for exanfa&il represents the rst
input signal of the image of the call in the homomorphic peogy;

— &hck represents the clock of the image of the considered objetieironsidered ho-
momorphism when the translation describes an homomorphism

XI-8 Models as types and parameters

The notion of type presented so far is enriched with the natfonodel typethat represents the interface
of a process model. Then model types can be used to spedaifafprocess models as formal parameters
of process models: a process model with the correspondinigiygpe as interface must then be provided
as effective parameter.

Model types

A model type is an interface of process model.

The following rules for ©DEFINITION-OF-TYPE extend those given in pa@, sectionv-7, p. 86
et seq.(these rules do not concern formal parameters, which aitded below).

Pragmas may be associated with the objects of a model type isetme way they can be associated
with the objects of a model (cf. sectiofi—7, p. 198 et seq.. When there is no designated object for a
pragma speci ed in a model type, it is by default associatét e considered model type.

The rule for aDEFINITION-OF-INTERFACE extends those given in sectioi-5, p. 193

process T = |
(the correspondin@ECLARATION-OF-TYPE is: type process T = 1;),
oraction T = I, etc.

1. Context-free syntax

DEFINITION-OF-TYPE ::=

process Name-model-typE DEFINITION-OF-INTERFACE [DIRECTIVES]

j | action Name-model-typE DEFINITION-OF-INTERFACE [DIRECTIVES]

i procedure‘ Namemodel—typ@ DEFINITION-OF-INTERFACE [DIRECTIVES]
i [node Name-model-typE DEFINITION-OF-INTERFACE [DIRECTIVES |
j

j

j | function Name-model-typE DEFINITION-OF-INTERFACE [DIRECTIVES]
j | automaton NameJmodel-typE DEFINITION-OF-INTERFACE [DIRECTIVES]

XI-8. MODELS AS TYPES AND PARAMETERS 205

DEFINITION-OF-INTERFACE ::=

Name-mnodel-type

2. Types

(@) The declarationype process T = |; de nes the model type with namg as being
equal to the interface gdfrocesanodell .
Let us denote this equality:

(T) = interfacgyocess (1)

(b) When a named interface (model type) is used for a procesehadeclaration, both classes
of process models (function, node, action or process) nmaisbherent.

3. Semantics

The same scoping rules as for other types apply to model types
4. Properties

(a) With the declarations
type process A = 1;
andtype process B =1;
then (A)= (B)=interfacgocess (I).
Some implementations may not ensure this property.
On the opposite, the declarations
type process A =1;
andtype function B = I, (forinstance)
de ne distinct model types.

5. Examples
(a) type process T = (? integer a; ! integer b;); declares the pro-
cess model typé.

(b) type process TT = T; declares the process model typ€ which is equal tr.

(c) process PP =
T

()

declares the process mod®P with its interface speci ed byl

Models as parameters

The following rules for #ORMAL-PARAMETER extend those given in sectiofl-5, p. 193
The rule forS-EXPR-PARAMETER extends those given in paf; sectionVIl-1.2, paragrapt2-a,
p. 100.

1. Context-free syntax

FORMAL-PARAMETER ::=
FORMAL-MODEL

206

MODELS OF PROCESSES

FORMAL-MODEL ::=

proces% Name-mnodel-typeName+nodel

j | action | Name+nodel-typeName+nodel

j procedure‘ Name-model-typeName-model

j | node

Name-mnodel-typeName+nodel

j | function | Name-model-typeName-model
j | automaton| Name-model-typeName-model

S-EXPR-PARAMETER ::=

Name-model

The formal parameters of the interface of a mdélalan contain model parameters, that appear as
a formal name of model, say, typed with a model type, say, which is visible in the current
syntactic context: typicallyprocess T Q.

2. Semantics
To complete the d

escription that was given in sectidn5, p. 193 et seq. the declaration of a

model sets up a context in which the model parameters de medbmodels, that is to say, models

for which only the i
processes).
The same scoping

nterface (described by a model type) isn (analogous to model of external

rules as for other parameters apply to rpadaheters.

In the body of the process mode| the formal modeQ is invoked using the usual syntax for the
invocation of models.

The invocation of a model sets up an expansion context intwaiteffective model, designated
by its name (which must be the name of a process model visiliteei context of this invocation),
is associated with each model (positional associatiom]ikesother parameters).

3. Examples

(a) process P =

{ process
(? ..
(... x:=

TQ;}
o)
QW) - I\

declares the process modelwich has a model paramet€ the interface of which is de-
scribed by the model typ€ (in that case, it has, for instance one input and one output).
The modeP must be called with a visible process model as effectiverpater; the interface
of this process model must be equallio

For example.

.. P{PP}(...)...

Chapter XII

Modules

Xll-1 Declaration and use of modules

A module is a named set of declarations of constants, typedsnmadels.

The syntax oDECLARATION-OF-CONSTANTS , DECLARATION-OF-TYPES , PROCESS
ACTION , NODE andFUNCTION given below extends the syntax of these declarations sudé asd
in part C, sectionV-8, p. 88, part C, sectionV-7, p. 86 et seq. and partE, sectionXl-1, p. 183 et
seq. The presence of thprivate attribute is reserved to declarations which are in a moduilee
syntax of EXTERNAL-NOTATION may be used as well for RESCRIPTION-OF-CONSTANT, a
DESCRIPTION-OF-TYPE or aDESCRIPTION-OF-MODEL , either they appear in a model or in a
module. Itis provided in this section.

The importation of objects of a module in another module @rimodel is done viaase importation
command that may be found in a listDECLARATION s. Then, the syntax @ECLARATION given
below extends that de ned in sectiofi-2, p. 191 et seq.

1. Context-free syntax

MODULE ::=

Namemodulﬁ
[DIRECTIVES] { DECLARATION } * E

DECLARATION-OF-CONSTANTS ::=
‘ private H constant‘ SIGNAL-TYPE
DEFINITION-OF-CONSTANT { I:lDEFINITION-OF-CONSTANT} m

DECLARATION-OF-TYPES ::=

DEFINITION-OF-TYPE { I:lDEFINITION-OF-TYPE} E

208 MODULES

PROCESS::=
‘ private H proces# Name-modeB
DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] II|

ACTION ::=
‘ private H action ‘ Name-modeB
DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] II|

NODE ::=

Name-modeB

DEFINITION-OF-INTERFACE [DIRECTIVES][BODY] E

FUNCTION ::=
‘ private H function ‘ Name-modellzl
DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] II|

EXTERNAL-NOTATION ::=

[String-cst]

DECLARATION ::=
IMPORT-OF-MODULES

IMPORT-OF-MODULES ::=
IMPORTED-OBJECTS { DIMPORTED-OBJECTS} E

IMPORTED-OBJECTS ::=

Name-module

Pragmas may be associated with the objects of a module imthe way they can be associated with
the objects of a model (cf. sectioti—7, p. 198et seq). When there is no designated object for a pragma
speci ed in a module, it is by default associated with therent module.

The set of declarations of a module constitutes a same Iéwdatarations: the level of a module.
The level of a module is greater than the level of any moddided in this module. With the usual rule,
there cannot be two objects with the same name declared irdaleno

The visibility of the objects declared in a module may berret&d to this module using the attribute
private : when a declaration of constants, types or model is precégetthe keywordprivate
(private constant ... , private type ... , private process ... , etc.), then the
visibility of the corresponding objects is con ned to the dute that contains thairivate declaration,
even if this module is referenced byuae command.

In a moduleM , but also in a model, the description of a constant, a typerapdel can be given
by an expression of theiSNAL language, or it can be described as external by usingtternal

XIlI-1. DECLARATION AND USE OF MODULES 209

attribute, or it can be speci ed as virtual by the absenceesfcdption.

The objects declared in a module can be totally or partiatlyarted from a model or another module
thanks to theuse command. Such a module provides a context of de nition fanemf the objects
described as virtual in the model or the module containiegude command (and visible at this level).
These virtual objects anede ned (or overridder) in this way if they are imported (as corresponding
objects with the same name) fronrusedmodule, or transitively, from a module imported in an impalrt
module. The overridden constants must have a smaller typbésame one) as that appearing in their
declaration as virtual (or an overriding of this type if idwvirtual type). In the same way, the overridden
models must have compatible interfaces.

More generally, any object described as virtual in some zoindeclarationsL may inherit a
(re)de nition from any context, visible i, that provides such a de nition.

Though it is not mandatory, it may be a good policy to syst&rally declare as virtual in a module
M the objects referenced i , but imported by aise command from another module. However, in
this case, they should be used only as virtual objects: famgte, if some signal is declared with a
virtual type, only polymorphic operators could be appliedtt

A model or a module are eompilation unitwhen all the objects they use (except prede ned or
intrinsic ones) have a declaration (which may be that of mairobject) in this entity, taking into account
theuse commands contained in it. In any case, a module necessanbtitutes a compilation unit.

Note that for code generation purpose, it may be necessarglttihe virtual objects of a compilation
unit have been overridden.

The objects whose de nitions or rede nitions are importedai model or modul® by ause com-
mand situated in a zone of local declarationdPoéire made visible at the level of the expression con-
taining these local declarations and at all lower leveldh(wthe usual scoping rules, everywhere another
object with the same name is not declared at such a level)e Mi@cisely, aise command inside the
local declarations of an expression establishes a new ¢tdéddclaration which is just greater than that
of the expression. For example, an expression
E where L; use M; end
may be considered, from the point of view of the scoping rudssequivalent to the following one:

(E where L; end) where Decl (M) end
whereDecl(M) represents the declarationsMf. This equivalence holds wherever thee command
is located in the local declarations.

A similar rule also applies for ase command located in the declarations of a module.

The importable objects of a module are the objects of thisuleothat are not declared gsivate.
The objects imported by ase command are all the importable objects of the module.

When severalise commands appear at a same level of declaration, their simtader determines
a corresponding nesting of the importations, thus avoidingfiple de nitions of a same object at a given
level. For example, to:

E where L; use Mjq; ...; use Mp; end

corresponds the following nesting:

(((E where L; end) where Decl (M) end) ...) where Decl (M1) end
(the declarations dfl; are visible inM ,, but the converse is not true).

In this way, if several objects with the same name are impairiea given context from different
modules, the single one which is effectively visible is thne drom the last module containing it in the
ordered list of thaise commands. Note that the rule applies differently for virigjects since virtual
de nitions are overridden by corresponding non virtual ®ne

210 MODULES

The nesting of declarations also allows to override, in sarag, declarations of imported modules
(libraries) by local declarations, since the local onesshaniority.

When several modules are speci ed in a samse command, the corresponding declarations are
imported at the same level. For example,

E where L; use My, .., Mp;end
would correspond to:
(E where L; end) where Decl (M) ... Decl (M) end

In this case, there is a potential risk of con icts of the @eations imported from different modules.

In a given compilation unit, when an object is described asiai, then:
either it is de ned in an imported module,
or itis de ned in the context in which this compilation un# used.

In a given compilation unit, when an object is described dsreal (using theexternal nota-
tion), then it means that it is externally de ned, in anotk@rguage for instance, in the implementation
environment of the compilation unit.

The description of an object as external may be followed btriags such aexternal * X",
which is an attribute allowing to describe speci ¢ charaistics of the implementation of this object:
implementation language, for instance (this is indeed &t stutation for a speci ¢ pragma).

The nameM used in a commanduse M ;" is the name of a module visible in the design
environment. The way this module is made available is natadized.

As an example, in the INRIA ®LYCHRONY environment, there is an environment variable,
SIGNAL_LIBRARY_PATH,
which de nes the paths at which library les may be found iretblesign environment. Such a le has
the name “M”, with the suf xe “.LIB” or “.SIG” (i.e., “M.LIB” or “M.SIG"), and contains the de nition
of a module namei , in SIGNAL.

Examples

module Stack =

use my_elem;

type elem;

type stack = external,

process initst = (! stack p;);

process push = (? stack p; elem x; ! event except;)
spec (| x > except | x --> except |);

process pop = (? stack p; ! elem x; ! event except;)
spec (| x " except |);

end;

Chapter XII|

Intrinsic processes

Intrinsic process models constitute libraries of procesbat may be used inlSNAL programs. These
models have not to be declared. The names of the intrinsicepsomodels are not reserved words of
the SGNAL language. In addition to the following general intrinsiopesses (described in the present
chapter), speci c intrinsic processes (described in seckl-1.6, p. 187 et seq) may occur only in
automata

not yet
XIllI-1 Minimal clock imple-

mented
The intrinsic procesmin_clock is a process with no output which is used to x the clock of ansig P(;TY_
in the current compilation unit. When the considered cloak kome freedom, which is expressed|Qy,,rony

a recursive de nition of this clock, a solution of the equatiis chosen, which is the non null minimal
clock.

min_clock(X)
1. Types
(a) X is a signal of any type.

2. Semantics
A call to the intrinsic process model
process min_clock = (? x; !);
expresses a directive for the clock calculus.
Usingmin_clock(X)), the clock of the signaK is replaced by the non null minimal solution
of the system of equations that de nes it.

In this way, if! (X)=Q ! (X)+ R, the solution! (X) = R is chosen.

XIll-2 Af ne transformations

Consider(n; ;d) suchthan;d 2 N , the set of strictly positive integers, and Z, the set of integers.
Given some procesB, an (n; ;d)-af ne transformation from a cloclc; to a clockc, may be
obtained through the following steps:

212 INTRINSIC PROCESSES

1. Construct a new cloc&’ as the union of the set of instants @fwith the set of instants obtained
by introducingn 1 ctive instants between any two successive instantg;ofand ctive
instants before the rstinstant @f when is negative).

2. De ne the clocke, as the set of instanfsdt + jt 2 ¢y, with ®= ftjt 2 Ng: in other words,
counting evenyd instant, starting with the instant of ¢ (or with the rst instant ofc®when is
negative).

Clocksc; andc; are then said to be in gm; ;d)-af ne relation: clR(Pn_ 402
It can be expressed as follows: cloas¢sandc, are inan(n; ;d)-af ne relation if there exists a clock
csuch that; andc, can be respectively expressed using the af ne functiost + 1) and : (dt+ »),

with » 1 = , with respect to the time indices 6f ¢® = ftjt 2 Ng, c; = fnt + 4jt 2 c%,
Ccp = fdt+ ot 2 cog.
A particular case of af ne relation in’l_ yr With 0. In this case, the reIatioqu’n_)G in

a process® can be denoted; = [c1](.q) to express that; is a subsampling of positive phaseand
strictly positive periodd onc;.

The clock calculus may implement synchronisability rulesdd on properties of af ne relations,
against which synchronization constraints can be assessed

The following affine_sample , affine_clock_relation andaffine_unsample pro-
cesses are de ned as intrinsic process models.

Af ne sample process
The processffine_sample is de ned as follows:

process affine_sample =

{ integer phi, d; }

(?x
Ly,

)

(Ivn=x

| v := (d-1) when (zv=0) default (zv-1)
| zv := v $ init phi

| v := x when (zv=0)

integer v, zv;
end

The signaly is de ned as an af ne subsampling of phaski and periodd on the signak.

The phasephi is a positive integer'((phi) 0) and the periodl is a strictly positive integer
((d .

The following af ne relation holds between the clocksxoandy:

PO =0 O (oni) (d)y

Af ne clock relation process

XIlI-2. AFFINE TRANSFORMATIONS 213

The processffine_clock_relation is de ned as follows:

process affine_clock_relation =
{ integer n, phi, d; }
(?xY)
(I clk_x := affine_sample {max(0,-phi), n} (clk_i)
| clk_y := affine_sample {max(0,phi), d} (clk_i)

| clk_ x "= x
| clk_y "=y
1)

where

event clk_x, clk_ y, clk_i;
function max =
(? long x1, x2; ! long vy;)
(I'y == if (x1 >= x2) then x1 else x2 |);
end

There is an(n; phi ; d)-af ne relation between thelocksof x andy: ! (X)R(Pn-phi -d)! (y). The
process does not constrain the valueg ahdy.

The values of andd are strictly positive integers (n) 1," (d) 1) and the value ophi is an
integer.

The clockclk _i is a clock de ned by the process, such that the following ef relations hold
betweerclk i and the clocks ok andy:

b (x)=1! (clk _i)](max(O; " (phi)" (n)
PO) =1 ek o (ohi)y (d))

Af ne unsample process

The processffine_unsample is de ned as follows:

process affine_unsample =

{ integer n, phi; }
(? x1, x2;

Ly,

)

(I affine_clock_relation {n, phi, 1} (x1, y)
| vy = (x1 when 7y) default x2

| X2 "=y

1)

The signaly is de ned as an oversampling from the sigidl. The signalk2 provides thevaluesof
y whenxl is not present; note that thoug® is an input signal oaffine_unsample , its clock has
not to be de ned as input of this process: it is internally ded as equal to the clock of the output.

The value ofn is a strictly positive integer ((n) 1) and the value ophi is an integer.

The clockclk _i is a clock de ned by the process, such that the following af relations hold
betweerclk _i and the clocks okl andy:

214 INTRINSIC PROCESSES

! (Xl) = [I (Clk _i)](max(O; 1 (phl));u (n))
Po)=t! ek)](maX(O;I (phi)
The clocks ofx2 andy are equal:

Fy)="! (x2)

XIl-3 “Left true” process

The followingleft_tt process is de ned as intrinsic process model:
process left tt = (? boolean bl, b2; ! boolean c;)

(j ¢ = bl default false when bb2)

It may be used to de ne some clock (represented bytthe values of a Booleaml) at an other
clock (the upper bound of the clockslof andb2): with respect to this upper bound, ttvee values of
b1 are retained, thtalse values are retained, and the absence is represenfali@salues.

XIll-4 Mathematical functions

The following mathematical functions are de ned as intitnsrocess models. They correspond to func-
tions of the “math.h” library of the language C. A full desatron of them may be found in the documen-
tation of this library.

arc cosine function:
function acos = (? dreal x; ! dreal y;);

arc sine function:
function asin = (? dreal x; | dreal y;);

arc tangent function:
function atan = (? dreal x; ! dreal y;);

arc tangent function of two variables:
function atan2 = (? dreal x1; dreal x2 ! dreal y;);

cosine function:
function cos = (? dreal x; ! dreal y;);

sine function:
function sin = (? dreal x; ! dreal y;),

tangent function:
function tan = (? dreal x; ! dreal y;);

hyperbolic cosine function:
function cosh = (? dreal x; ! dreal y;);

hyperbolic sine function:
function sinh = (? dreal x; | dreal y;);

hyperbolic tangent function:
function tanh = (? dreal x; ! dreal y;);

XIlI-5. COMPLEX FUNCTIONS 215

exponential function:
function exp = (? dreal x; ! dreal y;);

multiply oating-point number by integral power of 2:
function Idexp = (? dreal x; integer i ! dreal y;);

logarithmic function:
function log = (? dreal x; ! dreal y;);

base-10 logarithmic function:
function logl0 = (? dreal x; ! dreal y;),

power function:
function pow = (? dreal x1; dreal x2; ! dreal y;);

square root function:
function sqrt = (? dreal x; ! dreal y;);

smallest integral value not less than x:
function ceil = (? dreal x; ! dreal y;);

absolute value of an integer:
function abs = (? integer x; ! integer vy;);

absolute value of oating-point number:
function fabs = (? dreal x; ! dreal y;);

largest integral value not greater than x:
function floor = (? dreal x; ! dreal y;);

oating-point remainder function:
function fmod = (? dreal x1; dreal x2; ! dreal y;),

convert oating-point number to fractional and integraheponents:
function frexp = (? dreal x; ! dreal y1; integer y2;);

extract signed integral and fractional values from oatpgnt number:
function modf = (? dreal x; ! dreal yl; dreal y2;);

XIll-5 Complex functions
The following complex functions are de ned as intrinsic pess models.

conjugate of a complex:

function conj = (? complex x; ! complex y;),
and
function conjd = (? dcomplex x; ! dcomplex y;);

module of a complex:

function modu = (? complex x; ! real y;);
and

function modud = (? dcomplex x; ! dreal y;);

216 INTRINSIC PROCESSES

argument of a complex:

function arg = (? complex x; ! real y;);
and
function argd = (? dcomplex x; ! dreal y;);

real part of a complex:

function rpart = (? complex x; ! real y;);
and
function rpartd = (? dcomplex x; ! dreal y;);

imaginary part of a complex:

function ipart = (? complex x; ! real y;),
and
function ipartd = (? dcomplex x; ! dreal y;);

XIll-6 Input-output functions

The following input-output functions are de ned as intimprocess models of the INRIAGLYCHRONY
environment. They allow to read and write signals of bagiesyon standard input and output.

Theread andwrite processes below are described with no explicit type for tipeiti or output
signalx: it means that they are polymorphic processes for which fleeteve type of the considered
argument is provided by the type of the corresponding signtile call of the process.

process read = (? string message; ! x)
spec (| message "= x | message --> X |[);

A message is displayed and a value is read for
A standard read function is used in the generated code fofollmving possible types ok:
boolean short, integer, long, real, dreal, complex, dcomplex, character, string.

process write = (? string message; x; !)
spec (| message "= x |);
A message is displayed and the value &fis written.
A standard write function is used in the generated code ferféliowing possible types of:
boolean, short, integer, long, real, dreal, complex, dcomplex, character, string.
process writeString = (? string message; !);
A message is displayed on the standard output.

Part F

ANNEX

Chapter XIV

Grammar of the SIGNAL language

XIV=1 Lexical units

XIV=1.1 Characters

Character ::= character j CharacterCode

Sets of characters

character::= name-char j mark j delimitor j separator j other-character
name-char::= letter-char j numeral-char j I:l
letter-char ::=

upper-case-letter-char j lower-case-letter-charj other-letter-char

upper-case-letter-char::=

=]

j j

il

o
o
ul
&l
2

o|z

A

i3] [xgi[L]im]i [NJi[o]i[P]i[Q]i [R]

pLs]iTifulilv]iwli [x]i[y]i[z]
lower-case

-letter-char::=
j .
j
j

=]
BEE
=]
BEE
[>]=]
BBE
<J=]e]
E

i []
ifalifr]
zZ

220 GRAMMAR OF THE SIGNAL LANGUAGE

other-letter-char ::=

—
—

j

>|
B
—| >
pral

IHHHEHH
@ EEERRRE

—

c] o]l
m]

EEEE
BRI

—
—
—
—
—

c|ofm]>]

[—
[—
—

2| o] =][o

—
—

P
P

.AT
i
ifo]
3 |
¢ |
o |

ifalilf]iloli
ifalifalifu]ily
numeral-char ::

Loifali[2li[3]i[4]i[5];

[—
—

HH mo
II ‘ C) H _:‘n‘ -<‘ H O\ H m)
H

E

9]

]

BE
B

o]
]
]
=T
BE

defimitor == [(]i [[i[€i[3]i[L]i[1]
KRN EnE

separator ::=

j long-separator

long-separator::= | nx9

j | XA

j | nxC

j | nxD

Encodings of characters

CharacterCode::= OctalCode j HexadecimalCode
j escape-code

OctalCode::= octal-char [octal-char [octal-char]]

XIV=1. LEXICAL UNITS

221

octal-char ::= Ej j j j j j @j
HexadecimalCode:= hexadecimal-char [hexadecimal-char]

hexadecimal—char::- numeral-char
Ali[Bli[cli[p]; IJ l
j i[d]i

—

i

Ak
BE
E

escape-code= i

ii{nv]

S O
HH
= =h
....3
= >
EH
.\) -~
IH
—

j In%

XIV-=1.2 Vocabulary

pre x-mark ::=

Names

Name::= begin-name-char [{name-char}]

begin-name-char::= { name-charn numeral-char }

Boolean constant values

Boolean-cst:= i

Integer constant values

Integer-cst::= {numeral-char }*

222 GRAMMAR OF THE SIGNAL LANGUAGE

Real constant values

Real-cst::= Simple-precision-real-cst
j Double-precision-real-cst

Simple-precision-real-cst::=

Integer-cst Simple-precision-exponent
j Integer-cstlzl Integer-cst [Simple-precision-exponent |

Double-precision-real-cst::=

Integer-cst Double-precision-exponent
i Integer—cstD Integer-cst Double-precision-exponent

Simple-precision-exponent:= E| Relative-cst | Relative-cst
Double-precision-exponent.= El Relative-cst | El Relative-cst

Relative-cst::= Integer-cst

] Integer-cst
j |:| Integer-cst

Character constant values
Character-cst::= El Character-cstCharacterEl

Character-cstCharacter::= { Character n character-spec-char }

character-spec-char.:=
j long-separator

String constant values
String-cst::= Iil[{String-cstCharacter}+]E|
String-cstCharacter ::= { Character n string-spec-char }

string-spec-char::= D
j long-separator

XIV-2. DOMAINS OF VALUES OF THE SIGNALS

223

Comments

Comment:.= [{CommentCharacter}+]

CommentCharacter::= { Character ncomment-spec-char }

comment-spec-char:= |%

XIV=2 Domains of values of the signals

SIGNAL-TYPE ::= Scalar-type
j External-type
j ENUMERATED-TYPE
j ARRAY-TYPE
j TUPLE-TYPE

XIV=2.1 Scalar types

Scalar-type::= Synchronization-type
i Numeric-type
j Alphabetic-type

Numeric-type ::= Integer-type
| Real-type
j Complex-type
Alphabetic-type ::= |char

j | string

224 GRAMMAR OF THE SIGNAL LANGUAGE

Synchronization types

Synchronization-type::= |event

[event]
j | boolean

Integer types

Integer-type ::= |short

j |integer

HE

j |long

Real types

Real-type::= |real
j |dreal

Complex types

Complex-type::=

j | dcomplex

XIV=2.2 External types

External-type ::= Name-+ype

XIV-2. DOMAINS OF VALUES OF THE SIGNALS 225

XIV=2.3 Enumerated types

ENUMERATED-TYPE ::=

Name-enum-valug I:l Name-enum-valug

ENUM-CST ::=

Name-enum-value

j Name-type Name-enum-value

XIV=2.4 Array types

ARRAY-TYPE ::=

m S-EXPR {D S-EXPR} SIGNAL-TYPE

XIV=2.5 Tuple types

TUPLE-TYPE ::=

struct ENAMED-FIELDS

i [bundle NAMED-FIELDS
[SPECIFICATION-OF-PROPERTIES |

NAMED-FIELDS ::=
{ S-DECLARATION } *

226 GRAMMAR OF THE SIGNAL LANGUAGE

XIV=2.6 Denotation of types

SIGNAL-TYPE ::=
Name-type

DECLARATION-OF-TYPES ::=

DEFINITION-OF-TYPE { I:lDEFINITION-OF-TYPE} E

DEFINITION-OF-TYPE ::=

Name-type
j Name-typeEl DESCRIPTION-OF-TYPE

DESCRIPTION-OF-TYPE ::=

SIGNAL-TYPE
j EXTERNAL-NOTATION [TYPE-INITIAL-VALUE]

XIV=2.7 Declarations of constant identi ers

DECLARATION-OF-CONSTANTS ::=

SIGNAL-TYPE

DEFINITION-OF-CONSTANT { DDEFINITION-OF-CONSTANT} E

DEFINITION-OF-CONSTANT ::=

Name-constant
j NameconstanEl DESCRIPTION-OF-CONSTANT

DESCRIPTION-OF-CONSTANT ::=

S-EXPR
j EXTERNAL-NOTATION

XIV-=2.8 Declarations of sequence identi ers

XIV=3. EXPRESSIONS ON SIGNALS 227

S-DECLARATION ::=

SIGNAL-TYPE
DEFINITION-OF-SEQUENCE { DDEFINITION-OF-SEQUENCE} E

DEFINITION-OF-SEQUENCE ::=

Name-signal
j Name-=signa S-EXPR

XIV=2.9 Declarations of shared variables

DECLARATION-OF-SHARED-VARIABLES ::=

SIGNAL-TYPE

DEFINITION-OF-SEQUENCE { DDEFINITION-OF-SEQUENCE} E

XIV=2.10 Declarations of state variables

DECLARATION-OF-STATE-VARIABLES ::=

SIGNAL-TYPE

DEFINITION-OF-SEQUENCE { DDEFINITION-OF-SEQUENCE} E

XIV=3 Expressions on signals

XIV=3.1 Systems of equations on signals

Elementary equations

ELEMENTARY-PROCESS ::=
DEFINITION-OF-SIGNALS

228 GRAMMAR OF THE SIGNAL LANGUAGE

DEFINITION-OF-SIGNALS ::=
Name-signaE S-EXPR

DEFINITION-OF-SIGNALS =

Name-signal{ I:l Name-signal} El S-EXPR

DEFINITION-OF-SIGNALS ::=
Name—signa S-EXPR

j Name-signa defaultvalue| S-EXPR

DEFINITION-OF-SIGNALS ::=

Name-signal{ D Name-signal} S-EXPR
j Name-signal{ I:l Name-signal} S-EXPR

Invocation of a model

ELEMENTARY-PROCESS ::=
INSTANCE-OF-PROCESS

INSTANCE-OF-PROCESS::=
EXPANSION

i Name-mode

EXPANSION ::=

Name-nodel

[S-EXPR-PARAMETER { DS-EXPR-PARAMETER}]

S-EXPR-PARAMETER ::=

S-EXPR
j SIGNAL-TYPE

XIV=3. EXPRESSIONS ON SIGNALS 229

INSTANCE-OF-PROCESS::=
PRODUCTION

PRODUCTION ::=

MODEL-REFERENCE | (| S-EXPR{[, [|S-EXPR}

MODEL-REFERENCE ::=

EXPANSION
j Name-model

S-EXPR::=
INSTANCE-OF-PROCESS

S-EXPR::=
CONVERSION
CONVERSION ::=

Type-conversio S-EXPR

Type-conversion::=

Scalar-type
j Name-ype

Nesting of expressions on signals

S-EXPR::=

S-EXPR

XIV=3.2 Elementary expressions

230

GRAMMAR OF THE SIGNAL LANGUAGE

S-EXPR-ELEMENTARY ::=

CONSTANT
j Name-signal
j Label

j Name-state-variabl

Constant expressions

CONSTANT =

Boolean-cst
Integer-cst
Real-cst
Character-cst
String-cst
ENUM-CST

XIV=3.3 Dynamic expressions

S-EXPR-DYNAMIC ::=

SIMPLE-DELAY
i WINDOW
i GENERALIZED-DELAY

Simple delay
SIMPLE-DELAY ::=
S-EXPR [S-EXPR]
Sliding window

WINDOW ::=

S-EXPR S-EXPR [S-EXPR]

XIV=3. EXPRESSIONS ON SIGNALS 231

Generalized delay

GENERALIZED-DELAY ::=

S-EXPR S-EXPR [S-EXPR]

XIV=3.4 Polychronous expressions

S-EXPR-TEMPORAL::=

MERGING
j EXTRACTION
i MEMORIZATION
i VARIABLE
j COUNTER
Merging
MERGING ::=
S-EXPR S-EXPR
Extraction
EXTRACTION ::=

S-EXPR S-EXPR

Memorization

MEMORIZATION ::=

S-EXPR S-EXPR [S-EXPR]

232 GRAMMAR OF THE SIGNAL LANGUAGE

Variable clock signal

VARIABLE ::=

S-EXPR [S-EXPR]

Counters

COUNTER ::=
S-EXPR| after | S-EXPR
i S-EXPR[from | S-EXPR
j S-EXPR|count|S-EXPR

XIV=3.5 Constraints and expressions on clocks

ELEMENTARY-PROCESS ::=
CONSTRAINT

Expressions on clock signals

S-EXPR-CLOCK ::=
SIGNAL-CLOCK
SIGNAL-CLOCK ::=

@ S-EXPR

S-EXPR-CLOCK ::=
CLOCK-EXTRACTION

XIV=3. EXPRESSIONS ON SIGNALS 233

CLOCK-EXTRACTION ::=
@ S-EXPR

j D S-EXPRIIl

j E S-EXPRIIl

S-EXPR-CLOCK ::=

Operators of clock lattice

S-EXPR-CLOCK ::=

S-EXPR S-EXPR

i S-EXPREl S-EXPR
i S-EXPREl S-EXPR

Relations on clocks

CONSTRAINT ::=

S-EXPR { S-EXPR}
i S-EXPR { S-EXPR}
i S-EXPR { S-EXPR}

i S-EXPR { S-EXPR}

XIV=3.6 Constraints on signals

CONSTRAINT ::=

S-EXPR S-EXPR

234 GRAMMAR OF THE SIGNAL LANGUAGE

XIV=3.7 Boolean synchronous expressions

Expressions on Booleans

S-EXPR-BOOLEAN::

S-EXPR

S-EXPR-BOOLEAN ::
S-EXPR| or |S-EXPR

j S-EXPR|and|S-EXPR

j S-EXPR| xor | S-EXPR

Boolean relations

S-EXPR-BOOLEAN ::=
RELATION

RELATION ::=

S-EXPR[= |S-EXPR
j S-EEXPR[==|S-EXPR
i S-EEXPR[> |S-EXPR
i S-EXPR[>=|S-EXPR
i S-EEXPR[< |S-EXPR
| |
j
j

¥
m
X
3
Ry
N
1

S-EXPR
j S-EXPR|==|S-EXPR
j S-EXPR|<< = |S-EXPR

XIV=3.8 Synchronous expressions on numeric signals

Binary expressions on numeric signals

XIV-4. EXPRESSIONS ON PROCESSES 235

S-EXPR-ARITHMETIC ::=
S-EXPRE S-EXPR
j S-EXPR:|S—EXPR
j S-EXPR:|S-EXPR
i S-EXPRE'S-EXPR
j S-EXPR@S-EXPR
j S-EXPR:|S—EXPR
i DENOTATION-OF-COMPLEX

DENOTATION-OF-COMPLEX ::=

S-EXPR S-EXPR

Unary operators

S-EXPR-ARITHMETIC ::=

S-EXPR
j D S-EXPR

XIV=3.9 Synchronous condition

S-EXPR-CONDITION ::=

S-EXPR S-EXPR S-EXPR

XIV-4 Expressions on processes

236 GRAMMAR OF THE SIGNAL LANGUAGE

P-EXPR::=

ELEMENTARY-PROCESS
j HIDING

i LABELLED-PROCESS

i GUARDED-PROCESS

i GENERAL-PROCESS

GENERAL-PROCESS::=

COMPOSITION
j CONFINED-PROCESS
j CHOICE-PROCESS
j ASSERTION-PROCESS

XIV-4.1 Composition

COMPOSITION ::=

[P-EXPR{| j |P-EXPR}]

XIV-=4.2 Hiding

HIDING ::=
GEN ERAL—PROCESS Name-signal{ D Name-signal}
j HIDING Name-signal{lleame-signal}

XIV-=4.3 Con ning with local declarations

CONFINED-PROCESS::=
GENERAL-PROCESS DECLARATION-BLOCK

DECLARATION-BLOCK ::=

{ DECLARATION } *

XIV-4. EXPRESSIONS ON PROCESSES

237

XIV-4.4 Labelled processes

LABELLED-PROCESS ::=
Label E P-EXPR

Label ::=

Name

XIV-4.5 Guarded processes

GUARDED-PROCESS::=

S-EXPREl P-EXPR
j Label E P-EXPR

XIV-4.6 Choice processes

CHOICE-PROCESS ::=

S-EXPR { CASE }* [ELSE-CASE]

CASE ::=

ENUMERATION-OF-VALUES DGENERAL—PROCESS

ELSE-CASE ::=

GENERAL-PROCESS

238 GRAMMAR OF THE SIGNAL LANGUAGE

ENUMERATION-OF-VALUES ::=

S-EXPR {D S-EXPR}
[|[S-EXPR] D [S-EXPR]
I [S-EXPR] D [S-EXPR] E
I [S-EXPR] D [S-EXPR]
I [S-EXPR] D [S-EXPR] E

=

XIV-4.7 Assertion processes

ASSERTION-PROCESS::=

[CONSTRAINT{ CONSTRAINT} 1)) |

Assertion on Boolean signal

INSTANCE-OF-PROCESS::=

XIV=5 Tuples of signals

S-EXPR-TUPLE::=

TUPLE-ENUMERATION
j TUPLE-FIELD

XIV=5.1 Enumeration of tuple elements

TUPLE-ENUMERATION ::=

S-EXPR {D S-EXPR }

XIV-6. SPATIAL PROCESSING 239

XIV=5.2 Denotation of eld

TUPLE-FIELD ::=
S-EXPRD Name- eld

XIV=5.3 Equation of de nition of tuple component

DEFINITION-OF-SIGNALS ::=
COMPONENT E S-EXPR
j COMPONENT |[::=]S-EXPR

j COMPONENT S-EXPR
j COMPONENT { DCOMPONENT} ElS-EXPR
j COMPONENT { DCOMPONENT} S-EXPR

j COMPONENT { |:|COMPONENT}

S-EXPR
COMPONENT ::=

Name-signal
j Name-signaD COMPONENT

XIV-6 Spatial processing

240 GRAMMAR OF THE SIGNAL LANGUAGE

S-EXPR-ARRAY ::=

ARRAY-ENUMERATION
CONCATENATION
ITERATIVE-ENUMERATION
INDEX

ARRAY-ELEMENT
SUB-ARRAY
ARRAY-RESTRUCTURATION
MULTI-INDEX
SEQUENTIAL-DEFINITION
TRANSPOSITION
ARRAY-PRODUCT
REFERENCE-SEQUENCE

XIV-6.1 Enumeration

ARRAY-ENUMERATION ::=

m S-EXPR {D S-EXPR}

XIV—-6.2 Concatenation

CONCATENATION ::=

S-EXPR S-EXPR

XIV-6.3 Repetition

ITERATIVE-ENUMERATION ::=

S-EXPR S-EXPR

XIV-6. SPATIAL PROCESSING 241

XIV-6.4 De nition of index

INDEX ::=

S-EXPREl S-EXPR [S-EXPR]

XIV-6.5 Array element

ARRAY-ELEMENT ::=

S-EXPRIIl S-EXPR {D S-EXPR} m

j S-EXPRIIl S-EXPR{D S-EXPR} m ARRAY-RECOVERY

ARRAY-RECOVERY ::=

S-EXPR

XIV-6.6 Extraction of sub-array

SUB-ARRAY ::=

S-EXPRIIl S-EXPR {D S-EXPR} m

XIV-=6.7 Array restructuration

ARRAY-RESTRUCTURATION ::=
S-EXPREl S-EXPR

242 GRAMMAR OF THE SIGNAL LANGUAGE

XIV-6.8 Extended syntax of equations of de nition

DEFINITION-OF-SIGNALS ::=
DEFINED-ELEMENT ElS-EXPR
j DEFINED-ELEMENT S-EXPR

j DEFINED-ELEMENT defaultvalue| S-EXPR
j DEFINED-ELEMENT { DDEFINED-ELEMENT}

E| S-EXPR

j DEFINED-ELEMENT { DDEFINED-ELEMENT}
S-EXPR
j DEFINED-ELEMENT { DDEFINED-ELEMENT}

DEFINED-ELEMENT ::=
COMPONENT

j COMPONENT [[| S-EXPR{[, |S-EXPR}

XIV-6.9 Cartesian product

MULTI-INDEX ::=

S-EXPR {D S-EXPR }

XIV-6.10 Iterations of processes

GENERAL-PROCESS::=
ITERATION-OF-PROCESSES

ITERATION-OF-PROCESSES ::=

array | ARRAY-INDEX [of| P-EXPR [ITERATION-INIT]
j [iterate | ITERATION-INDEX | of |P-EXPR [ITERATION-INIT]

XIV-6. SPATIAL PROCESSING

243

ARRAY-INDEX ::=

j Name S-EXPR

ITERATION-INDEX ::=
DEFINED-ELEMENT

j DEFINED-ELEMENT { DDEFINED-ELEMENT}

j S.EXPR

ITERATION-INIT ==

P-EXPR

REFERENCE-SEQUENCE::=

S-EXPRIIlIIl

XIV-6.11 Sequential de nition

SEQUENTIAL-DEFINITION ::=
S-EXPR S-EXPR

XIV-=6.12 Sequential enumeration

ITERATIVE-ENUMERATION ::=

m ITERATION { D PARTIAL-DEFINITION }

PARTIAL-DEFINITION ::=

DEFINITION-OF-ELEMENT
j ITERATION

DEFINITION-OF-ELEMENT ::=

m S-EXPR {D S-EXPR} E S-EXPR

244 GRAMMAR OF THE SIGNAL LANGUAGE

ITERATION ::=

PARTIAL-ITERATION { I:lPARTIAL-ITERATION}
E| DEFINITION-OF-ELEMENT

j PARTIAL-ITERATION { I:lPARTIAL-ITERATION}
ElS-EXPR

PARTIAL-ITERATION =

[Name] [S-EXPR] [S-EXPR] [S-EXPR]

XIV-6.13 Operators on matrices

Transposition

TRANSPOSITION ::=

S-EXPR

Matrix products

ARRAY-PRODUCT ::=
S-EXPREl S-EXPR

XIV=7 Models of processes

XIV=7.1 Classes of process models

MODEL ::=

PROCESS
j ACTION

i NODE

i FUNCTION

XIV=7. MODELS OF PROCESSES 245

PROCESS::=

process Name-modeB

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E

ACTION ::=

Name-modeB

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E

PROCEDURE ::=

Name-modeB

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E

NODE ::=

Name-modeB

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E

FUNCTION ::=

Name-modeB

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E

AUTOMATON ::=

Name-modeB

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E
BODY ::=
DESCRIPTION-OF-MODEL

DESCRIPTION-OF-MODEL ::=

GENERAL-PROCESS
j EXTERNAL-NOTATION

XIV=7.2 Local declarations of a process model

246 GRAMMAR OF THE SIGNAL LANGUAGE

DECLARATION ::=

S-DECLARATION
DECLARATION-OF-SHARED-VARIABLES
DECLARATION-OF-STATE-VARIABLES
DECLARATION-OF-CONSTANTS
DECLARATION-OF-TYPES
DECLARATION-OF-LABELS
REFERENCES

MODEL

XIV=7.3 Declarations of labels

DECLARATION-OF-LABELS ::=

Namedabel{ |:| Namedabel} El

XIV-=7.4 References to signals with extended visibility

REFERENCES::=

Name-signal{ D Name-signal} II|

XIV=7.5 Interface of a model

DEFINITION-OF-INTERFACE ::=
INTERFACE

INTERFACE ::=
[PARAMETERS] INPUTS OUTPUTS EXTERNAL-GRAPH

PARAMETERS ::=

[{ FORMAL-PARAMETER } *]

XIV=7. MODELS OF PROCESSES

247

FORMAL-PARAMETER ::=

S-DECLARATION
j DECLARATION-OF-TYPES

INPUTS ::=
[{ S-DECLARATION } *]

OUTPUTS ::=
m[{ S-DECLARATION } *]

XIV=7.6 Graph of a model

EXTERNAL-GRAPH ::=
[PROCESS-ATTRIBUTE] [SPECIFICATION-OF-PROPERTIES]

PROCESS-ATTRIBUTE ::=

safe
j | deterministic
j | unsafe

SPECIFICATION-OF-PROPERTIES ::=

GENERAL-PROCESS

Dependences

ELEMENTARY-PROCESS ::=
DEPENDENCES

DEPENDENCES::=

SIGNALS { SIGNALS}
j SIGNALS SIGNALS S-EXPR

SIGNALS ::=

ELEMENTARY-SIGNAL
j ELEMENTARY-SIGNAL { DELEMENTARY—SIGNAL}

ELEMENTARY-SIGNAL =

DEFINED-ELEMENT
j Label

248 GRAMMAR OF THE SIGNAL LANGUAGE

XIV=7.7 Directives

DIRECTIVES ::=
[pragms](PRAGMA }* [end[ragmas
PRAGMA ::=

Name-pragma[PRAGMA-OBJECT { I:lPRAGMA-OBJECT}]
[Pragma-statement]

PRAGMA-OBJECT ::=

Label
j Name

Pragma-statement::=

String-cst

XIV=7.8 Models as types and parameters

DEFINITION-OF-TYPE ::=

m Namemode/-typE DEFINITION-OF-INTERFACE [DIRECTIVES]

j [action Name-model-typE DEFINITION-OF-INTERFACE [DIRECTIVES]

j procedure‘ Name-model-type#El DEFINITION-OF-INTERFACE [DIRECTIVES]
i [node Namemode/-typE DEFINITION-OF-INTERFACE [DIRECTIVES]
j

i

function Name-model-typE DEFINITION-OF-INTERFACE [DIRECTIVES]
automaton NameJmodel-typE DEFINITION-OF-INTERFACE [DIRECTIVES]

DEFINITION-OF-INTERFACE ::=

Name-mnodel-type

FORMAL-PARAMETER ::=
FORMAL-MODEL

XIV-8. MODULES 249

FORMAL-MODEL ::=
proces% Name-mnodel-typeName+nodel
j | action | Name+nodel-typeName+nodel

j procedure‘ Name-model-typeName-model

j | node| Name-model-typeName+nodel
j | function | Name-model-typeName-model

j | automaton| Name-model-typeName-model

S-EXPR-PARAMETER ::=

Name-model

XIV-8 Modules

XIV=8.1 Declaration and use of modules

MODULE ::=

Name-moduleizl
[DIRECTIVES] { DECLARATION } * E

DECLARATION-OF-CONSTANTS ::=
‘ private H constant‘ SIGNAL-TYPE
DEFINITION-OF-CONSTANT { DDEFINITION-OF-CONSTANT} E

DECLARATION-OF-TYPES ::=

DEFINITION-OF-TYPE { I:lDEFINITION-OF-TYPE} m

PROCESS::=
‘ private H process{ NameJmodeB
DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] [|

250 GRAMMAR OF THE SIGNAL LANGUAGE

ACTION ::=
‘ private H action ‘ Name-modeB
DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] II|

NODE ::=

Name-modeB

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E|

FUNCTION ::=
‘ private H function ‘ Name-modellzl
DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E

EXTERNAL-NOTATION ::=

[String-cst]

DECLARATION ::=
IMPORT-OF-MODULES

IMPORT-OF-MODULES ::=
IMPORTED-OBJECTS { DIMPORTED-OBJECTS} E

IMPORTED-OBJECTS ::=

Name-module

List of gures

B-lIl.1
B-IIl.2

B-IV.1
B-IV.2

C-vi1

f1" Twithf1(0)=0,f1(1)=3,f1(2)=4,f1(3)=5... 36
Two ows of the compositionoPlandP2 44
Formal meaning of the dependence statement. 62
Micro automaton ok :=: y$init v 67
Order and conversions on scalar and external types 82

List of tables

C-Vi1
C-VI.2
C-VI3
C-Vi4
C-VI5
C-VI.6

Syntactic forms of an invocationofmodel., 99
INSTANCE-OF-PROCESSE?® i 103
Expressionsonsignals. e 105
Expressionsonsignals. e 106
Types of the constanBs?’ 108

S-EXPR-DYNAMIC E2!

Index

Lexis

Alphabetic-type,71, 223
def,71, 223
begin-name-chag5s, 221
def,25, 221
Boolean-cst]107, 230
def,25, 221
Character27, 222, 223
def,21, 219
character21, 219
def,21, 219
Character-cst107, 230
def,27, 222
Character-cstCharactet?, 222
def,27, 222
character-spec-chazy, 222
def,27, 222
CharacterCode21, 219
def,24, 220
Comment
def,27, 223
comment-spec-cha??, 223
def,27, 223
CommentCharacte2?7, 223
def,27, 223
Complex-type,/1, 223
def,74, 224
delimitor, 21, 219
def,23, 220
Double-precision-exponenkg, 222
def,26, 222
Double-precision-real-cs6
def,26, 222
ENUM-CST,107
escape-code4, 220
def,24, 221
External-type,71, 223
def,75, 224
hexadecimal-chag4, 221
def,24, 221

255

HexadecimalCode24, 220
def,24, 221
Integer-cst26, 107, 222, 230
def,26, 221
Integer-type,71, 223
def, 72,224
Label,107, 138 140, 196, 199 230, 237, 247,
248
def,139, 237
letter-char,21, 219
def,21, 219
long-separator?3, 27, 220, 222
def,23, 220
lower-case-letter-cha®l, 219
def,22, 219
mark, 21, 219
def,23, 220
Name, 25, 75-77, 81, 86-89, 94, 95, 97, 98,
100, 101, 103 107, 136, 139, 154, 155,
169, 175, 185, 192 199, 203-208, 224
230, 236, 237, 239, 243-246, 248-250
def,25, 221
name-char21, 25, 219, 221
def,21, 219
numeral-char2l, 24-26, 219, 221
def,22, 220
Numeric-type,71, 223
def,71, 223
octal-char,24, 220
def,24, 221
OctalCode24, 220
def,24, 220
Operator-name203
def,203
Operator-symbol203
other-characte21, 219
other-letter-char21, 219
def,22, 220
Pragma-statement99, 248
def,199, 248

256 INDEX
pre x-mark (, 23,76, 79, 95, 98, 100, 101, 103 104, 148,
def, 25, 221 153 155, 167, 169, 193 220 225 228,
Real-cst,107, 230 229,238 239 242 243 246
def, 26, 222), 23, 76, 79, 95, 98, 100, 101, 103, 104, 148,
Real-type,71, 223 153 155, 167, 169, 193 220 225 228,
def,73, 224 229,238 239 242 243 246
Relative-cst26, 222 ., 23,26, 154, 155 220, 222 239
def, 26, 222 ., 161,241
Scalar-typey1, 103 223 229], 141, 238
def,71, 223 /,136, 236
separator21, 219 5, 23,141, 165, 175, 220, 237, 241, 243 244
def,23, 220 1, 138, 140 237
signalkw =, 97,98, 155, 167, 228, 239, 242
def,28 :=, 94, 95, 155, 167, 228 239, 242
Simple-precision-exponen2g, 222 =:, 125 233
def, 26, 222 ;, 23, 8791, 185 192 203 207, 208 220,
Simple-precision-real-cs6 226, 227, 245, 246, 249, 250
def, 26, 222 =, 87, 88, 185 203 204, 207, 208 226, 245,
String-cst,107, 199, 208 230, 248 250 248-250
def,27, 222 ?,23,107, 169, 193 220, 230, 243 247
String-cstCharacteR7, 222 [, 23, 78, 159, 162, 163 167, 169, 175, 220,
def,27, 222 225,240-243
string-spec-chaig7, 222 [., 141,238
def,27, 222 [/:, 121, 233
Synchronization-type/1, 223 [:, 121, 233
def, 72,224 #,23, 77,220,225
Type-conversion103, 229 $, 23,110 113 220, 230, 231
def,103 229 %, 23, 27, 220, 223
upper-case-letter-chazl, 219 n, 24, 25, 220, 221
def,21, 219 nx, 24, 221
{, 23,100, 141, 175, 193 196, 199 220, 228,
Symbol 238, 244, 246-248
, 23,130,220, 235 1, 23,100, 141, 193, 196, 199, 220, 228 238
, 130, 235 246-248
5, 176,244

+,23, 26, 130, 131, 220, 222, 235

, 23, 26, 73,130, 131, 220, 222, 235
>, 196, 247

=, 23, 130, 220, 235

==,128 234

<, 23,128 220, 234

<< =,128234

<=,128 234

=, 23,128 220, 234

==,128 234

> 23,128 220, 234

>=,128 234

], 23, 78, 121, 159 162 163 167, 169, 175,
220, 225, 233 240-243

nn, 162, 241

b, 122 233

b+, 122 233

b ,122 233

0, 122, 233

b<,123 233

b=,123 233

b>,123 233

b, 23, 120, 220, 232

b# , 123 233

» 23,76, 78,81, 87-91, 95, 98, 100, 101, 136,
141, 153 155 159, 162, 163 167-169

INDEX

257

175 192 196, 199, 207, 208, 220, 225-

229, 236, 238-244, 246-250

@, 23,131, 220, 235

jt+,160 240

D, 26, 222

d, 26, 222

" 23, 27,220,222

E, 26, 222

e, 26,222

1, 23,193 220, 247

>> 168 242

<<, 168 242

(j, 136 145 236, 238

J» 23,136, 145 220, 236, 238

j ,160 240

i), 136, 145 236, 238

', 23, 27,220,222

_,21,219

Syntax

ACTION, 185, 244
def,185 208 245, 250

ARRAY-ELEMENT, 157, 240
def,162 241

ARRAY-ENUMERATION, 157, 240
def,159 240

ARRAY-INDEX, 168 242
def,169 243

ARRAY-PRODUCT,157, 240
def,176, 244

ARRAY-RECOVERY,162 241
def,162 241

ARRAY-RESTRUCTURATION,157, 240
def,165 241

ARRAY-TYPE, 71, 223
def, 78, 225

ASSERTION-PROCESS3.35 236
def,145 238

AUTOMATON, 185
def,185 245

BODY, 185, 203 208, 245, 249, 250
def,185 245

CASE, 141, 237
def,141, 237

CHOICE-PROCESSL35 236
def,141, 237

CLOCK-EXTRACTION,121, 232
def,121, 233

COMPONENT,155, 167, 239, 242

def, 155 239
COMPOSITION,135, 236
def,136, 236
CONCATENATION, 157, 240
def,160, 240
CONFINED-PROCESSL35, 236
def,137, 236
CONSTANT,107, 230
def,107, 230
CONSTRAINT,120, 145 232, 238
def,123 125 233
CONVERSION,103 229
def,103 229
COUNTER,114 231
def,118 232
DECLARATION, 137, 207, 236, 249
def,191, 208 246, 250
DECLARATION-BLOCK, 137, 236
def,137, 236
DECLARATION-OF-CONSTANTS, 191,
246
def,88, 207, 226, 249
DECLARATION-OF-LABELS,191, 246
def,192 246
DECLARATION-OF-SHARED-
VARIABLES, 191, 246
def,90, 227
DECLARATION-OF-STATE-VARIABLES,
191, 246
def,91, 227
DECLARATION-OF-TYPES,191, 193 246,
247
def,87, 207, 226, 249
DEFINED-ELEMENT, 167, 169, 196, 242,
243, 247
def,167, 242
DEFINITION-OF-CONSTANTS88, 207, 226,
249
def,88, 226
DEFINITION-OF-ELEMENT,175, 244
def,175 243
DEFINITION-OF-INTERFACE, 185 203
204, 208, 245, 248-250
def,193 205, 246, 248
DEFINITION-OF-SEQUENCE89-91, 227
def,89, 227
DEFINITION-OF-SIGNALS,94, 227
def,94, 95, 97, 98, 155, 167, 228 239, 242

258

INDEX

DEFINITION-OF-TYPE,87, 207, 226, 249
def,87, 204, 226, 248
DENOTATION-OF-COMPLEX,130, 235
def,131, 235
DEPENDENCES
def,196, 247
DESCRIPTION-OF-CONSTANTSS, 226
def,88, 226
DESCRIPTION-OF-MODEL185, 245
def,185 245
DESCRIPTION-OF-TYPES7, 226
def,87, 226
DIRECTIVES, 185, 203, 204, 207, 208 245,
248-250
def,198 248
ELEMENTARY-PROCESS] 35, 236
def,94, 99, 120, 196, 227, 228, 232, 247
ELEMENTARY-SIGNAL, 196, 247
def,196, 247
ELSE-CASE 141, 237
def,141, 237
ENUM-CST,230
def,77, 225
ENUMERATED-TYPE,71, 223
def, 76, 225
ENUMERATION-OF-VALUES, 141, 237
def,141, 238
EXPANSION, 100, 101, 228 229
def,100, 228
EXTERNAL-GRAPH,193 246
def,195 247
EXTERNAL-NOTATION, 87, 88, 185 226,
245
def,208 250
EXTRACTION, 114 231
def,115 231
FORMAL-MODEL
def,206, 249
FORMAL-PARAMETER,193 246
def,193 205, 247, 248
FUNCTION, 185, 244
def, 185, 208 245, 250
GENERAL-PROCESS135-137, 141, 185
195 236, 237, 245, 247
def,135 168, 236, 242
GENERALIZED-DELAY, 109, 230
def,113 231
GUARDED-PROCESS] 35 236

def,140, 237
HIDING, 135, 136, 236
def,136, 236
IMPORT-OF-MODULES 208, 250
def,208 250
IMPORTED-OBJECTS208 250
def,208 250
INDEX, 157, 240
def,161, 241
INPUTS,193 246
def,193 247
INSTANCE-OF-PROCESS9, 102, 228, 229
def,100, 101, 148 228, 229, 238
INTERFACE, 193 246
def,193 246
ITERATION, 175, 243
def,175 244
ITERATION-INDEX, 168, 242
def,169, 243
ITERATION-INIT, 168, 242
def,169, 243
ITERATION-OF-PROCESSEJ,68, 242
def,168 242
ITERATIVE-ENUMERATION, 157, 240
def,160, 175 240, 243
LABELLED-PROCESS]135, 236
def,138 237
MEMORIZATION, 114, 231
def,116, 231
MERGING, 114 231
def,114, 231
MODEL, 191, 246
def,185 203 244
MODEL-REFERENCE01, 229
def,101, 229
MODULE
def,207, 249
MULTI-INDEX, 157, 240
def,168 242
NAMED-FIELDS, 79, 225
def, 79, 225
NODE, 185, 244
def,185 208, 245, 250
OPERATOR 203
def,203
OUTPUTS,193 246
def,193 247

INDEX

259

P-EXPR,136, 138 140, 168, 169 236, 237,

242, 243
def,135 236
PARAMETERS,193 246
def,193 246
PARTIAL-DEFINITION, 175 243
def,175 243
PARTIAL-ITERATION, 175, 244
def,175 244
PRAGMA, 198 248
def,199, 248
PRAGMA-OBJECT199 248
def,199, 248
PROCEDURE]185
def,185 245
PROCESS]85, 244
def,185, 208, 245, 249
PROCESS-ATTRIBUTEL95, 247
def,195 247
PRODUCTION,101, 229
def,101, 229
REFERENCE-SEQUENCHS57, 240
def,169, 243
REFERENCES]91, 246
def,192 246
RELATION, 127, 234
def,128 234

S-DECLARATION, 79, 191, 193 225, 246,

247
def,89, 227
S-EXPR
def,102-104, 229
S-EXPR-PARAMETER100, 228
def,100, 206, 228, 249
S-EXPRARITHMETIC
def,130, 131, 235
S-EXPRARRAY
def,157, 240
S-EXPRBOOLEAN
def,126, 127, 234
S-EXPRCLOCK
def,120-122, 232, 233
S-EXPRCONDITION
def,132 235
S-EXPRDYNAMIC
def,109, 230
S-EXPRELEMENTARY
def,107, 230

S-EXPRTEMPORAL
def,114, 231
S-EXPRTUPLE
def,153 238
S-EXPR,78, 88, 89, 94, 95, 97, 98, 100, 101,
103 104, 110, 111, 113118 120-123,
125, 126, 128 130-132 140, 141, 148
153-155, 159-163, 165, 167-169, 174
176, 196, 225-235, 237244, 247
SEQUENTIAL-DEFINITION, 157, 240
def,174, 243
SIGNAL-CLOCK, 120, 232
def,120, 232
SIGNAL-TYPE, 78, 87-91, 100, 207, 225-
228, 249
def,71, 86, 223 226
SIGNALS, 196, 247
def,196, 247
SIMPLE-DELAY, 109, 230
def,110, 230
SPECIFICATION-OF-PROPERTIES, 79,
195, 225, 247
def,195 247
SUB-ARRAY, 157, 240
def,163 241
TRANSPOSITION 157, 240
def,176, 244
TUPLE-ENUMERATION,153, 238
def,153 238
TUPLE-FIELD, 153, 238
def,154, 239
TUPLE-TYPE,71, 223
def,79, 225
TYPE-INITIAL-VALUE, 87, 226
def,87
VARIABLE, 114, 231
def,117, 232
WINDOW, 109, 230
def,111, 230

Terminal

action, 28, 185, 204, 206, 208, 245, 248-250
after,28, 118 232

and,28, 126, 234

array,28, 168 242

assert28, 145, 148 238

automaton185 204, 206, 245, 248 249
boolean28, 72, 224

260

INDEX

bundle,28, 79, 225

case28, 141, 237

cell, 28, 116, 231

char,28, 71, 223

@,28, 74, 224

constant28, 88, 207, 226, 249

count,28, 118 232

dcomplex,28, 74, 224

default,28, 114, 231

defaultvalue,28, 97, 98, 155 167, 228, 239,
242

deterministic,28, 195 247

dreal,28, 73, 224

else,28, 132 141, 235, 237

end, 28, 137, 141, 168, 198 207, 236, 237,
242 248 249

enum,28, 76, 225

event,28, 72, 224

external,28, 208, 250

false,25, 28, 221

from, 28, 118, 232

function, 28, 185, 204, 206, 208, 245, 248-250

if, 28, 132,235

in, 28, 141, 175, 237, 244

init, 28, 87, 89, 110, 111, 113 116, 117, 227,
230-232

integer,28, 72, 224

iterate,28, 168, 242

label, 28, 192 246

long, 28, 72, 224

module,28, 207, 249

modulo,28, 130, 235

next,28, 174, 243

node,28, 185 204, 206, 208 245, 248-250

not, 28, 126, 234

of, 28, 168 242

on, 28, 140, 237

operator28, 203

or, 28, 126, 234

pragmas28, 198 248

private,28, 207, 208, 249, 250

procedure185, 204, 206, 245, 248, 249

process28, 185, 204, 206, 208, 245, 248, 249

real,28, 73, 224

ref, 28, 192 246

safe,28, 195, 247

shared28, 90, 227

short,28, 72, 224

spec,28, 195, 247
statevar28, 91, 227
step,28, 161, 175, 241, 244
string, 28, 71, 223
struct,28, 79, 225

then,28, 132, 235

to, 28, 169, 175, 243 244
tr, 28, 176, 244

true, 25, 28, 221

type, 28, 87, 207, 226, 249
unsafe 28, 195, 247
use,28, 208, 250

var, 28, 117, 232

when,28, 115 121, 196, 231, 233, 247
where,28, 137, 236
window, 28, 111, 230

with, 28, 169, 243

Xor, 28, 126, 234

	A INTRODUCTION
	Introduction
	Main features of the language
	Signals
	Events
	Models
	Modules

	Model of sequences
	Static semantics
	Causality
	Explicit definitions

	Subject of the reference
	Form of the presentation

	Lexical units
	Characters
	Sets of characters
	Encodings of characters

	Vocabulary
	Names
	Boolean constant values
	Integer constant values
	Real constant values
	Character constant values
	String constant value
	Comments

	Reserved words

	B THE KERNEL LANGUAGE
	Semantic model of traces
	Syntax
	Configurations
	Traces
	Definition
	Partial observation of a trace
	Prefix order on traces
	Product of traces
	Reduced trace

	Flows
	Equivalence of traces
	Partial flow
	Flow-equivalence

	Processes
	Definition
	Partial observation of a process
	Composition of processes
	Order on processes

	Semantics of basic Signal terms
	Declarations
	Monochronous processes
	Static monochronous processes
	Dynamic monochronous processes: the delay

	Polychronous processes
	Sub-signals
	Merging of signals

	Composition of processes
	Restriction

	Composite signals
	Tuples
	Arrays

	Classes of processes
	Iterations of functions
	Endochronous processes
	Deterministic processes
	Reactive processes

	Composition properties
	Asynchronous composition of processes
	Flow-invariance
	Endo-isochrony

	Clock system and implementation relation
	Transformation of programs

	Calculus of synchronizations and dependences
	Clocks
	Clock homomorphism
	Monochronous definitions
	Polychronous definitions
	Hiding
	Composition

	Verification
	Clock calculus
	Monochronous definitions
	Polychronous definitions
	Hiding
	Composition
	Static and dynamic clock calculus

	Context clock
	Dependences
	Formal definition of dependences
	Implicit dependences
	Monochronous definitions
	Polychronous definitions

	Micro automata
	Definition of micro automata
	Construction of basic micro automata

	C THE SIGNALS
	Domains of values of the signals
	Scalar types
	Synchronization types
	Integer types
	Real types
	Complex types
	Character type
	String type

	External types
	Enumerated types
	Array types
	Tuple types
	Structure of the set of types
	Set of types
	Order on types
	Conversions
	Conversions between comparable types
	Conversions toward the domain ``Synchronization-type''
	Conversions toward the domain ``Integer-type''
	Conversions toward the domain ``Real-type''
	Conversions toward the domain ``Complex-type''
	Conversions toward the types character and string
	Conversions of arrays
	Conversions of tuples

	Denotation of types
	Declarations of constant identifiers
	Declarations of sequence identifiers
	Declarations of shared variables
	Declarations of state variables

	Expressions on signals
	Systems of equations on signals
	Elementary equations
	Equation of definition of a signal
	Equation of multiple definition of signals
	Equation of partial definition of a signal
	Equation of partial definition of a state variable
	Equation of partial multiple definition

	Invocation of a model
	Macro-expansion of a model
	Positional macro-expansion of a model
	Call of a model
	Expressions of type conversion

	Nesting of expressions on signals

	Elementary expressions
	Constant expressions
	Occurrence of signal or tuple identifier
	Occurrence of state variable

	Dynamic expressions
	Initialization expression
	Simple delay
	Sliding window
	Generalized delay

	Polychronous expressions
	Merging
	Extraction
	Memorization
	Variable clock signal
	Counters
	Other properties of polychronous expressions

	Constraints and expressions on clocks
	Expressions on clock signals
	Clock of a signal
	Clock extraction
	Empty clock

	Operators of clock lattice
	Relations on clocks

	Identity equations
	Boolean synchronous expressions
	Expressions on Booleans
	Negation
	Operators of Boolean lattice

	Boolean relations

	Synchronous expressions on numeric signals
	Binary expressions on numeric signals
	Unary operators

	Synchronous condition

	Expressions on processes
	Elementary processes
	Composition
	Hiding
	Confining with local declarations
	Labelled processes
	Guarded processes
	Choice processes
	Assertion processes
	Assertions of clock relations
	Assertions of identity equations
	Assertion on Boolean signal

	D THE COMPOSITE SIGNALS
	Tuples of signals
	Constant expressions
	Enumeration of tuple elements
	Denotation of field
	Destructuration of tuple
	Equation of definition of tuple component

	Spatial processing
	Dimensions of arrays and bounded values
	Constant expressions
	Enumeration
	Concatenation
	Repetition
	Definition of index
	Array element
	Access without recovery
	Access with recovery

	Extraction of sub-array
	Array restructuration
	Generalized indices
	Extended syntax of equations of definition
	Cartesian product
	Iterations of processes
	Sequential definition
	Sequential enumeration
	Operators on matrices
	Transposition
	Matrix products
	Product of matrices
	Matrix–vector product
	Vector–matrix product
	Scalar product

	Extensions of the operators
	Rules of extension
	Examples

	E THE MODULARITY
	Models of processes
	Classes of process models
	Processes
	Actions
	Procedures
	Nodes
	Functions
	Automata

	Local declarations of a process model
	Declarations of labels
	References to signals with extended visibility
	Interface of a model
	Graph of a model
	Specification of properties
	Dependences

	Directives
	Models as types and parameters

	Modules
	Declaration and use of modules

	Intrinsic processes
	Minimal clock
	Affine transformations
	``Left true'' process
	Mathematical functions
	Complex functions
	Input-output functions

