
Incremental Design of a Power Transformer
Station Controller using a

Controller Synthesis Methodology
HerveÂ Marchand and Mazen Samaan

AbstractÐIn this paper, we describe the incremental specification of a power transformer station controller using a controller

synthesis methodology. We specify the main requirements as simple properties, named control objectives, that the controlled plant has

to satisfy. Then, using algebraic techniques, the controller is automatically derived from this set of control objectives. In our case, the

plant is specified at a high level, using the data-flow synchronous SIGNAL language, and then by its logical abstraction, named

polynomial dynamical system. The control objectives are specified as invariance, reachability, ... properties, as well as partial order

relations to be checked by the plant. The control objectives equations are synthesized using algebraic transformations.

Index TermsÐDiscrete event systems, polynomial dynamical system, supervisory control problem, optimal control, SIGNAL, SIGALI,

power plant.

æ

1 INTRODUCTION & MOTIVATIONS

THE SIGNAL language [1] is developed for precise
specification of real-time reactive systems [2]. In such

systems, requirements are usually checked a posteriori
using property verification and/or simulation techniques.
The control theory of Discrete Event Systems allows us to
use constructive methods that ensure a priori required
properties of the system behavior. The validation phase is
then reduced to properties that are not guaranteed by the
programming process.

Different theories for control of Discrete Event Systems

have existed since the 1980s [3], [4], [5]. Here, we choose to

specify the plant in SIGNAL and the control synthesis, as

well as verification performed on a logical abstraction of

this program, called a polynomial dynamical system (PDS),

over ZZ=3ZZ (i.e., integers modulo 3: {-1,0,1}). The control of

the plant is performed by restricting the controllable input

values with respect to the control objectives (logical or

optimal). These restrictions are obtained by incorporating

new algebraic equations into the initial system. The theory

uses classical tools in algebraic geometry, such as ideals,

varieties, and morphisms. This theory sets the basis for our

formal calculus tool, SIGALI, built around the SIGNAL

environment. SIGALI manipulates the system of equations

instead of the sets of solutions, avoiding the enumeration of

the state space. This abstract level avoids a particular choice

of set implementations, such as BDDs, even if all operations

are actually based on this representation for sets.

The methodology is the following (see Fig. 1): The user
first specifies, in SIGNAL, both the physical model and the
control/verification objectives to be ensured/checked. The
SIGNAL compiler translates the SIGNAL program into a PDS
and the control/verification objectives in terms of poly-
nomial relations/operations. The controller is then synthe-
sized using SIGALI. The result is a controller coded by a
polynomial and then by a Ternary Decision Diagram
(TDD), a slight extension of the Binary Decision Diagrams
(BDDs).

To illustrate our approach, we consider, in this paper, the
application to the specification of the automatic control
system of a power transformer station. It concerns the
response to electric faults on the lines traversing it. It
involves complex interaction between communicating
automata, interruption and preemption behaviors, timers
and timeouts, and reactivity to external events, among
others. The functionality of the controller is to handle the
power interruption, the redirection of supply sources, and
the reestablishment of the power following an interruption.
The objective is twofold: the safety of material and the best
uninterrupted service. The safety of material can be
achieved by triggering circuit breakers when an electric
fault occurs, whereas the best quality service can be
achieved by minimizing the number of costumers con-
cerned by a power cut and reestablishment of the current as
quickly as possible for the customers hit by the fault (i.e,
minimizing the failure in the distribution of power in terms
of duration and size of the interrupted subnetwork).

2 OVERVIEW OF THE POWER TRANSFORMER

STATION

In this section, we give a brief description of the power
transformer station network, as well as the various
requirements the controller has to handle.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 8, AUGUST 2000 1

. H. Marchand is with IRISA/INRIA-Rennes, F-35042 Rennes, France.
E-mail: hmarchan@irisa.fr.

. M. Samaan is with EDF, UniteÂ National Technique SysteÁme, CAP
AMPERE 1, Place Pleyel, 93282, Saint-Denis cedex, France.
E-mail: Mazen.Samaan@edf.fr.

Manuscript received 14 Feb 2000; accepted 28 Apr. 20000.
Recommended for acceptance by J. Wing and J. Woodcock.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 112024.

0098-5589/00/$10.00 ß 2000 IEEE

2.1 The Power Transformer Station
�ElectriciteÂ de France has hundreds of high voltage networks
linked to production and medium voltage networks
connected to distribution. Each station consists of one or
more power transformer stations to which circuit-breakers

are connected. The purpose of an electric power transfor-
mer station is to lower the voltage so that it can be
distributed in urban centers to end-users. The kind of
transformer (see Fig. 2) we consider receives high voltage

lines and feeds several medium voltage lines to distribute
power to end-users.

For each high voltage line, a transformer lowers the
voltage. During operation of this system, several faults can
occur (three types of electric faults are considered; phase

PH, homopolar H, or wattmetric W) due to causes internal or
external to the station. To protect the device and the
environment, several circuit breakers are placed in a
network of cells in different parts of the station (on the link

lines, arrival lines, and departure lines). They are informed
about the possible presence of faults by sensors.

2.1.1 Power and Fault Propagation

Here, we discuss some physical properties of the power
network located inside the power transformer station

controller. It is obvious that the power can be seen by the
different cells if and only if all the upstream circuit-breakers
are closed. Consequently, if the link circuit-breaker is
opened, the power is cut and no fault can be seen by the

different cells of the power transformer station. The
visibility of the fault by the sensors of the cells is less
obvious. In fact, we have to consider two major properties:

. On one hand, if a physical fault, considered as an
input of our system, is seen by the sensors of a cell,
then all the downstream sensors are not able to see
some physical faults. In fact, the appearance of a
fault at a certain level (the departure level in Fig. 3a,
for example) increases the voltage on the down-
stream lines and masks all the other possible faults.

. On the other hand, if the sensors of a cell at a given
level (for example, the sensors of one of the
departure cells as illustrated in Fig. 3b) are informed
about the presence of a fault, then all the upstream
sensors (here, the sensors of the arrival cell) detect
the same fault. Consequently, it is the arrival cell that
handles the fault.

2.2 The Controller

The controller can be divided into two parts. The first part
concerns the local controllers (i.e., the cells). We chose to
specify each local controller in SIGNAL because they merge
logical and numerical aspects. Here, we give only a brief
description of the behavior of the different cells (more
details can be found in [6], [7]). The other part concerns
more general requirements to be checked by the global
controller of the power transformer station. That specifica-
tion will be described in the next section.

2.2.1 The Cells

Each circuit breaker controller (or cell) defines a behavior
beginning with the confirmation and identification of the
type of the fault. In fact, a variety of faults are transient, i.e.,
they occur only for a very short time. Since their duration is
so short that they do not cause any danger, the operation of
the circuit-breaker is inhibited. The purpose of this
confirmation phase is to let the transient faults disappear

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 8, AUGUST 2000

Fig. 2. The power transformer station topology.

Fig. 3. The fault properties. (a)The fault masking. (b)The fault

propogation.

Fig. 1. Description of the tool.

spontaneously. If the fault is confirmed, it is handled by
opening the circuit-breaker for a certain number of periods
during a given delay and then closing it again. The circuit-
breaker is opened in consecutive cycles with an increased
duration. At the end of each cycle, if the fault is still present,
the circuit-breaker is reopened. Finally, in case the fault is
still present at the end of the last cycle, the circuit-breaker is
opened definitively and control is given to the remote
operator.

The specification of a large part of these local controllers
has been performed using the SIGNAL synchronous
language [6] and verified using our formal calculus system,
named SIGALI [7].

2.2.2 Some Global Requirements for the Controller

Even if it is quite easy to specify the local controllers in
SIGNAL, some other requirements are too informal or their
behaviors are too complex to be expressed directly as
programs.

1. One of the most significant problems concerns the
appearance of two faults, (the kind of faults is not
important here) at two different departure cells at
the same time. Double faults are very dangerous
because they imply high defective currents. At the
the fault location, this results in a dangerous path
voltage that can electrocute people or cause heavy
material damages. The detection of these double
faults must be performed as fast as possible, as well
as the handling of one of the faults.

2. Another important aspect is to know which of the
circuit breakers must be opened. If the fault appears
on the departure line, it is possible to open the circuit
breaker at departure level, at link level, or at arrival
level. Obviously, it is in the interest of users that the
circuit be broken at the departure level and not at a
higher level so that the fewest users are deprived of
power.

3. We also have to take into account the importance of
the departure circuit-breaker. Assume that a depar-
ture line, involved in a double faults problem,
supplies a hospital. Then, if double faults occur,
the controller should not open this circuit-breaker
since electricity must always delivered to a hospital.

The transformer station network, as well as, the cells are
specified in SIGNAL. In order to take into account
requirements 1, 2, and 3, with the purpose of obtaining an
optimal controller, we rely on automatic controller synth-
esis that is performed on the logical abstraction of the global
system (network + cells).

3 THE SIGNAL EQUATIONAL DATA FLOW

LANGUAGE

SIGNAL [1] is built around a minimal kernel of operators. It
manipulates signals X, which denote unbounded series of
typed values �xt�t2T , indexed by time t in a time domain T .
An associated clock determines the set of instants at which
values are present. A particular type of signals, called
event, is characterized only by its presence and always has
the value true (hence, its negation by not is always false).

The clock of a signal X is obtained by applying the operator
event X. The constructs of the language can be used in an
equational style to specify the relations between signals, i.e.,
between their values and between their clocks. Systems of
equations on signals are built using a composition
construct, thus defining processes. Data flow applications
are activities executed over a set of instants in time. At each
instant, input data is acquired from the execution environ-
ment; output values are produced according to the system
of equations considered as a network of operations.

3.1 The Signal Language

The kernel of the SIGNAL language is based on four
operations, defining primitive processes or equations, and a
composition operation to build more elaborate processes in
the form of systems of equations.

. Functions are instantaneous transformations on the
data. The definition of a signal Yt by the function
f : 8t; Yt � f�X1t ; X2t ; . . . ; Xnt� is written in SIGNAL:

Y :� ffX1; X2; . . . ; Xng: Y; X1; . . . ; Xn are required to
have the same clock.

. Selection of a signal X according to a Boolean
condition C is Y :� X when C. If C is present and
true, then Y has the presence and value of X. The
clock of Y is the intersection of that of X and that of C
at the value true.

. Deterministic merge, noted Z :� X default Y, has the
value of X when it is present or, otherwise, that of Y if
it is present and X is not. Its clock is the union of that
of X and that of Y.

. Delay gives access to past values of a signal, e.g., the
equation �ZXt � Xtÿ1�, with initial value �V0�
defines a dynamic process. It is encoded by ZX :�
X$1 with initialization ZX init V0. X and ZX have
equal clocks.

. Composition of processes is noted ª|º (for processes
P1 and P2, with parenthesizing � j P1 j P2 j �). It
consists of the composition of the systems of
equations; it is associative and commutative. It can
be interpreted as parallelism between processes.

Table 1 shows each of the primitives with a trace.

3.1.1 Derived Features

Derived processes have been defined on the base of the
primitive operators, providing programming comfort. For
example, the instruction X^ � Y specifies that signals X and Y

are synchronous (i.e., have equal clocks); when B gives the
clock of true-valued occurrences of B.

For a more detailed description of the language, its
semantic, and applications, the reader is referred to [1]. The
complete programming environment also features a block-

MARCHAND AND SAMAAN: INCREMENTAL DESIGN OF A POWER TRANSFORMER STATION CONTROLLER USING A CONTROLLER... 3

TABLE 1

diagram oriented graphical user interface and a proof
system for dynamic properties of SIGNAL programs, called
SIGALI (see Section 4).

3.2 The Graphical Interface

The complete programming environment of SIGNAL also
contains a graphical, block-diagram oriented, user interface
[8], as illustrated in Fig. 4. This environment allows the user
to have graphical and textual representations of the
language structures. These representations may be used
together during the building or the ºreadingº of the
program. A SIGNAL expression may be considered as a
set of components (represented as boxes) with connection
points (ports represented with triangles) joined by links.
The same SIGNAL expression is also a system of equations
on series of values; this system is represented by a phrase
built with the language operators (definitions of variables,
composition, renaming, etc.)

This graphical interface will be used further in order to
perform the specification of the system to be controlled, as
well as the automatic simulation of the controlled system.

3.3 Specification, in SIGNAL, of the Power
Transformer Station

The transformer station network we are considering
contains four departure, two arrival, and one link circuit-
breakers, as well as the cells that control each circuit-
breaker [7]. The process, Physical_Model in Fig. 4,
describes the power and fault propagation according to
the state of the different circuit-breakers. It is composed of
nine subprocesses. The process Power_Propagation

describes the propagation of power according to the state
of the circuit-breakers (Open/Closed). The process
Fault_Visibility describes the fault propagation and
visibility according to the other faults that are potentially
present. The remaining seven processes encode the different
circuit-breakers.

The inputs of this main process are Booleans that encode
the physical faults: Fault_Link_M, Fault_Arr_i_M

(i=1,2),and Fault_Dep_j_M (j=1,..,4). They en-
code faults that are actually present on the different lines.
The event inputs req_close_... and req_open_...

indicate opening and closing requests of the various circuit-
breakers. The outputs of the main process are the Booleans
Fault_Link, Fault_Arr_i,and Fault_Dep_j, repre-
senting the signals that are sent to the different cells. They
indicate whether a cell is faulty or not. These outputs
represent the knowledge that the sensors have of the
different cells. We will now see how the subprocesses are
specified in SIGNAL.

3.3.1 The Circuit-Breaker

A circuit-breaker is specified in SIGNAL as follows: The
process Circuit-Breaker takes two sensors inputs,
Req_Open and Req_Close. They represent opening and
closing requests. The output Close represents the status of
the circuit-breaker. (See Fig. 5.)

The Boolean Close becomes true when the process
receives the event req_close and false when it receives
the event Req_open, otherwise it is equal to its last value
(i.e., Close is true when the circuit-breaker is closed and
false otherwise). The constraint Req_Close when

Req_Open ^= when not Req_Close says that the two
events Req_Close and Req_Open are exclusive.

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 8, AUGUST 2000

Fig. 4. The main process in SIGNAL.

Fig. 5. The circuit-breaker in SIGNAL.

3.3.2 Power Propagation

Power Propagation is a filter process using the state of the
circuit-breakers. It also induces a visibility of possible faults.
If a circuit-breaker is open, then no fault can be detected by
the sensors of downstream cells.

This is specified in the process Power_Propagation

shown in Fig. 6. The inputs are Booleans that code the
physical faults and the status of the circuit-breakers. For
example, a fault could be detected by the sensor of the
departure cell 1 (i.e., Fault_Dep_1_E is true) if there exists
a physical fault (Fault_Dep_1_M = true) and if the
upstream circuit-breakers are closed (i.e., Close_Link =
true and Close_Arr_1=true and Close_Dep_1 = true).

3.3.3 Fault Visibility and Propagation

The process in Fig. 7 specifies fault visibility and propaga-
tion. As we explained in Section 2.1, a fault could be seen by
the sensors of a cell only if no upstream fault is present.

For example, a fault cannot be detected by the sensor of
the departure cell 1 (i.e., Fault_Dep_1 is false), even if a
physical fault exists at this level (Fault_Dep_1_E = true1),
when another physical fault exists at the link level
(Fault_Link_1_K = true) or at the arrival level 1

(Fault_Arr_1_K = true). It is true just when the departure
cell 1 detects a physical fault (Fault_Dep_1_E) and no
upstream fault exists. A contrario, if a fault is picked up by
a cell, then it is also picked up by the upstream cells. This is,
for example, the meaning of, Fault_Link := (when

(Fault_Arr_1 default Fault_Arr_2)) default

Fault_link_K.

4 VERIFICATION OF SIGNAL PROGRAMS

The SIGNAL environment contains a verification and
controller synthesis tool-box, SIGALI. This tool allows us
to prove the correctness of the dynamical behavior of the
system. The equational nature of the SIGNAL language
leads naturally to the use of a method, based on polynomial
dynamical equation systems (PDSs) over ZZ=3ZZ (i.e., integers
modulo 3: {-1,0,1}) as a formal model of program behavior.
The theory of PDS uses classical concepts of algebraic
geometry, such as ideals, varieties, and comorphisms [9].
The techniques consist of manipulating the system of
equations instead of the sets of solutions, which avoids
enumerating state spaces. More precisely, a set of states
and/or events can actually be represented by a unique
polynomial named principal generator. This way we can
perform operations on sets while still remaining in the
domain of polynomial functions while not having to

MARCHAND AND SAMAAN: INCREMENTAL DESIGN OF A POWER TRANSFORMER STATION CONTROLLER USING A CONTROLLER... 5

Fig. 6. Specification in SIGNAL of the power propagation.

Fig. 7. Specification in SIGNAL of the fault propagation and visibility.

1. Note that this fault has already been filtered. It can only be present if
all the upstream circuit-breakers are closed.

enumerate them. The tool, SIGALI, implements the basic
operators; set theoretic operators, fix-point computation,
and quantifiers [10]. It relies on an implementation of
polynomials by Ternary Decision Diagram (TDD) (for three
valued logics) in the same spirit of BDD [11], but where the
paths in the data structures are labeled by values in
fÿ1; 0; 1g instead of f0; 1g.

4.1 From a SIGNAL Program to a Polynomial
Dynamical System

To model its behavior, a SIGNAL process is translated into a
system of polynomial equations over ZZ=3ZZ [7]. The three
possible states of a Boolean signal X (i.e., present and true,
present and false, or absent) are coded in a signal variable x by
present and true! 1, present and false! ÿ1, and
absent! 0. For the non-Boolean signals, we only code the
fact that the signal is present or absent (present! 1 and
absent! 0).

Each of the primitive processes of SIGNAL are then
encoded as polynomial equations. Let us just consider the
example of the selection operator. C :� A when B means ºif
b � 1 then c � a else c � 0:º It can be rewritten as the
polynomial equation c � a�ÿbÿ b2�. Indeed, the solutions
of this equation are the set of possible behaviors of the
primitive process when. For example, if the signal B is true

(i.e., b � 1), then �ÿbÿ b2� � �ÿ1ÿ 1� � 1 in ZZ=3ZZ, which
leads to c � a.

The delay $, which is dynamical, is different because it
requires memorizing the past value of the signal into a state
variable x. In order to encode B :� A$1 init B0, we have to
introduce the three following equations:

x0 � a� �1ÿ a2�x �1�
b � xa2 �2�
x0 � b0 �3�;

8
<
:

where x0 is the value of the memory at the next instant.
Equation (1) describes what will be the next value x0 of the
state variable. If a is present, x0 is equal to a, otherwise x0 is
equal to the last value of a, memorized by x. Equation (2)
gives to b the last value of a (i.e., the value of x) and
constrains the clocks b and a to be equal. Equation (3)
corresponds to the initial value of x, which is the initial
value of b.

Table 2 shows how all the primitive operators are
translated into polynomial equations. Remark that, for the
non-Boolean expressions, we just translate the synchroniza-
tion between the signals.

Any SIGNAL specification can be translated into a set of
equations called polynomial dynamical system (PDS) that
can be reorganized as follows:

S �
X0 � P �X;Y �
Q�X;Y � � 0
Q0�X0� � 0;

8
<
: �1�

where X;Y ;X0 are vectors of variables in ZZ=3ZZ and
dim�X� � dim�X0�. The components of the vectors X and
X0 represent the states of the system and are called state
variables. They come from the translation of the delay
operator. Y is a vector of variables in ZZ=3ZZ, called event
variables. In the following, x; xt, y; yt will denote particular

instantiations of vector X and Y . The first equation is the
state transition equation; the second equation is called the
constraint equation and specifies which events may occur in a
given state; the last equation gives the initial states. The
behavior of such a PDS is the following: At each instant t,
given a state xt and an admissible yt such that Q�xt; yt� � 0,
the system evolves into state xt�1 � P �xt; yt�.

4.2 Verification of a SIGNAL Program

We now explain how verification of a SIGNAL program (in
fact, the corresponding PDS) can be carried out. Using
algebraic operations, it is possible to check properties such
as invariance, reachability, and attractivity [7]. Note that most
of them will be used in the sequel as control objectives for
controller synthesis purposes. Here, we just give the basic
definitions of each of this properties.

Definition 1.

1. A set of states E is invariant for a dynamical system
if, for every x in E and every y admissible in x, P �x; y�
is still in E.

2. A subset F of states is reachable if and only if, for
every state x 2 F , there exists a trajectory starting
from the initial states that reaches x.

3. A subset F of states is attractive from a set of states E
if and only if every state trajectory initialized in E
reaches F .

For a more complete review of the theoretical foundation of
this approach, the reader may refer to [9], [7].

4.2.1 Specification of a Property

Using an extension of the SIGNAL language, named SIGNAL

+, it is possible to express the properties to be checked, as
well as the control objectives to be synthesized (see Section
5.2), in the SIGNAL program. The syntax is,

� jSigali�Verif Objective�PROP�� j �:
The keyword Sigali means that the subexpression has

to be evaluated by SIGALI. The function Verif_Objective
(it could be invariance, reachability, attractivty,
etc.) means that SIGNALI has to check the corresponding
property according to the Boolean PROP, which defines a
set of states in the corresponding PDS. The complete

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 8, AUGUST 2000

TABLE 2
Translation of the Primitive Operators

SIGNAL program is obtained by composing the process
specifying the plant and the one specifying the verification
objectives in parallel. Thus, the compiler produces a file
which contains the polynomial dynamical system resulting
from the abstraction of the complete SIGNAL program and
the algebraic verification objectives. This file is then
interpreted by SIGALI. Suppose that, for example, we want
a SIGNAL program named ªsystemº to check the attrac-
tivity of the set of states where the Boolean PROP is true.
Then the corresponding SIGNAL + program is:

(| system() (physical model specified in

Signal)

| PROP: definition of the Boolean PROP in

Signal

| Sigali(Attractivity(True(PROP))) |).

The corresponding SIGALI file, obtained after compilation
of the SIGNAL program, is:

read(` `system.z3z' '); => loading of the PDS

Set_States : True(PROP);

=> Compute the states where PROP is true

Attractivity(S,Set_States);

=> Check for the attractivity of

Set_States from the initial states.

The file ªsystem.z3zº contains, in a coded form, the
polynomial dynamical system that represents the system.
Set_States is a polynomial that is equal to 0 when the
Boolean PROP is true. The methods consist of verifying that
the set of states where the polynomial Set_States takes
the value 0 is attractive from the initial states (the answer is
then true or false): Attractivity(S, Set_States).
This file is then interpreted by SIGALI which checks the
verification objective.

4.3 Verification of the Power Transformer Network

In this section, we apply the tools to check various
properties of our SIGNAL implementation of the transfor-
mer station. After the translation of the SIGNAL program,
we obtain a PDS with 60 state variables and 35 event
variables. Its computation is realized in less than five
seconds. Note that the compiler also checks the causal and
temporal concurrency of our program and produces an
executable code. We will now describe some of the different
properties which have been proven.

4.3.1 Property One

ªThere is no possibility to have a fault at the departure, arrival
and link level when the link circuit-breaker is opened.º In order
to check this property, we add to the original specification
the following code:

(|Error := ((Fault_Link or Fault_Arr_1

or Fault_Arr_1 or Fault_Dep_1 or

Fault_Dep_2

or Fault_Dep_3 or Fault_Dep_4) when

Open_Link)

default false

|Error ^= Tick

Sigali(Reachable(True(Error))) |).

The Error signal is a Boolean which takes the value true
when the property is violated. In order to prove the
property, we have to check that there does not exist any
trajectory of the system which leads to the states where the
Error signal is true (Reachable(True(Error))). The
produced file is interpreted by SIGALI which checks
whether this set of states is reachable or not. In this case,
the result is false, which means that the Boolean Error

never takes the value true. The property is satisfied.2 In the
same way, we proved similar properties when one of the
arrival or departure circuit-breakers is open.

4.3.2 Property Two

ªIf there exists a physical fault at the link level and if this fault is
picked up by its sensor, then the arrival sensors cannot detect a
fault.º We show here the property for the arrival cell 1. It
can be expressed as an invariance of a set of states.

(|Error := (Fault_Arr_1 when Fault_Link_E)

default false

|Error ^= Tick

|Sigali(Invariance(False(Error)))

|).

We have proven similar properties for a departure fault as
well as when a physical fault appears at the arrival level
and at the departure level at the same time.

4.3.3 Property Three

Using the same methods, we also proved the following
property: ªIf a fault occurs at a departure level, then it is
automatically seen by the upstream sensors when no other fault
exists at a higher level.º

All the important properties of the transformer station
network have been proven in this way. Note that the cell
behaviors have also been proven (see [7], [12] for more
details).

5 AUTOMATIC CONTROLLER SYNTHESIS

METHODOLOGY

5.1 Controllable Polynomial Dynamical System

Before speaking about control of polynomial dynamical
systems, we first need to introduce a distinction between
the events. From now on, we distinguish between the
uncontrollable events, which are sent by the system to the
controller, and the controllable events, which are sent by the
controller to the system.

A polynomial dynamical system S is now written as:

S :
Q�X;Y ; U� � 0

X0 � P �X;Y ; U�
Q0�X0� � 0;

8
<
: �2�

where the vector X represents the state variables; Y and U
are respectively the set of uncontrollable and controllable event
variables. Such a system is called a controllable polynomial
dynamic system. Let n, m, and p be the respective
dimensions of X, Y , and U . The trajectories of a controllable

MARCHAND AND SAMAAN: INCREMENTAL DESIGN OF A POWER TRANSFORMER STATION CONTROLLER USING A CONTROLLER... 7

2. Alternatively, this property could be also expressed as the invariance
of the Boolean False(Error), namely Sigali(Invariance(Fal-

se(Error))).

system are sequences �xt; yt; ut� in �ZZ=3ZZ�
n�m�p such that

Q0�x0� � 0 and, for all t, Q�xt; yt; ut� � 0 and xt�1 �
P �xt; yt; ut�: The events �yt; ut� include an uncontrollable

component yt and a controllable one ut:
3 We have no direct

influence on the yt part, which depends only on the state xt,

but we observe it. On the other hand, we have full control

over ut and we can choose any value of ut which is

admissible, i.e., such that Q�xt; yt; ut� � 0. To distinguish the

two components, a vector y 2 �ZZ=3ZZ�
m is called an event

and a vector u 2 �ZZ=3ZZ�
p a control. From now on, an event y

is admissible in a state x if there exists a control u such that

Q�x; y; u� � 0; such a control is said compatible with y in x.

5.1.1 The Controllers

A PDS can be controlled by first selecting a particular initial

state x0 and then by choosing suitable values for

u1; u2; . . . ; un; Here we will consider control policies

where the value of the control ut is instantaneously

computed from the value of xt and yt. Such a controller is

called a static controller. It is a system of two equations:

C�X;Y ; U� � 0 and C0�X0� � 0, where the equation

C0�X0� � 0 determines initial states satisfying the control

objectives and the other one describes how to choose the

instantaneous controls. When the controlled system is in

state x, and when an event y occurs, any value u such that

Q�x; y; u� � 0 and C�x; y; u� � 0 can be chosen. The behavior

of the system S composed with the controller is then

modeled by the system Sc.

Sc �
X0 � P �X;Y ; U�
Q�X;Y ; U� � 0 C�X;Y ; U� � 0
Q0�X0� � 0 C0�X0� � 0:

8
<
: �3�

However, not every controller �C;CO� is acceptable. First,

the controlled system SC has to be initialized. Thus, the

equations Q0�X0� � 0 and C0�X0� � 0 must have common

solutions. Furthermore, due to the uncontrollability of the

events Y , any event that the system S can produce must be

admissible by the controlled system SC . This remark leads

to the definition of acceptable controller: be acceptable.

Definition 2. An acceptable controller for a system S, defined by

(2), is given by an initial constraint equation C0�X0� � 0 and

a control equation C�X;Y ; U� such that:

1. The initial constraints C0�X0� � 0 and Q0�X0� � 0
have common solutions;

2. For all the states x which can be reached during the
evolution of the controlled system, any uncontrollable
event y admissible in x for the initial system S is also
admissible for the controlled system SC .

5.2 Traditional Control Objectives

We now illustrate the use of the framework for solving a

control synthesis problem we shall reuse in the sequel.

Suppose we want to ensure the invariance of a set of
states O. Let OSc be the orbit4 of the controller system. The
problem is to compute �C;C0� such that OSc � O. Assume
that there exists an acceptable controller �C;C0� which
satisfies this property. In this case, we know that,

1. OSc � O
2. OSc invariant for Sc, which means that

8x 2 OSc ;8y 2 �ZZ=3ZZ�
m; 8u 2 �ZZ=3ZZ�

p; Q�x; y; u� � 0

and C�x; y; u� � 0) P �x; y; u� 2 OSc :
�4�

Now, let x be a state of OSc and y an event admissible in x
by the system S. Since �C;C0� constitutes an acceptable
controller, y is also admissible in x for the controlled system
Sc. Then, there exists a command u such that Q�x; y; u� � 0
and C�x; y; u� � 0; and, for this command, P �x; y; u�
belongs to OSc . For the system S, OSc possesses a property
similar to invariance. We say that OSc is U-invariant under
control for the system S.

Definition 3. A set of states O is U-invariant under control for
a system S if, for every state x in O and every event y
admissible in x, there exists a command u such that
Q�x; y; u� � 0 and P �x; y; u� 2 O:

If there exists an acceptable controller which ensures
the invariance of O, then the orbit OSc of Sc is included in
O and is U-invariant under control for S. It is also
necessary to have some initial states of S included in
O �O \ V�<Q0>� 6� ;�, where V�<Q0>� � fx=Q0�x0� � 0g.
The essential result is that these three properties are
sufficient.

Theorem 1. Given a controlled system S and O, a set of states
of S, there exists an acceptable controller which ensures the
invariance of O if and only if there exists a set of states E
such that:

�1. E � O,
�2. E \ V�<Q0>� 6� ;,
�3. E is U-invariant under control for S.

Proof. We have already shown that the conditions are
necessary. Conversely, assume there exists a set E which
satisfies the three properties. Let C0 be a principal
generator of E and C � P ?�C0�, where P ��g� is the
polynomial which has, as solutions, the set
f�x; y; u� = P �x; y; u� is solution of gg, which is called
comorphism of g. By construction, we have

C0�x0� � 0 , x0 2 E;
C�x; y; u� � 0 , P �x; y; u� 2 E:

�
�5�

It follows that the orbit of Sc is included in E and,
hence, in O, the controller �C;C0� ensures the invariance
of O. Now, let x be a state in the orbit of Sc and y be an
event admissible in x for S. x is also an element of E and,
since E is U-invariant under control, there exists a
command u such that Q�x; y; u� � 0 and P �x; y; u� 2 E:
This is equivalent to Q�x; y; u� � 0 and C�x; y; u� � 0: y is

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 8, AUGUST 2000

3. This particular aspect constitutes one of the main differences with [3].
In our case, the events are partially controllable, whereas, in [3], the events
are either controllable or uncontrollable.

4. We recall that the orbit of a polynomial dynamical system S is the set
of states that are reachable from one of the initial states (i.e., the solutions of
the polynomial Q0�X0� � 0).

then also admissible in x for Sc. Since the condition
E \ V�< Q0 >� 6� ; m e a n s t h a t C0�X0� � 0 a n d
Q0�X0� � 0 have common solutions, the controller
�C;C0� is acceptable. tu

The proof gives an algorithm to obtain a controller,
ensuring the invariance of a set of states O. It suffices to
find a U-invariant under control subset of O which
satisfies the initialization condition (�2). O contains at
least one U-invariant under control, the empty set. It is
easy to see that the union of two U-invariant under control
sets is also U-invariant under control. As a consequence,
there exists a greatest U-invariant under control subset of
O. Let E be this subset. If E satisfies the condition (�2),
then control equations can be obtained from the principal
generator of E, else no subset of O can satisfy condition
(�2) and the problem has no solution.

The computation of E uses the operator fpre defined by,
for any set of states F ,

fpre�F � � fx 2 �ZZ=3ZZ�
n = 8y 2 �ZZ=3ZZ�

m; Q0�x; y� � 0

) 9u;Q�x; y; u� � 0 and P �x; y; u� 2 Fg; �6�

where the solutions of the polynomials Q0 are the set
f�x; y�=9u;Q�x; y; u� � 0g. From Definition 1, it is clear that
a set of states F is U-invariant under control if and only if
F � fpre �F �. The greatest U-invariant under control subset
of O is obtained by constructing the sequence �Ei�i2NN
defined by,

E0 � O
Ei�1 � Ei \ fpre�Ei�:

�
�7�

The sequence is decreasing. Since all sets Ei are finite, there
exists an index j such that Ej�1 � Ej. The set Ej is the
greatest U-invariant under control subset of O; E is equal to
Ej. In practice, we transform this computation to an
equivalent sequence of polynomials �gi�i2NN, where gj is a
polynomial having as solutions the set of states Ej [13], [10].
Once obtained, the greatest U-invariant under control
subset E of O, the controller is simply given by the system
of equations described by (5).

Using similar methods, we are also able to to compute
controllers �C;C0� that ensure,

. the global reachability (resp. attractivity) of a set of
states from the initial states of the system.

. the persistence of a set of states. A set of states E if it is
attractive from the initial states and if E is invariant.

. the recurrence of a set of states. A set of states E is
recurrent if it is visited infinitely often.

We can also consider control objectives that are conjunc-
tions of basic properties of state trajectories. However, basic
properties cannot, in general, be combined in a modular
way. For example, an invariance property puts restrictions
on the set of state trajectories which may not be compatible
with an attractivity property. The synthesis of a controller
insuring both properties must be effected by considering
both properties simultaneously and not by combining a
controller insuring safety with a controller insuring attrac-
tivity independently. For more details on the way con-
trollers are synthesized, the reader may refer to [10].

5.2.1 Specification of the Control Objectives

As for verification (Section 4), the control objectives can be
directly specified in SIGNAL + program, using the key-word
Sigali. For example, if we add in a SIGNAL program the
line Sigali(S_Reachability(S,PROP)), the compiler
produces a file that is interpreted by SIGALI which
computes the controller with respect to the control
objective. In this particular case, the controller will ensure
the reachability of the set of states Set_States, where
Set_States is a polynomial that is equal to zero when the
Boolean PROP is true. The result of the controller synthesis
is a polynomial that is represented by a Ternary Decision
Diagram (TDD). This TDD is then saved in a file that could
be used to perform a simulation [14].

5.2.2 Application to the Transformer Station

We have seen in the previous section that one of the most
critical requirements concerns the double fault problem. We
assume here that the circuit-breakers are ideal, i.e., they
immediately react to actuators (i.e., when a circuit-breaker
receives an opening/closing request, then, at the next
instant, the circuit-breaker is opened/closed). With this
assumption, the double fault problem can be rephrased as
follows:

If two faults are picked up at the same time by two different
departure cells, then, at the next instant, one of the two faults
(or both) must disappear.

In order to synthesize the controller, we assume that the
only controllable events are the opening and closing
requests of the different circuit-breakers. The other events
concern the appearance of the faults and cannot be
considered controllable. The specification of the control
objective is then:

(| 2_Fault := when (Fault_Dep_1 and Fault_

Dep_2)

default when (Fault_Dep_1 and Fault_Dep_3)

default when (Fault_Dep_1 and Fault_Dep_4)

default when (Fault_Dep_2 and Fault_Dep_3)

default when (Fault_Dep_2 and Fault_Dep_4)

default when (Fault_Dep_3 and Fault_Dep_4)

default false

| Z_2_Fault := 2_Fault $1 init false

| Error := 2_Fault and Z_2_Fault

| Sigali(S_Invariance(S,False(Error)) |)

The Boolean 2_Fault is truewhen two faults are present
at the same time and is false otherwise. The Boolean Error

is true when two faults are present at two consecutive
instants. We then ask SIGALI to compute a controller that
forces the Boolean Error to always be false (i.e., whatever
the behavior, there is no possibility for the controlled system
to reach a state where Error is true). The SIGNAL compiler
translates the SIGNAL program into a PDS and the control
objectives in terms of polynomial relations and polynomial
operations. Applying the algorithm, described by the fixed-
point computation (7), we are able to synthesize a controller
�C1; C0�, that ensures the invariance of the set of states where
the Boolean Error is true for the controlled system

MARCHAND AND SAMAAN: INCREMENTAL DESIGN OF A POWER TRANSFORMER STATION CONTROLLER USING A CONTROLLER... 9

SC1
� S � �C1; C0�. The result is a controller coded by a

polynomial and, therefore, by a TDD.

Using the controller synthesis methodology, we solved

the double fault problem. However, some requirements

have not been taken into account (importance of the lines, of

the circuit-breakers, etc., ...). These kind of requirements

cannot be solved using traditional control objectives such as

invariance, reachability, or attractivity. In the next section,

we will handle this kind of requirements, using control

objectives expressed as order relations.

5.3 Numerical Order Relation Control Problem

We now present the synthesis of control objectives that
considers the way to reach a given logical goal. These kind
of control objectives will be useful in the sequel to express
some properties of the power transformer station controller
as the one dealing with the importance of the different
circuit-breakers. For this purpose, we introduce cost
functions on states. Intuitively speaking, the cost function
is used to express priority between the different states that a
system can reach in one transition. Let S be a PDS as the one
described by (2). Let us suppose that the system evolves
into a state x and that y is an admissible event at x. As the
system is generally not deterministic, it may have several
controls u such that Q�x; y; u� � 0. Let u1 and u2 be two
controls compatible with y in x. The system can evolve into
either x1 � P �x; y; u1� or x2 � P �x; y; u2�. Our goal is to
synthesize a controller that will choose between u1 and u2 in
such a way that the system evolves into either x1 or x2

according to a given choice criterion. In the sequel, we
express this criterion as a cost function relation.

5.3.1 Controller Synthesis Method

Let X � �X1; . . . ; Xn� be the state variables of the system.
Then, a cost function is a map from �ZZ=3ZZ�

n to NN, which
associates to each x of �ZZ=3ZZ�

n some integer k.

Definition 4. Given a PDS S and a cost function c, a state x1 is
said to be c-better than a state x2 (denoted x1 �c x2) if and
only if c�x2� � c�x1�.

In order to express the corresponding order relation as a
polynomial relation, let us consider

kmax � supx2�ZZ=
3ZZ�

n�c�x��:

The following sets of states are then computed
Ai � fx 2 �ZZ=3ZZ�

n j c�x� � ig. The sets �Ai�i�0::kmax
form

a partition of the global set of states. Note that some Ai

could be reduced to the empty set. The proof of the
following property is straightforward.

Proposition 1.

x1 �c x2 , 9i 2 �0; ::; kmax�; x1 2 Ai ^ x2 2
[kmax

j�i Aj:

Let g0; . . . ; gkmax be the polynomials that have the sets
A1; . . . ; Akmax as solutions.5 The order relation �c defined by
Proposition 1 can be expressed as:

Corollary 1. x �c x0 , R�c�x; x0� � 0, where

R�c�X;X0� �
Yn

i�1

fg2
i �X� � �

Yn

j�i
�g2
j �X0���g; �8�

with f � g � �f2 � g2�2.

As we deal with a nonstrict order relation, from �c , we
construct a strict order relation, named �c , defined as:
x �c x0 , fx �c x0^e�x0 �c x�g. Its translation in terms of
polynomial equation is then given by:

R�c�X;X0� � R�c�X;X0� � �1ÿR2
�c�X

0; X�� �9�

We now are interested in the direct control policy we want
to be adopted by the system; i.e., how to choose the right
control when the system S has evolved into a state x and an
uncontrollable event y has occurred.

Definition 5. For a given state x and admissible event y, a
control u1 is said to be better compared to a control u2 if
x1 � P �x; y; u1� �c x2 � P �x; y; u2�: Using the polynomial
approach, it gives R�c�P �x; y; u1�; P �x; y; u2�� � 0.

In other words, the controller has to choose, a pair �x; y�, a
compatible control with y in x, that allows the system to
evolve into one of the states that are maximal for the
relation R�c . To do so, let us introduce a new order relation
jÿÿc defined from the order relation �c .

�x; y; u� jÿÿc �x
0; y0; u0� ,

x � x0
y � y0
P �x; y; u� �c P �x; y; u0�

8
<
: �10�

In other words, a triple �x; y; u� is ªbetterº than a triple
�x; y; u0� whenever the state P �x; y; u� reached by choosing
the control u is better than the state P �x; y; u0� reached by
choosing the control u0.

We will now compute the maximal triples of this new
order relation among all of the triples. To this effect, we use
I � f�x; y; u� 2 �ZZ=3ZZ�

n�m�p j Q�x; y; u� � 0g, the set of ad-
missible triples �x; y; u�. The maximal set of triples Imax is
then provided by the following relation:

Imax � I ÿ f�x; y; u� j9�x; y; u0� 2 I;
�x; y; u0� jÿÿc �x; y; u�g

�11�

The characterization of the set of states Imax in terms of
polynomials is the following:

Proposition 2. The polynomial C that has Imax as solutions is
given by:

C�X;Y ; U� � Q�X;Y ; U��
�1ÿ 9elimU 0�Q�X;Y ; U 0��

R�c�P �X;Y ; U 0�; P �X;Y ; U����;

where the solutions of 9elimU 0�Q�X;Y ; U 0� are given by the
set f�x; y�=9u0; Q�x; y; u0� � 0g.

Using this controller, the choice of a control u, compatible

with y in x, is reduced such that the possible successor

state is maximal for the (partial) order relation �c . Note

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 8, AUGUST 2000

5. To compute efficiently such polynomials, it is important to use the
Arithmetic Decision Diagrams (ADD) developed, for example, by [15].

that if a triple �x; y; u� is not comparable with the maximal

element of the order relation jÿÿc, the control u is allowed by

the controller (i.e., u is compatible with the event y in the

state x).

Without control, the system can start from one of the

initial states of I0 � fx0 = Q0�x0� � 0g. To determine the

new initial states of the system, we will take the ones that

are the maximal states (for the order relation R�c) among all

the solutions of the equation Q0�X0� � 0. This computation

is performed by removing from I0 all the states for which

there exist at least one smaller state for the strict order

relation �c . Using the same method as the one previously

described for the computation of C, we obtain a polynomial

C0. The solutions of this polynomial are the states that are

maximal for the order relation jÿÿc.
Theorem 2. With the preceding notations, �C;C0� is an

acceptable controller for the system S. Moreover, the controlled
system SC � �S � �C;C0�� adopts the control policy of
Definition 5.

Some other characterization of order relations in terms of

polynomials can be found in [10]. Finally, note that the

notion of numerical order relation has been generalized

over a bounded states trajectory of the system, retrieving

the classical notion of Optimal Control [16].

5.3.2 Application to the Power Transformer Station

Controller

We have seen in Section 5.2 how to compute a controller

that solves the double fault problem. However, even if this

particular problem is solved, other requirements had not

been taken into account. The first one is induced by the

obtained controller itself. Indeed, several solutions are

available at each instant. For example, when two faults

appear at a given instant, the controller can choose to open

all the circuit-breakers or, at least, the link circuit-breaker.

This kind of solutions is not admissible and must not be

considered. The second requirements concern the impor-

tance of the lines. The first controller �C1; C0� does not

handle this kind of problems and can force the system to

open the bad circuit-breakers.
As a consequence, two new requirements must be added

in order to obtain a real controller.

1. The number of opened circuit-breakers must be
minimal.

2. The importance of the lines (and of the circuit-
breakers) has to be different.

These two requirements introduce a quantitative aspect to

the control objectives. We will now describe the solutions

we proposed to cope with these problems.

First, let us assume that the state of a circuit-breaker is

coded with a state variable according to the following

convention: The state variable i is equal to one if and only if

the corresponding circuit-breaker i is closed. CB is then a

vector of state variables which collects all the state variables

encoding the states of the circuit-breakers. To minimize the

number of open circuit-breakers and to take into account

the importance of the line, we use a cost function f . We

simply encode the fact that the more important is the

circuit-breaker, the cost allocated is larger compared to the

state variable which encodes the circuit-breaker. Fig. 8

summarizes the way we allocate the cost.

The cost allocated to each state variable corresponds to

the cost when the corresponding circuit-breaker is opened.

When it is closed, the cost is equal to zero. The cost of a

global state is simply obtained by adding all the circuit-

breaker costs. With this cost function, it is always more

expensive to open a circuit-breaker at a certain level than to

open all the downstream circuit-breakers. Moreover, the

cost allocated to the state variable that encodes the second

departure circuit-breaker (encoded by the state variable

Xdep2�) is larger than the others because the corresponding

line supplies a hospital (for example). Finally, note that the

cost function is minimal when the number of open circuit-

breakers is minimal.

Let us consider the system SC1
� S � ��C1; C0��. We then

introduce an order relation over the states of the system. A

state x1 is said to be better compared to a state x2 (x1 �c x2)

if and only if, for their corresponding subvectors CB1 and

CB2, we have CB1 �c CB2. This order relation is then

translated in an algebraic relation R�c , following (8) and (9)

and, by applying the construction described in Proposition

2 and Theorem 2, we obtain a controller �C2; C
0
0� for which

the controlled system SC2
� �SC1

� �C2; C
0
0�� respects the

control strategy.

6 CONCLUSION

In this paper, we described the incremental specification of

a power transformer station controller using the control

theory concepts of the class of polynomial dynamical

systems over ZZ=3ZZ. Because this model results from the

translation of a SIGNAL program [1], we have a powerful

environment to describe the model for a synchronous data-

flow system. Even if classical control can be used, we have

shown that, using the algebraic framework, the optimal

control synthesis problem is possible. The order relation

controller synthesis technique can be used to synthesize

control objectives which relate more to the way to get to a

logical goal than to the goal to be reached.

MARCHAND AND SAMAAN: INCREMENTAL DESIGN OF A POWER TRANSFORMER STATION CONTROLLER USING A CONTROLLER... 11

Fig. 8. Cost allocated to the state variables.

APPENDIX A

THE SIGALI TOOL BOX

The SIGALI tool box offers algebraic polynomial computa-
tion functionalities. It relies on an implementation of
polynomials by Ternary Decision Diagram (TDD) (for three
valued logics) in the same spirit of BDD [11], but where the
paths in the data structures are decorated by values in
fÿ1; 0; 1g instead of f0; 1g:6

From a practical point of view, a polynomial dynamical
system can be obtained for ªfreeº provided we have
specified the system in the high level language SIGNAL

[1], [18]. In fact, the equational nature of SIGNAL leads
naturally to the use of a method based on polynomial
dynamical equation systems over ZZ=3ZZ as a formal model
of program behavior [7]. The model essentially expresses
Boolean data and synchronizations. There exists a lot of
examples using SIGALI for SIGNAL programs, among them,
a production cell [19], a power transformer station con-
troller [7], an experiment with reactive tasking in active
robot-vision [20], etc., ...

A.1 Some Elements of the Sigali Syntax

A.1.1 The Basic Syntax

We can write polynomial expressions, lists of polynomials,
etc. All the usual polynomial operations are also available
(+, -, *,). For example, the polynomial a2�ÿbÿ b2� is
written a^2*(-b-b^2). The list of variables, polynomials,
equations, etc., is written as follows: [a,b,c,d] is a set of
variables, [a+b,c+d] is a list of polynomials, and
[a+b=x,a*d^2=b^2] is an equation system. As for the
polynomial operations, all the possible operations over lists
have been defined (union, intersection, complementary,
etc., ...). The function call is classically written f(x,y,z).
For example, in order to check the invariance of a set of
states defined by a polynomial g w.r.t. an ILTS S, we write:

Invariant�S; g�; :
The result of such a computation is either true or false.

The affectation is simply written as follows:

symbol : expression;

For example, g: gen([a+b=x,a*d^2=b^2]); will attach
the name g to the principal generator of this equation
system (which is then computed).

Fix point computation can also be performed. For
example, given: p0 � 0, pi�1 � p2

i � 1, the corresponding
expression in SIGALI is loop x=x^2+1 init 0;. Of course,
such sequences do not always converge. This is not checked
by the system.

A.1.2 Some Useful Functions.

There exist more than 120 different functions that belong to
the kernel of the SIGALI languages. We just provide the one
that is used in Sections 1 and 2 (See Table 3).

Moreover, starting from the existing functions, it is also
possible to define new functions. The syntax is the
following: def f(x,y,z):expression;.

A.2 Ensuring the Invariance.

We here assume that the polynomial dynamical system has
already been defined in SIGALI. It is formally given by:

S :
Q�X;Y ; U� � 0
X0 � P �X;Y ; U�
Q0�X0� � 0;

8
<
: �12�

where X; X0; Y and U are lists of variables, P is a list of
polynomial functions, Q is a polynomial, as well as Q0. The
complete PDS S is stored in another list given by

S : system(union_lvar(Y,U), X, P, Ini, Q);

To compute the controller that ensures the invariance of a
set of states modeled by a polynomial Prop, we first need to
compute the operator fpre. It is done as follows:

def Pre_cont(x) :

forall(Y,implies(exists(U,Q),

exists(U,intersection(Q,

comor(x)))));

Using this operator and a fix point computation, according
to (7), we are able to compute the greatest U invariant under
control of a given set of states, say E (E as to be understood
as a polynomial).

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 8, AUGUST 2000

TABLE 3
Some Useful SIGALI Functions

6. We can also deal with numerical aspects using Arithmatic Decision
Diagrams (ADDs) [17].

def S_Invariant(E) :

loop y = intersection(E, Pre_cont(y)) init E;

Finally, according to Section 5.2 a controller is given by :

Co : S_Invariant(E); C : comor(Co);

and the controlled system by:

S_c: system(union_lvar(Y,U), X, P,

intersection(Co,Ini),

intersection(Q,C));

ACKNOWLEDGMENTS

This work was partially supported by �ElectriciteÂ de France

(EDF) under contract number M64/7C8321/E5/11 and by

the Esprit SYRF project 22703. The authors gratefully

acknowledge relevant comments from the anonymous

reviewers.

REFERENCES

[1] P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire,
ªProgramming Real-Time Applications with Signal,º Technical
Report 582, IRISA, Apr. 1991.

[2] A. Benveniste and G. Berry, ªReal-Time Systems Designs and
Programming,º Proc. IEEE, vol. 79, no. 9, pp. 1270±1282, Sept.
1991.

[3] P.J. Ramadge and W. M. Wonham, ªThe Control of Discrete Event
Systems,º Proc. IEEE; Special Issue on Dynamics of Discrete Event
Systems, vol. 77, no. 1, pp. 81±98, 1989.

[4] L.E. Holloway, B.H. Krogh, and A. Giua, ªA Survey of Petri Net
Methods for Controlled Discrete Event Systems,º Discrete Event
Dynamic Systems: Theory and Application, vol. 7, pp. 151±190, 1997.

[5] H. Melcher and K. Winkelmann, ªController Synthesis for the
Production Cell Case Study,º Proc. Second Workshop Formal
Methods in Software Practice, pp. 24±33, Mar. 1998.

[6] H. Marchand, E. Rutten, and M. Samaan, ªSynchronous Design of
a Transformer Station Controller with Signal,º Proc. Fourth IEEE
Conf. Control Applications, pp. 754±759, Sept. 1995.

[7] M. Le Borgne, H. Marchand, E. Rutten, and M. Samaan, ªFormal
Verification of Signal Programs: Application to a Power Trans-
former Station Controller,º Proc. Fifth Int'l Conf. Algebraic
Methodology and Software Technology (AMAST'96), pp. 271±285,
July 1996.

[8] P. Bournai and P. Le Guernic, ªUn environnement graphique
pour le langage signal,º Technical Report 741, IRISA, Sept. 1993.

[9] M. Le Borgne, A. Benveniste, and P. Le Guernic, ªPolynomial
Dynamical Systems over Finite Fields,º Algebraic Computing in
Control, pp. 212±222, Mar. 1991.

[10] H. Marchand and M. Le Borgne ªThe Supervisory Control
Problem of Discrete Event Systems Using Polynomial Methods,º
Research Report 1271, IRISA, Oct. 1999.

[11] R.E. Bryant, ªGraph-Based Algorithms for Boolean Function
Manipulations,º Proc. IEEE Trans. Computers, vol. 45, no. 8, pp.
677±691, Aug. 1986.

[12] H. Marchand, E. Rutten, and M. Samaan, ªSpecifying and
Verifying a Transformer Station in Signal and Signalgti,º
Research Report 2521, INRIA, Mar. 1995.

[13] B. Dutertre and M. Le Borgne, ªControl of Polynomial Dynamic
Systems: An Example,º Research Report 798, IRISA, Jan. 1994.

[14] H. Marchand, P. Bournai, M. Le Borgne, and P. Le Guernic, ªA
Design Environment for Discrete-Event Controllers Based on the
Signal Language,º Proc. IEEE Int'l Conf. Systems, Man, and
Cybernetics, pp. 770±775, Oct. 1998.

[15] R.E. Bryant and Y. Chen, ªVerification of Arithmetic Functions
with Binary Diagrams,º Research Report, School of Computer
Science, Carnegie Mellon Univ., May 1995.

[16] H. Marchand and M. Le Borgne, ªOn the Optimal Control of
Polynomial Dynamical Systems Over z/pz,º Proc. Fourth Int'l
Workshop Discrete Event Systems, pp. 385±390, Aug. 1998.

[17] H. Marchand and M. Le Borgne, ªPartial Order Control of
Discrete Event Systems Modeled as Polynomial Dynamical
Systems,º Proc. IEEE Int'l Conf. Control Applications, Sept. 1998.

[18] A. Benveniste, T. Gautier, P. Le Guernic, and E. Rutten,
ªDistributed Code Generation of Dataflow Synchronous Pro-
grams: The Sacres Approach,º Proc. 11th Int'l Symp. Languages for
Intensional Programming, Palo Alto, Calif., May 1998.

[19] T. Amagbegnon, P. Le Guernic, H. Marchand, and E. Rutten,
ªSignalÐThe Specification of a Generic, Verified Production Cell
Controller,º Formal Development of Reactive SystemsÐCase Study
Production Cell, chapter VII, pp. 115±129, Springer-Verlag, Jan.
1995.

[20] E. Marchand, E. Rutten, H. Marchand, and F. Chaumette,
ªSpecifying and Verifying Active Vision-Based Robotic Systems
with the Signal Environment,º Int'l J. Robotics Research, vol. 17, no.
4, pp. 418±432, Apr. 1998.

HerveÂ Marchand received the master's degree
in mathematics from the UniversiteÂ de Rennes 1
in 1993 and a PhD in computer science from the
University of Rennes 1 in 1997. From November
1997 through October 1998, he was a post-
doctoral fellow at the University of Michigan, Ann
Arbor. Since 1998, he has held an INRIA
research position at IRISA, Rennes, on the
Real-Time Programming team, where the SIG-

NAL language is being designed. His research
interests include discrete events systems, polynomial dynamical
systems, supervisory control problems, and optimal control. He is also
interested in high-level languages for reactive and real-time systems
programming.

Mazen Samaan graduated from the �Ecole
Nationale SupeÂrieure de Techniques AvanceÂes
in 1983. He performed his doctorial thesis in
1989 at the Institut National Polytechnique de
Grenoble. Since 1990, he has been an engineer/
researcher at EDF. He worked on CCS-based
validation of communication protocol and on the
application of synchronous technology to control
and monitor electric power transformation posts.
Since 1995, he has managed action on using

formal description techniques for analyzing control and monitoring
systems for electric power generators. In this framework, his research
interests concern both advanced regulation and analysis of automatic
control systems.

MARCHAND AND SAMAAN: INCREMENTAL DESIGN OF A POWER TRANSFORMER STATION CONTROLLER USING A CONTROLLER... 13

