
POP POP_Tool_DESIGN Page 1/13

POP (Polychrony On Polarsys)
A TOOLSET FOR SIGNAL

POP Tool Design

V1.0

Author(s) Checked by Approval

Name Members of the TEA
Team

Loïc Besnard **

Thierry Gautier

Paul Le Guernic

Jean-Pierre Talpin

Company INRIA INRIA, **CNRS(SED) INRIA

Department TEA Team TEA Team TEA Team

Date April 2014 April 2014 April 2014

Visa

Summary Design documentation of the POP platform, a front-end to the
SIGNAL TOOLBOX under Eclipse.

Attention : la responsabilité des entreprises et des organismes ayant participé à
l'élaboration de ce document ne peut en aucun cas être engagée en cas de dommages
ou de pertes résultant de l'utilisation ou de l'exploitation des informations qui y sont
contenues.

Disclaimer : Contractors participating to this report shall incur no liability whatsoever for
any damage or loss which may result from the use or exploitation of information and/or
Rights contained in this report.

Apr 24, 2014

POP POP_Tool_DESIGN Page 2/13

Table of Contents
1 Preface..3

1.1 Table of versions...3
1.2 Table of references and applicable documents..3
1.3 Acronyms and glossary...3

2 Subject..4
2.1 Purpose of the document..4
2.2 Editing particularities...4

2.2.1 Changes identification..4
2.2.2 Temporary editing..4

2.3 Application scope..4
2.4 Edition and evolution of the document ...4

2.4.1 Responsibilities..4
2.4.2 Evolutions ..5

3 Context and environment..5
3.1 SIGNAL language..5
3.2 Polychrony toolset...5

4 Justification of design choices..8
5 Architecture description..8

5.1 Static architecture..8
5.2 Dynamic architecture...10

6 Design description..11
6.1.1 The general architecture of the SIGNAL TOOLBOX software11
6.1.2 The general architecture of the POP software..11

6.1.2.1 The SSME definition...11
6.1.2.2 The compilation scenarios..12
6.1.2.3 The connection to the SIGNAL TOOLBOX..12
6.1.2.4 The deployment of the POP Platform ..12
6.1.2.5 The documentation...12
6.1.2.6 The Help ...12

Index of Illustrations

Apr 24, 2014

POP POP_Tool_DESIGN Page 3/13

1 Preface

1.1 Table of versions

Version Date Description & rationale of
modifications

Sections modified

1.0 15/04/2014 First version

1.2 Table of references and applicable documents

Reference/
Applicable

Reference Title & edition Author or
editor

Year

1.3 Acronyms and glossary

Term Description

SSME Signal Syntax Model under Eclipse

DCGraph Data Control Graph

Apr 24, 2014

POP POP_Tool_DESIGN Page 4/13

2 Subject

2.1 Purpose of the document

This document is the design documentation for the tool POP (Polychrony On Polarsys).

It defines the components of the tool and the dependencies, the API and the detailed
design. It can also define the dynamic architecture if needed.

2.2 Editing particularities

2.2.1 Changes identification

All the changes made since the previous publication are identified using the sign | in

the left margin of each line holding a modification.

2.2.2 Temporary editing

Special points are signaled like this :

. ***temporary***

. ***incomplete***

. ***to be defined***

. ***to be confirmed***

2.3 Application scope

This document is applicable for the tool POP that will be integrated in Polarsys.

2.4 Edition and evolution of the document

2.4.1 Responsibilities

Author

The design document is written by members of the TEA Team (INRIA Rennes Bretagne
Atlantique/IRISA).

Checked by

The design document will be checked by Loïc Besnard, Thierry Gautier and Paul Le
Guernic.

Approval

The design document will be approved by Jean-Pierre Talpin.

Diffusion

The design document is provided to each member of the development team for
application. It is also available on the forge with the source code of the tool.

Apr 24, 2014

POP POP_Tool_DESIGN Page 5/13

2.4.2 Evolutions

The members of the TEA Team (INRIA Rennes Bretagne Atlantique/IRISA) are
responsible of the evolution of the document.

This document shall be modified in case of change of the design of the tool.

3 Context and environment
 The POLYCHRONY TOOLSET, is an Open Source development environment for
critical/embedded systems. It is based on SIGNAL, a real-time polychronous dataflow
language. It provides a unified model-driven environment to perform design exploration by
using top-down and bottom-up design methodologies formally supported by design model
transformations from specification to implementation and from synchrony to asynchrony. It
can be included in heterogeneous design systems with various input formalisms and
output languages.

3.1 SIGNAL language

 SIGNAL is a specification and programming language for critical/real-time embedded
applications. The main features of the SIGNAL languages are synchronized flows (flows +
synchronization) and processes: a process is (recursively) a set of equations over
synchronized flows describing both data and control. The SIGNAL formal model provides
the capability to describe systems with several clocks (polychronous systems) as relational
specifications. Relations are mandatory to write partial specifications, to specify non-
deterministic devices (for instance a non-deterministic bus), and to abstract the behavior
of external processes (for instance an unsafe car driver). Using SIGNAL allows to specify
an application, to design an architecture, to refine detailed components downto RTOS or
hardware description. The SIGNAL model supports a design methodology which goes
from specification to implementation, from abstraction to concretization, from synchrony to
asynchrony.

More details can be found in a short introduction to SIGNAL language on the Polychrony
web site.

3.2 Polychrony toolset

 The POLYCHRONY TOOLSET provides a formal framework:

• to validate a design at different levels, by the way of formal verification and/or
simulation

• to refine descriptions in a top-down approach,

• to abstract properties needed for black-box composition,

• to assemble heterogeneous predefined components (bottom-up with COTS).

• to generate executable code for various architectures

The POLYCHRONY TOOLSET (See Illustration 1), contains three main components:

• The SIGNAL TOOLBOX, a batch compiler for the SIGNAL language, and a
structured API that provides a set of program transformations. The SIGNAL

Apr 24, 2014

http://www.irisa.fr/espresso/Polychrony/
http://www.irisa.fr/espresso/Polychrony/

POP POP_Tool_DESIGN Page 6/13

TOOLBOX can be installed without the other components.

 The sources of the SignalToolBox (under GPL V2 license) are
available on the Inria Polychrony web site.

• The SIGNAL GUI, a Graphical User Interface to the SIGNAL TOOLBOX (editor +
interactive access to compiling functionalities). SIGNAL GUI requires the SIGNAL
TOOLBOX (or an other component that redefines the SIGNAL TOOLBOX ApIs).

 The sources of the SignalToolBox (under GPL V2 license) are
available on the Inria Polychrony web site.

• The POP PLATFORM, a front-end to the SIGNAL TOOLBOX in the ECLIPSE
environment. POP PLATFORM requires the SIGNAL TOOLBOX (or an other
component that redefines the SIGNAL TOOLBOX ApIs). A meta model of Signal
called SSME (Signal Syntax Model under Eclipse) is integrated in POP.

 The sources of the POP platform (under EPL license) are available on
the Eclipse POP Polarsys web site.

The POLYCHRONY TOOLSET, also provides:

• libraries of SIGNAL programs,

• a set of SIGNAL programs examples,

• user oriented and implementation documentations,

• facilities to generate new versions.

Apr 24, 2014

http://polarsys.org/downloads/pop/
http://www.irisa.fr/espresso/Polychrony/download.php
http://www.irisa.fr/espresso/Polychrony/download.php
http://www.eclipse.org/
http://www.eclipse.org/

POP POP_Tool_DESIGN Page 7/13

The SSME model is used to import other formalisms (AADL, Geneauto/simulink,...) using
Meta-Model to Meta-model translators (ATL, Kermeta, Java,...). These translators are not
described here.

A SSME model as a Signal textual model may be compiled under the POP PLATFORM.
For that POP is connected with the SIGNAL TOOLBOX. It allows to obtain some
functionalities according to the compilation objective (see below). In the case of the batch
compiler, the functionalities are provided through options (given in the command line). In
the case of the SIGNAL GUI, they can be also applied interactively or in batch mode. And
for the POP PLATFORM, the functionalities can be applied interactively, in batch mode,
and also by specification of compilation scenarios.

Applying a compilation objective may modify the internal representation of a program
(DCGraph: Data Control Graph). The result of the transformation can be rendered as a
new Signal program. Such a graph is a representation of the program/system, at the
different steps of its development, according to the Signal polychronous semantic model.
Thus, it can be viewed/displayed by/to the user.

Other functionalities allow to produce code (sequential, distributed) for simulation (C, C++,
Java) or for external tools such as SynDEx, Sigali (an associated formal system for formal

Apr 24, 2014

Illustration 1: The Polychrony toolset

POP POP_Tool_DESIGN Page 8/13

verification and controller synthesis), Lustre, Dot.

This document is reduced to the description of the POP platform and it connection with
the SIGNAL TOOLBOX.

4 Justification of design choices
The SIGNAL TOOLBOX services have evolved over a continuous development and
improvement research effort spanning since 1995, whereas the Eclipse Plug-ins date back
since 2005. Consequently, the design of the POP PLATFORM was largely influenced by
the SIGNAL TOOLBOX existing services.

In the following we will only delve into justification of the design choices at a high level
view of the POLYCHRONY TOOLSET. Detailed information of the design choices
(algorithms used, complexity measures, proofs of correctness, benchmarks, etc.) for the
SIGNAL TOOLBOX services has been amply given in the form of research papers,
technical reports, and PhD theses available from TEA team web site.

By contrast, detailed information about the design choices about the POP PLATFORM
plug-ins will be omitted on the grounds that throughout most of the plug-ins development,
automatic code generators were used, as will be noted below.

Many plug-ins of the POP platform are based on EMF Ecore meta-models. A reflexive
editor has been generated using the EMF generation facilities from the SSME meta-
model.

To allow to user to define its compiling scenario, a compilation scenario meta-model has
been defined. POP provides the reflexive editor generated from this meta-model. An
Eclipse view has been added to help the user to build a compilation scenario in a similar
way as in the use of the classical SIGNAL GUI where one uses the interactive compilation.

The choice of using EMF has been made globally for all tools of the OpenEmbeDD and
TopCased projects.

To access the Polychrony services under the Eclipse interface, the SIGNAL TOOLBOX
has been tightly bound to the reflexive editor. The main goal for this connection is to
obtain traceability between the SSME models and the results of a compilation. Thus, it
becomes possible to indicate directly on the source model the compilation errors. Such
connection already exists between the Polychrony SIGNAL TOOLBOX services and the
Polychrony SIGNAL-GUI classical graphical editor.

5 Architecture description

5.1 Static architecture

Here we give (see Erreur : source de la référence non trouvée) a global view of the
SIGNAL TOOLBOX environment. Then, we explain the connection of the SIGNAL
TOOLBOX to the Eclipse plug-ins:

● A program represented as an Abstract Tree is analyzed (the form is verified:
declarations, references to models are solved, etc.) and reduced to a “subset of
Signal”. The resulting object can be seen as a Signal program without “syntactic

Apr 24, 2014

http://www.topcased.org/
http://openembedd.org/
http://www.irisa.fr/espresso/results?set_language=en&cl=en

POP POP_Tool_DESIGN Page 9/13

sugar” of the textual form.

● Then a DCGraph is produced from this “reduced form”: this graph represents the
synchronizations of the program (control part) and the calculus of the program
(data part).

● It is on this graph that the functionalities are applied:

 Application of a functionality can modify the graph. In this case, it results in a
new Signal program. Such a graph is the representation of a model, at the
different steps of its development, in the Signal polychronous semantic model.
So, it can be displayed to the user (textual form, SSME model...).

 Other functionalities allow to produce code for simulation (C, C++, Java) or for
external tools (SynDEx, Sigali...).

The Signal Abtract Trees transformations (SynAPI), the production of the DCGraph
(SynSemAPI) and the functionalities applied on a DCGraph (SemAPI) are provided by the
Signal ToolBox for external tools (Signal GUI, POP Platform,...).

Apr 24, 2014

POP POP_Tool_DESIGN Page 10/13

The connection to the Signal Toolbox services

The connection between the SSME Eclipse editors and the SIGNAL TOOLBOX consists
in a Java-to-C interface to communicate with the SIGNAL TOOLBOX through native
libraries. The principle of the communication is the following: the SSME model is
transformed into an Signal abstract syntax tree representation shared with the SIGNAL
TOOLBOX (using the SynAPI provided by the Signal ToolBox), then, the steps described
above are applied to this abstract tree (using the SynSemAPI and the SemAPI).

5.2 Dynamic architecture

The chief internal representation for the SIGNAL TOOLBOX services is the DCGraph
mentioned above. The DCGraph is modified by application of each functionality. Roughly,
all possible dynamic architecture descriptions of this part of the Polychrony tool
correspond to a specific path through the static architecture described above. Such a
specific path must agree with the compilation objective demanded.

The information communicated between reflexive editors, GUI and compilation scenarios
is through XMI files containing information conforming to a reference meta-model (SSME
meta-model and configuration files). A description of the dynamic architecture details of
standard tools (EMF and graphical edifor generators) for generation of the various editors
is beyond the scope of the TEA team.

Apr 24, 2014

Illustration 2: The Signal ToolBox high level architecture

SME
XML model

XMI
generator

Synchron abstract tree

SIGNAL term

SIGNAL

DCGraph

SIGNAL unparse

LL term

LS in
Lustre, SynDEx

LL in
Sigali, Java, C++, C

BDDST

S
yn

A
P

I

SIGNAL parse

S
e

m
S

yn
A

P
I

S
e

m
A

P
I

S
yn

A
P

I

SIGNAL tree to graph

Graph to synchron tree

DCGraph
transformations

LS unparse

LL Generator

Dot
term

Dot
Generator

SemAPI

POP POP_Tool_DESIGN Page 11/13

6 Design description

6.1.1 The general architecture of the SIGNAL TOOLBOX software

The design of the Polychrony SIGNAL ToolBox is described in the document provided
with the SIGNAL TOOLBOX.

The SemAPI and the SynAPI provided by the SIGNAL ToolBox are used by the POP
PLATFORM.

6.1.2 The general architecture of the POP software

The POP software is composed of the following parts:

• the plug-ins that define the SSME meta-model and the associated reflexive editor

• the plug-ins that define the connection to the SIGNAL TOOLBOX.

• the plug-ins that define the compilation scenarios of a SSME model or Signal
Textual model.

• The plug-ins that define a Signal textual editor under Eclipse.

• The features used for the deployment

• The plug-in that define the update site

• The documentation plug-in

• The help plug-in

6.1.2.1 The SSME definition

As mentioned previously, the structure of POP is based on the EMF and automatic
generators. The integration of POP in Eclipse is composed of:

A reflexive editor to manage SSME models (conform to the SSME meta-model). It is
composed of the following plug-ins:

○ org.eclipse.pop.ssme: contains the definition of the SSME model
(ssme.ecore), the Java classes (interface/implementation), which represent
each concept of the SSME meta-model and the way they are serialized in XMI.
The construction of the native AST (used for the connection to the SIGNAL
TOOLBOX) is done by these classes. The “model” directory of this plug-in
contains the SSME meta-model.

○ org.eclipse.pop.ssme.edit: contains the Java classes which manage the
connection between the model objects and the Eclipse property view.

○ org.eclipse.pop.ssme.editor: contains the Java classes for the SSME reflexive
editor and for the SSME wizard to create new models.

Apr 24, 2014

POP POP_Tool_DESIGN Page 12/13

6.1.2.2 Connection to the SIGNAL TOOLBOX

The connection to the SIGNAL TOOLBOX is composed of one plug-in:

○ org.eclipse.pop.ssme.polychrony is the plug-in, which contains the Java
classes of the JNI interface corresponding to the call to Polychrony SIGNAL
TOOLBOX services.

6.1.2.3 Compilation scenarios

A reflexive editor to manage SSME compilation scenario models has been developed. It is
composed of the following plug-ins:

○ org.eclipse.pop.ssme.compilation,
org.eclipse.pop.ssme.compilation.edit,
org.eclipse.pop.ssme.compilation.editor: are the equivalent of the previously
presented plug-ins for the SSME reflexive editor. The “model” directory of the
first plug-in here contains the SSME compilation scenario meta-model.

○ org.eclipse.pop.ssme.compilation.utils: contains the Java classes for the
compilation scenario view that guides the user through the definition of correct
compilation scenarios. It also defines all actions that are available to the user to
call SIGNAL TOOLBOX native services.

6.1.2.4 Signal textual editor

A Signal textual editor under Eclipse (Signal mode) is also provided in a plug-in called
org.eclipse.pop.ssme.texteditor. It is used when a file suffixed by sig or SIG is edited.

6.1.2.5 Deployment of the POP Platform

The following features and plug-ins are defined to allow to deploy POP:

○ org.eclipse.pop.ssme.feature: the reflexive editor + the documentation + the
connection to the native compiler (assuming dependencies of this feature have
already been properly installed/resolved/deployed).

○ org.eclipse.pop.ssme.compilation.feature: The reflexive editor for the
compilation scenario models + the access to native compiler services + the
documentation.

○ org.eclipse.pop.ssme.texteditor.feature: The signal textual editor.

○ org.eclipse.pop.ssme.site: plug-in that manages the production of the POP
update site.

6.1.2.6 Documentation

The documentation of the SSME environment, the connection to the SIGNAL TOOLBOX
and the installation guide are managed in a plug-in called

• org.eclipse.pop.ssme.documentation.

The documents are generated from OpenOffice documents.

Apr 24, 2014

POP POP_Tool_DESIGN Page 13/13

The documentation of the sources are generated (using the Eclipse “Project->generate
javadoc” action) in the doc directory of the following projects:

◦ org.eclipse.pop.ssme : for the SSME meta-model, the reflexive editor and the
connection to the SIGNAL-TOOLBOX.

◦ org.eclipse.pop.ssme.compilation for the reflexive editor to manage SSME
compilation scenario

◦ org.eclipse.pop.ssme.texteditor for the Signal textual editor under Eclipse

6.1.2.7 Help

The help of the POP platform is managed in a plug-in called

org.eclipse.pop.ssme.help.

The help is generated from doxygen documents (using the “build documentation” action of
the Eclipse menu).

Apr 24, 2014

	1 Preface
	1.1 Table of versions
	1.2 Table of references and applicable documents
	1.3 Acronyms and glossary

	2 Subject
	2.1 Purpose of the document
	2.2 Editing particularities
	2.2.1 Changes identification
	2.2.2 Temporary editing

	2.3 Application scope
	2.4 Edition and evolution of the document
	2.4.1 Responsibilities
	2.4.2 Evolutions

	3 Context and environment
	3.1 SIGNAL language
	3.2 Polychrony toolset

	4 Justification of design choices
	5 Architecture description
	5.1 Static architecture
	5.2 Dynamic architecture

	6 Design description
	6.1.1 The general architecture of the SIGNAL TOOLBOX software
	6.1.2 The general architecture of the POP software
	6.1.2.1 The SSME definition
	6.1.2.2 Connection to the SIGNAL TOOLBOX
	6.1.2.3 Compilation scenarios
	6.1.2.4 Signal textual editor
	6.1.2.5 Deployment of the POP Platform
	6.1.2.6 Documentation
	6.1.2.7 Help

