
POP POP_SPEC Page 1/8

POP
A TOOLSET FOR SIGNAL

POP Specification

V1.0

Author(s) Checked by Approval

Name Members of the
TEA Team

 Loïc Besnard **

Thierry Gautier

Paul Le Guernic

Jean-Pierre Talpin

Company INRIA INRIA, **CNRS (SED) INRIA

Department TEA Team TEA Team TEA Team

Date April 2014 April 2014 April 2014

Visa

Summary Specification of the Polychrony SSME, a front-end to the Signal
ToolBox in the Eclipse environment.

Attention : la responsabilité des entreprises et des organismes ayant participé à
l'élaboration de ce document ne peut en aucun cas être engagée en cas de dommages
ou de pertes résultant de l'utilisation ou de l'exploitation des informations qui y sont
contenues.

Disclaimer : Contractors participating to this report shall incur no liability whatsoever for
any damage or loss which may result from the use or exploitation of information and/or
Rights contained in this report.

Apr 24, 2014

POP POP_SPEC Page 2/8

Table of Contents
1 Preface..3

1.1 Table of versions...3
1.2 Table of references and applicable documents..3
1.3 Acronyms and glossary...3

2 Subject..3
2.1 Purpose of the document..3
2.2 Editing particularities...4

2.2.1 Changes identification..4
2.2.2 Temporary editing..4

2.3 Application scope..4
2.4 Edition and evolution of the document ...4

2.4.1 Responsibilities..4
2.4.2 Evolutions ...4

3 Context and environment..4
4 Functional requirements...5

4.1 Editing..5
4.2 Compiling...5
4.3 Compiling scenario managing...7

5 Operational environment requirements..7
6 Interface requirements..8
7 Performance requirements...8
8 Traceability..8

Index of Illustrations

Apr 24, 2014

POP POP_SPEC Page 3/8

1 Preface

1.1 Table of versions

Version Date Description & rationale of
modifications

Sections modified

1.2 Table of references and applicable documents

Reference/
Applicable

Reference Title & edition Author or
editor

Year

1.3 Acronyms and glossary

Term Description

SSMESSME Signal Syntax meta-model under Eclipse

2 Subject

2.1 Purpose of the document

This document is the specification for the tool POP (Polychrony on Polarsys)

It defines the requirements for the tool and the performances.

Apr 24, 2014

POP POP_SPEC Page 4/8

2.2 Editing particularities

2.2.1 Changes identification

All the changes made since the previous publication are identified using the sign | in

the left margin of each line holding a modification.

2.2.2 Temporary editing

Special points are signaled like this :

. ***temporary***

. ***incomplete***

. ***to be defined***

. ***to be confirmed***

2.3 Application scope

This document is applicable for the tool POP that will be integrated in Polarsys.

2.4 Edition and evolution of the document

2.4.1 Responsibilities

Author

The specification document is written by the members of the TEA Team (INRIA/IRISA,
Rennes).

Checked by

The specification document will be checked by Loïc Besnard and Thierry Gautier.

Approval

The specification document will be approved by Jean-Pierre Talpin.

Diffusion

The specification document is provided to each member of the development team for
application. It is also available on the forge with the source code of the tool.

2.4.2 Evolutions

The members of the TEA Team (INRIA/IRISA, Rennes) are in charge of the evolution of
the document.

This document shall be modified in case of change of the requirements of the tool.

3 Context and environment

Apr 24, 2014

POP POP_SPEC Page 5/8

The Polychrony plug-ins under Eclipse (called POP platform) allow to develop applications
using the Signal language. The Signal language, a polychronous data-flow language, and
the Polychrony toolset for Signal have been designed at IRISA. The Plug-in suite is
composed of several plug-ins which correspond to:

● the reflexive editor,

● the reflexive editor and an Eclipse view to create compilation scenarios,

● the connection to the Polychrony services (called Signal ToolBox). A service can be
applied or not according to the objectives of the compiling defined in the
compilation scenarios.

The reflexive editor is the plug-in generated by the Eclipse Modeling Framework (EMF)
from the meta-model of Signal, referred to as the SSME meta-model (Signal Syntax meta
model under Eclipse). It allows to specify a SSME model by creating the equivalence of an
abstract syntax tree where the syntax is given by the meta-model. SSME may be also
used as a pivot language for importing other formalisms (AADL, Geneauto/simulink,...).

The compiling of a Signal textual model or a SSME model is the application of some
functionalities (optimizations, code generation, formal verifications...). provided by the
external (to POP) Signal ToolBox. These functionalities are proposed in interactive
compiling mode, for the definition of a scenario compilation, and also in batch mode
compiling by options. A functionality modifies the internal representation of a Signal
program (it is a new Signal program, that can be visualized using the modeler) whereas a
generator translates this representation into a specific external format (C, C++, Java...).
During the “compiling” a trace is returned to the user in a specific window.

4 Functional requirements

As shown before, the plug-ins allow to edit, and compile Signal programs using the SSME
model or Signal Textual form. In this section, the functional requirements are listed. Each
requirement is tagged with R_ToolName_Category_nnn in order to facilitate the
traceability, with

• R = Requirement,
• ToolName = the name or an acronym of the tool (POP),
• Category = the name of a coherent group of functionalities. We distinguish the two

categories “editing” and “compiling”.
• nnn = a number on 3 digits.

4.1 Editing

*** to be defined***

4.2 Compiling

The functionalities the user can apply on a Signal/SSME model are composed of the

• transformations : the Signal program is rewritten in an another program by
applications of some rules.

Apr 24, 2014

http://www.irisa.fr/

POP POP_SPEC Page 6/8

• export tools: the Signal program is exported for some external tools,

• code generators: the Signal program is exported in programming language (C, C+
+,Java)

• export Signal: the Signal program is exported as a new program Signal.

For more details about how to apply these functionalities, see the POP User Guide
provided in the Eclipse help (Help->Help Contents->POP documentation).

In the following rules, we use the Signal syntax; for more information about the semantics
of each element, consult the Signal v4 reference manual.

These functionalities are proposed in interactive compiling mode, for the definition of a
scenario compilation, and also available in batch mode compiling using options (given in
parenthesis).
Transformations

• /R_POP_compiling_001/ Retiming (-dr): performs an UPWARD normalization of
delayed signals. It rewrites synchronous function f such that Y := f(X1 $ m1 init
V1,...,Xn $ mn init Vm) into Y := y' $ j init f(V1',...,Vm') and y' := f(X1 $ m1' init
V1",...., Xm $ mn' init Vm").

• /R_POP_compiling_002/ Booleans to events (-crew): performs an event
normalization of boolean clock expressions (example: when (a and b) -> when a
when b).

• /R_POP_compiling_003/ Signal unifications (-su): performs a signal syntactic
equivalence reduction. For example, for (| x:=E | y :=E |) x is replaced by y.

• /R_POP_compiling_004/ Clock calculus (-poly): performs the resolution of the
clock systems using a triangularization technique. The result is a forest of clock
trees (hierarchy with several roots).

• /R_POP_compiling_005/ Endochronisation(-endo): reduces the hierarchy with

several roots (polychronous model) to one root (endochronous model).

• /R_POP_compiling_006/ Events to booleans (-bool) : produces an

endochronous model without "events".

• /R_POP_compiling_007/ Sequential clustering (-clu) : performs a code

separation with respect to input predecessors equivalence.

• /R_POP_compiling_008/ Abstraction (-spec): computes the abstraction of the

program (I/O data dependences, I/O clock relations, the "black Box" or the "grey

Box" abstraction representation).

• /R_POP_compiling_009/ Sequentializing (-seq): produces a SIGNAL sequential

code (reinforcing of the dependencies)

• /R_POP_compiling_010/ Flattening (-flat): produces the SIGNAL code in which

the hierarchy of clocks is reduced (flattened) to one level.

Export tools

Apr 24, 2014

POP POP_SPEC Page 7/8

• /R_POP_compiling_011/ Sigali: Generates code (.z3z files) for Sigali tool, used to

prove dynamical properties.

• /R_POP_compiling_012/ Lustre: Generates lustre code (.lus file).

• /R_POP_compiling_013/ Syndex: Generates code (.sdx file) for SynDEx tool, used

for code distribution.

Code generators

• /R_POP_compiling_014/ C ANSI: Generates C code (.c and .h files), with clusters

if the Sequential clustering ha been applied.

• /R_POP_compiling_015/ C++: Generates C++ code (.cpp and .h files), with

clusters if the “Sequential clustering” has been applied.

• /R_POP_compiling_016/ Java: Generates Java code (.java) with clusters if the

“Sequential clustering” has been applied.

Export Signal

• /R_POP_compiling_017/ Signal Textual: produces the textual Signal file for a

SSME model.

• /R_POP_compiling_018/ Signal Model (SSME): produces the SSME form for a

textual Signal file.

• /R_POP_compiling_019/ Signal Textual (LIS): produces a Signal file containing

the pretty printed definition.

• /R_POP_compiling_020/ Signal Textual (TRA): produces a Signal file containing

the result of the applied transformations.

• /R_POP_compiling_021/ Signal Abstraction: produces a Signal file containing

the abstraction of the compiled model (I/O clock relations, I/O dependences, ...).

• /R_POP_compiling_022/ Profiling: produces a morphism of the compiled

program for profiling. The path of the morphism table must be in the

SIGNAL_LIBRARY_PATH shell variable.

4.3 Scenarios compiling

*** to be defined***

5 Operational environment requirements

to be confirmed

Software requirements follow:

● (R_POP_SoftwareEnvironment_001) JRE: Oracle Java JRE 1.6

Apr 24, 2014

http://www.syndex.org/
http://www.irisa.fr/espresso/Polychrony/Sigali.php

POP POP_SPEC Page 8/8

● (R_POP_SoftwareEnvironment_002) Eclipse: Eclipse Modeling 4.3 (Kepler)

● (R_POP_SoftwareEnvironment_003) C/C++ compiler: If compilation of the
generated C/C++ programs is desired for performing simulations the user may have
a C/C++ compiler.

● (R_POP_SoftwareEnvironment_004) Java compiler: If compilation of the
generated Java programs is desired for performing simulations the user may have
a Java compiler.

● (R_POP_SoftwareEnvironment_005). Explicit dependencies are shown in the
Polychrony SCP document.

There is no special hardware requirement for using the POP tool, we assume that a
standard machine in the market won't pose problems for the processing required by the
POP tool. The most heavy program is not the POP tool but the Eclipse environment.

● (R_POP_HardwareEnviroment_101) Processor: Our development and
experiments are run under PC/laptop machines with Pentium 4, Core Duo or Core
2 Duo processors. Anything similar or better would suffice.

● (R_POP_HardwareEnvironment_102) RAM memory: 1Gigabyte minimum, given
the demands of Eclipse.

● (R_POP_HardwareEnvironment_103) Hard disk free space: For the binary
distribution it is required 12Mb of free disk space. The binaries with the sources
demand 95Mb of free disk space.

6 Interface requirements

***incomplete**

 It is a set of plug-ins under Eclipse, so Eclipse must be available and running.

7 Performance requirements

This is so subjective, it depends on the machine (hardware) and the concurrent
tasks executing at the time of launching Eclipse.

Also the environment configuration of Eclipse shall count.

8 Traceability

The effect of the application of a functionality during the “compiling” step must be returned
to the user

(textual form or graphical form).

Apr 24, 2014

	1 Preface
	1.1 Table of versions
	1.2 Table of references and applicable documents
	1.3 Acronyms and glossary

	2 Subject
	2.1 Purpose of the document
	2.2 Editing particularities
	2.2.1 Changes identification
	2.2.2 Temporary editing

	2.3 Application scope
	2.4 Edition and evolution of the document
	2.4.1 Responsibilities
	2.4.2 Evolutions

	3 Context and environment
	4 Functional requirements
	4.1 Editing
	4.2 Compiling
	4.3 Scenarios compiling

	5 Operational environment requirements
	6 Interface requirements
	7 Performance requirements
	8 Traceability

