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Abstract Modeling is widely accepted to be essential to all design activity. A
major benefit is that formal methods can be applied for analysis and predictability.
In POLYCHRONY, the SIGNAL language tool-set, we have defined a component-
based approach to the modeling of avionics applications. A library of so-called
APEX services relying on the avionics standard ARINC 653 hasbeen defined
in the SIGNAL model. This allows the access to the formal tools and techniques
available within POLYCHRONY for verification and analysis.
In this paper, we illustrate this approach by considering a small example avio-
nics application. We show how an associated SIGNAL model is obtained for the
purpose of temporal validation. This brings out the capability of the SIGNAL lan-
guage to seamlessly address critical issues in the design ofreal-time systems.

Keywords Component-based Modeling, Avionics applications,SIGNAL , Tempo-
ral Validation.

1 Introduction

Today, in the design of embedded systems such as avionics systems, key challenges are
typically the correctness of the design with respect to the requirements, the development
effort and time to market, and the correctness and reliability of the implementation. So,
one can observe the need of a seamless design process which takes into account these
challenges. In such a context, modeling plays a central role. Among its advantages
[15], we mention the enhanced adaptability of models and their parameters; more gene-
ral descriptions by using genericity, abstraction, behavioral non determinism, and the
possibility of applying formal methods for analysis and predictability.

Several model-based approaches have been proposed [16] [11] [13] [2] for the
development and verification of embedded systems. They use different kinds of for-
malisms for the modeling and provide tools for system development and validation.
While our approach aims at the same objective, its main particularity relies on the use
of a single semantical model, SIGNAL [9], to describe embedded applications from? This work has been supported by the european project IST SAFEAIR (Advanced Design Tools

for Aircraft Systems and Airborne Software) [10].



specification to implementation with the possibility of verification and analysis. This
facilitates the validation. POLYCHRONY, the tool-set for SIGNAL , which is developed
by INRIA1 (http://www.irisa.fr/espresso/Polychrony ), offers the re-
quired functionalities (high level specifications, modular verification and analysis, au-
tomatic code generation, etc.).

The study presented in this paper is part of a more general design methodology for
distributed embedded applications, defined earlier duringthe SACRES project [8] and
currently improved. This methodology is based on an iterative application of transfor-
mations on a SIGNAL model that preserve semantic properties. During the transforma-
tions, “abstract” components can be instantiated in different ways from modules related
to actual target architecture features, addressing various purposes (e.g. embedded code
generation, temporal validation). In this context, a library of specific components has
been defined in SIGNAL . It includes on the one hand elementary communication mecha-
nisms likeFIFOs [7], and on the other hand more complex models like those presented in
[6] for the description of avionics applications based on theARINC standard. In particu-
lar, we illustrate here how the SIGNAL model corresponding to an avionics application
can be specified using these components in order to perform analysis. As such analysis,
we present the techniques implemented in POLYCHRONY for performance evaluation.

The remainder of the paper is organized as follows: Section 2first discusses the
ARINC 653 specification. Then, Section 3 introduces the main features of the SIG-
NAL language, while Section 4 concentrates on the modeling of anavionics applica-
tion in SIGNAL . In section 5, we address issues of performance evaluation for temporal
validation based on the SIGNAL language. Finally, conclusions are given in Section 6.

2 The standard ARINC 653

The ARINC specification 653 [4] defines the interface between the application soft-
ware and the core software (OS, system specific functions), calledAPEX (APplication
EXecutive). This specification is based on the Integrated Modular Avionics approach
(IMA ) [3]. In an IMA system, several avionics applications which constitute a core
module, can be hosted on a single shared computer system. So,one critical aspect is
to ensure that shared computer resources are safely allocated so that no fault propa-
gation occurs from one hosted avionics function to another.This is addressed using a
partitioning of the system. Basically, it consists in a functional decomposition of the
avionics applications, with respect to available time and memory resources.
A partition [4] is an allocation unit resulting from this decomposition. Suitable mecha-
nisms are provided in order to prevent a partition from having “abnormal” access to the
memory area of another partition. The processor is allocated to each partition for a fixed
time window within a major time frame maintained by the core module levelOS. A par-
tition cannot be distributed over multiple processors neither in the same core module
nor in different core modules. Partitions communicate asynchronously via logicalports
andchannels.
Every partition is composed of one or moreprocesseswhich represent the executive

1 There is also an industrial version, SILDEX, implemented and commercialized by TNI-
Valiosys (http://www.tni-valiosys.com ).



units2. Processes run concurrently to achieve functions associated with the partition
they are contained in. Each process is uniquely characterized by information (priority,
deadline time, etc.), useful to the partition level OS whichis responsible for the cor-
rect execution of processes within a partition. The scheduling policy for processes is
priority preemptive. The communications between processes are achieved by three ba-
sic mechanisms. The boundedbuffer is used to send and receive messages. It allows
storing messages inFIFO queues. Theeventpermits the application to notify an oc-
currence of a condition to processes which may wait for it. The blackboardis used to
display and read messages; no message queues are allowed, and any message written in
a blackboard remains there until the message is either cleared or overwritten by a new
instance of the message. Synchronizations are achieved by asemaphore.

TheAPEX interface includes services for communication between partitions on the
one hand, and processes on the other hand; services for the synchronization of pro-
cesses; services for management of partitions and processes, etc.

3 About the SIGNAL language

The underlying theory of the synchronous approach [1] is that of discrete event sys-
tems and automata theory. Time is logical: it is handled according to partial order and
simultaneity of events. Durations of execution are viewed as constraints to be verified
at the implementation level. Typical examples of synchronous languages are ESTEREL,
LUSTRE, or SIGNAL which is used here.

The SIGNAL language [9] handles unbounded series of typed values(xt)t2N, de-
noted asx in the language, implicitly indexed by discrete time (denoted by t in the
semantic notation): they are calledsignals. At a given instant, a signal may be present,
then it holds a value; or absent, then it is denoted by the special symbol? in the seman-
tic notation. There is a particular type of signals calledevent . A signal of this type is
alwaystrue when it is present (otherwise, it is?). The set of instants where a signalx
is present is called itsclock. It is noted aŝx (which is of typeevent ) in the language.
Signals that have a same clock are said to besynchronous. A SIGNAL program, also
calledprocess, is a system of equations over signals. The SIGNAL language relies on a
handful of primitive constructs which are combined using a composition operator. They
are:

– Functions.y:= f(x1,...,xn) , whereyt 6=?, x1t 6=?, ::: , xnt 6=?, and8t:yt = f(x1t; :::; xnt).
– Delay.y:= x $ 1 init y0 , wherext 6=?, yt 6=?; 8t > 0: yt = xt�1; y0 = y0.
– 2-arguments down-sampling.y:= x when b , whereyt = xt if bt = true, elseyt =?.
– Deterministic merging.z:= x default y , wherezt = xt if xt 6=?, elsezt = yt.
– Hiding. P where x denotes that the signalx is local to the processP.

– Synchronous parallel compositionof P andQ, encoded by(| P | Q |) . It corresponds
to the union of systems of equations represented byP andQ.

2 In fact, there is an analogy between ARINC partitions and UNIX processes on the one hand,
and ARINC processes and UNIX tasks on the other hand.



These core constructs are of sufficient expressive power to derive other constructs
for comfort and structuring. We mention some of the derived operators used in the next
sections:

– 1-argument down-sampling.y:= when b , whereyt = true if bt = true, elseyt =?.
– Synchronizer.x1 ˆ= ... ˆ= xn , wherex1t 6=?, ::: , xnt 6=? (i.e.x1; :::; xn are

synchronous).
– Clock union. y := x1 ˆ + ... ˆ + xn , whereyt 6=?, (x1t 6=? _::: _ xnt 6=?).
– Memorizing. y := var x init y0 , wherey always carries the latest value ofx . The

clock of y is defined by the context in which it is used.

Verification and analysis of SIGNAL programs. Two kinds of properties may be
distinguished:invariant properties (e.g. a program exhibits no contradiction between
clocks of involved signals) on the one hand, anddynamicalproperties (e.g. reachabi-
lity, liveness) on the other hand. The SIGNAL compiler itself addresses only invariant
properties. For a given SIGNAL program, it checks the consistency of constraints be-
tween clocks of signals, and statically proves properties (e.g. the so-calledendochrony
property guaranteeing determinism). A major part of the compiler task is referred to as
theclock calculus. Dynamical properties are addressed using other connectedtools like
SIGALI [14], an associated formal system that can be used for model checking. Perfor-
mance evaluation is another functionality of POLYCHRONY, Section 5 discusses it in a
detailed way.

Finally, put together, all these features of SIGNAL programming favor modular and
reliable designs.

4 Modeling of an avionics application

A presentation of the basic component models required for the description of avionics
applications has been given in [6]. We discussed the modeling of APEX services (com-
munication and synchronization services, process management services, etc.). On the
other hand, a model has been proposed forARINC processes3. Here, we show how the
models can be used to describe avionics applications4. Moreover, we illustrate how per-
formance evaluation applies on the resulting description,for instance to determine the
worst case execution times of applications.

Informal specification of the application. figure 1 depicts the considered applica-
tion which is represented by a partition calledON FLIGHT. Roughly speaking, it is in
charge of computing the current position and the fuel level.A report message is pro-
duced in the following format:

[date_of_the_report::height::latitude::longitude::f uel_level]

The partition includes the following objects:
3 We use “ARINC processes” to distinguish from SIGNAL processes which are not identical.
4 The example considered in the following takes its inspiration from a real world avionics appli-

cation which is currently being modeled.
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Figure1. The partition ONFLIGHT.

– A blackboardboard , two buffersbuff1 andbuff2 , an eventevt , a semaphore
sema, and a sampling port5 s_port .

– A resourceGlobal_params contains parameters required by the partition pro-
cesses.

– There are three processes.
1. The processPOSITIONINDICATORfirst produces the report message which is

updated with the current position information (height, latitude and longitude).
It works as follows:

elaborate the report message and set the current date;
send a request to the process PARAMETERREFRESHER for a refreshment of global
parameters, via buff2 (in order to be able to update the report message with position
information);
wait for notification of end of refreshment, using evt;
read the refreshed position values displayed on board;
update the report message with height, latitude and longitude informations;
send the report message to the process FUELINDICATOR, via buff1;

2. The main task ofFUEL INDICATORis to update the report message (produced
by POSITIONINDICATOR) with the current fuel level.

if a message is contained in the buffer buff1then
retrieve this message;

end if
update it with the fuel level information from Globalparams, via a protected access
(using sema);
send the final report message via the sampling port sport;

5 A sampling port allows no message queuing. There are two kinds of ports:sourceanddes-
tination. A message remains in a source port until it is transmitted bythe channel or it is
overwritten by a new occurrence of the message. During transmissions, channels ensure that
messages leave source ports and reach destination ports in the same order. A received message
remains in the destination port until it is overwritten.



re-initialize evt;
3. Finally, the processPARAMETERREFRESHERrefreshes all the global parame-

ters used by the other processes in the partition.
if a refresh request arrives in the buffer buff2then

retrieve this message;
end if
refresh all the global parameters in Globalparams, using a protected access;
display refreshed position values on board;
notify the end of the refreshment, using evt;

From the above informal specification, we now derive an associated synchronous
model.

The SIGNAL model of the partition. The executive model of a partition consists of
three basic components: first, the executive units represented byARINC processes; se-
cond, the interactions between processes described byAPEX services; and finally, the
partition levelOSwhich allocates the resources (e.g. processor, communication mecha-
nisms) to processes within the partition.

Active_partition_ID

initialize

report1

report2

end_processing1

POSITION_INDICATOR{1}

end_processing2

FUEL_INDICATOR{2}

end_processing3

PARAMETER_REFRESHER{3}

global_params
board
buff1
buff2
s_port
evt
sema

CREATE_RESOURCES{}

Active_process_ID

timedout

PARTITION_LEVEL_OS{1}

Figure2. A SIGNAL model of the partition ONFLIGHT.

figure 2 depicts the model corresponding to the partitionON FLIGHT, obtained
with POLYCHRONY. We clearly distinguish the partition levelOS as well as the three
processes. The box that contains the SIGNAL processCREATE_RESOURCEShas been
added for structuring. It provides the processes with communication and synchroniza-
tion mechanisms (e.g.buff1 , sema). These mechanisms are created on the occurrence
of the input signalinitialize . The presence of this signal corresponds to theini-
tialization phase of the partition. The inputActive_partition_ID represents the



identifier of the running partition selected by the module level OS6, and it denotes an
execution order when it identifies the current partition. Whenever the partition exe-
cutes, the partition level OS designates an active process within the partition. This is
represented by its output signalActive_process_ID . It is sent to all the processes.
Every process which runs to completion notifies the OS through a special signal (e.g.
end_processing1 for theARINC processPOSITION_INDICATOR), in order to take a
decision about the next process to execute.
A process can be blocked during its execution. For instance,when it tries to send a
message to a full buffer. So, a time counter may be initiated to wait for the availability
of space in the buffer. The signaltimedout produced by the partition levelOSnotifies
processes the expiration of their associated time counters.

Active_process_ID

timedout

board

buff1

buff2

evt

report1

end_processing

active_block

(end_processing,
 active_block) := 
          CONTROL{PID
          ,NB_BLOCK}(
          Active_proc
          ess_ID,
          timedout,
          ret1,ret2,
          ret3,ret5)

ret1

ret2

ret3
ret5

report1

(| (ret1,ret2,ret3,
    report1,ret5) := 
            COMPUTE{}(
            active_block
            ,buff2,evt,
            board,buff1)
 |)

Figure3. A SIGNAL model of the process POSITIONINDICATOR.

Modeling of processes.To illustrate the description of the processes inON FLIGHT,
we mainly focus on the processPOSITIONINDICATOR(the modeling of the other pro-
cesses follows the same scheme).
As shown infigure 3, a process is basically composed of two sub-components:CON-
TROLandCOMPUTE. The former specifies the execution flow of an ARINC process.
Typically, it is a transition system that indicates which statements in the body of the pro-
cess should be executed whenever the process is active. The latter describes the actions
computed by a process. It is composed of so-calledBlocks. They represent elementary

6 The activation of each partition depends on this signal. It is produced by the module level OS
which is in charge of the management of partitions in a module.



pieces of code to be executed without interruption likeFilaments[5]. Furthermore, the
statements associated with a Block must complete within a bounded amount of time.

In figure 3, the signalactive_block identifies a Block selected by theCONTROL
sub-component. This Block is executed instantaneously. Therefore, one must take care
of what kinds of statements can be put together in a same Block. Two sorts of state-
ments can be distinguished. First, those which may cause an interruption of the running
process (e.g. aSENDBUFFERrequest on a full buffer). We call themsystem calls(in
reference to the fact that they involve the partition level OS). The others are statements
that never interrupt the running process. Typically, data computation functions. They
are referred to asfunctions. Clearly, only one system call at most can be associated with
a Block, and no other statement can follow this system call within the Block. Since
a Block is executed instantaneously, what would happen if the system call interrupts
the running process? All the other statements within the Block would be executed in
spite of the interruption, and this would not be correct. Moreover, when the process is
resumed, the whole Block may not necessarily require to be re-executed, so one must
take care of that.

buff2

evt

board

buff1

ret1

ret2

ret3

report1

ret5

active_block
report

(| trigger0 := when (active_block=0)
 | report := SET_DATE{}(when trigger0)
 |)

ret1

(| trigger1 := when (active_block=1)
 | ret1 := SEND_BUFFER{1}((var buff2) when trigger1,99999.0,2,10.0)
 |)

ret2

(| trigger2 := when (active_block=2)
 | ret2 := WAIT_EVENT{1}((var evt) when trigger2,20.0)
 |)

d_area
d_size

ret3

(| trigger3 := when (active_block=3)
 | (d_area,d_size,ret3) := READ_BLACKBOARD{1}(... when ...,2.0)
 |)

ret5

(| trigger5 := when (active_block=5)
 | ret5 := SEND_BUFFER{1}((var buff1) when trigger5,var report.
                          Message_Area,var report.Message_Size,10.0)
 |)

(| trigger4 := when (active_block=4)
 | report1 := COMPUTE_POS{}((var report) when trigger4,(var diag_area) 
                            when trigger4,(var diag_size) when trigger4)
 |)

Figure4. COMPUTE sub-component of the process POSITIONINDICATOR.

TheCOMPUTEsub-component is depicted infigure 4. The Blocks (represented by
boxes within the model) describe the actions that are achieved byPOSITIONINDICATOR.
The statements associated with a Blockk are executed whenever the Block is selected
by the CONTROLsub-component, i.e. whenever the eventtriggerk is present. For
instance, from top to bottom, the first Block contains a function SET_DATEwhich pro-
duces an instance of the report message, where only the fielddate_of_the_report



is updated. The other fields will be completed later. The second Block contains the sys-
tem callSEND_BUFFER, which is used to send a message in the bufferbuff2 . Input
parameters are the message address and size (respectively,denoted by 99999.0 and 2),
and a time-out value (10.0 time units) to wait for space when the buffer is full. A return
code (ret1 ) is sent for diagnostic. Here, Blocks are computed sequentially from top to
bottom. However, there could be consecutive executions of asame Block. This happens
when a system call is executed and the required resource is not yet available. For exam-
ple, consider theREAD_BLACKBOARDrequest in the fourth Block from the top (used to
get a message fromboard ), if no message is currently displayed in the blackboard, the
calling process will get suspended on this Block. After the availability of a message, the
process is put in the “ready” state. As soon as it becomes active, it should re-execute the
same Block (which induced its suspension) to read the latestmessage available in the
blackboard. The automaton which describes the execution ofBlocks is specified within
theCONTROLsub-component. Automata are very easy to specify in SIGNAL .

Modeling of the partition level OS. The main task of the partition levelOSis to ensure
a correct concurrent execution of processes within the partition. Its modeling requires
on the one hand,APEX services (e.g. infigure 5, CREATE_PROCESSandSTARTused
respectively to create and start processes), and implementation-dependent functions, for
instance to define a scheduling policy (e.g.PROCESS_SCHEDULINGREQUESTin figure
5) on the other hand.

(| (att1,att2,att3) := GET_PROCESSES_ATTRIBUTES{}(when initialize) (a)
| (pid1,return_code1) := CREATE_PROCESS{}(att1 when init ialize) (b)
| (pid2,return_code2) := CREATE_PROCESS{}(att2 when init ialize)
| (pid3,return_code3) := CREATE_PROCESS{}(att3 when init ialize)
| return_code4 := SET_PARTITION_MODE{}(#NORMAL when (ˆre turn_code3)) (c)
| return_code5 := START{}(pid1) (d)
| return_code6 := START{}(pid2)
| return_code7 := START{}(pid3)
| partition_is_running := (Active_partition_ID = Partiti on_ID) (e)
| diagnostic := PROCESS_SCHEDULINGREQUEST{}(

when partition_is_running) (f)
| (Active_process_ID,status) := PROCESS_GETACTIVESTATU S{}() (g)
| timedout := UPDATE_COUNTERS{}() (h)
| Active_process_ID ˆ= timedout ˆ= when partition_is_runn ing
| return_code8 := SUSPEND{}(Active_process_ID when (end_ processing1

ˆ+ end_processing2 ˆ+ end_processing3)) (i)
| return_code9 := SET_PARTITION_MODE{}(#IDLE when (ˆend_ processing2)) (j)
|)

Figure5. The partition level OS model.

figure 5 shows a partial view of the SIGNAL description of the partition levelOS.
Let us take a look at the specified equations. On the presence of the signalinitialize

(which corresponds to the initialization phase of the partition), process attributes are
first defined in equation(a) , example of attributes are processname, priority, periodi-



city. Just after that, processes are created and started7. For instance, the lines(b)

and(d) correspond to the creation and starting of the process identified by pid1 (in
fact POSITION_INDICATOR). In the equation(c) , the partition is set to theNORMAL
mode8. The signalActive_partition_ID represents the identifier of the running par-
tition selected by themodule levelOS. It denotes an execution order when it identifies
the current partition, this is the meaning of the booleanpartition_is_running defi-
nition in (e) . So, process rescheduling is performed whenever the partition is active,
and the process with the highest priority in the ready state is designated to execute. The
process is identified byActive_process_ID . This is achieved in the equations(f)

and(g) . On the other hand, all time counters used in the partition are updated when-
ever the partition executes (equation(h) ). The signaltimedout is sent to processes
to notify them a (possible) expiration of their associated time counters. A running pro-
cess gets suspended as soon as it completes (one of the signals end_processing1 ,
end_processing2 , or end_processing3 is received from the three processes in
the partition). This is expressed in equation(i) . Finally, the partition is set toIDLE
mode when no process executes while the partition is still active (line (j) ). In the
partition, the process which completes the last isFUEL_INDICATOR, and the signal
end_processing2 is received from this process.

We observe that using the services defined in the library [6],combined with the features
of SIGNAL programming such as modularity, the basic components (executive units,
communication and synchronization mechanisms, and partition levelOS) required for
the modeling of the application are easily specified.
Now, let us consider the resulting model (depicted infigure 2). It is represented by a
SIGNAL process for which a simulation C code has been generated in order to execute
the partition. Furthermore, various properties can be verified on this program using
available tools (compiler functionalities, SIGALI , etc.). In particular, one can address
timing issues (e.g. to compute worst case execution times) using the performance eva-
luation technique implemented in POLYCHRONY.

The next section focuses on this technique, it gives the basic principles for deriving
a temporal interpretation of a SIGNAL process for the purpose of studying the real-time
behavior of modeled applications.

5 Performance evaluation

A SIGNAL process that models an application is recursively composedof sub-processes,
where elementary sub-processes belong to the kernel language, let us call thematomic

7 TheSTARTservice only puts the specified process in the “ready” state,the process does not
execute yet!

8 There are four operating modes [4]: in theIDLE mode, the partition is not executing any pro-
cess within its allocated windows; in theCOLD STARTmode, the partition is executing a cold
start initialization; in theWARMSTARTmode, the partition is executing a warm start initiali-
zation; and in theNORMALmode, the scheduler is activated, and all the required resources in
the partition must have been created before.



nodes. A profiling of such a process substitutes each signal with a new signal represen-
ting availability datesdate x and automatically replaces atomic nodes with their ti-
ming model counter-part (“timing” morphism). The resulting time model is composed
(by standard synchronous composition) with the original functional description of the
application, and for each signalx, a synchronization with the signaldate x is added.
The resulting process is close to (or even represents exactly) the model of the temporal
behavior of the application running on its actual architecture. One can obviously design
less strict modeling to get faster simulation (or formal verification); it is sufficient to
consider more abstract representations either of the architecture or of the program.

5.1 Temporal interpretation of SIGNAL processes

An interpretation of a SIGNAL specification is a SIGNAL process that exposes a different
view of the initial SIGNAL specification. The structure of the interpretation processis
essentially the same but its computations exhibit another aspect of its behavior. The
temporal interpretation exposes the time aspect and permits to see how an implementa-
tion of a specified function will behave over time [12].

For each SIGNAL process independent of its complexity level, another SIGNAL pro-
cess can be automatically derived to model its temporal behavior on a given implemen-
tation. These processes are called temporal interpretations. For a SIGNAL processP its
temporal interpretation for an implementationI will be denoted byT (PI), wherePI
is the SIGNAL process that models implementationI of P . Thus, if a system specified
by a SIGNAL processP has a variety of possible implementationsI(1) to I(k), then
each implementation can be modeled byPI(i); i 2 [1; k], and for eachPI(i) a temporal
interpretationT (PI(i)) can be derived.

In this way a comparative performance evaluation of the different implementations
can be performed and the design space of possible implementations can be effectively
explored before committing the design to one in particular.Such an approach permits
to concentrate the design effort to a set of candidate implementations.

Signal availability dates. For each signal in the initial SIGNAL specification a date
signal is defined in its temporal interpretation:x 2 P ! T (x) 2 T (P ).
For any signalx in P we have adate x in T (P ) with x synchronous todate x:P ! T (P ); x! T (x) = date x; x ˆ= date x:
These date signals are some sorts of time-stamps providing the availability times for

the values of the corresponding signals in the functional specification, in respect to a
global time reference. Depending on the implementation context, time can be measured
using either physical time units or full clock cycles. In thefirst case the date signals are
positive real numbers and in the second positive integers. From a cycle count integer
measurement we can go on to physical time measurement by multiplying the cycle
count to the cycle period.

Each operation in a SIGNAL specification is represented by a node in the Hierarchi-
cal Conditional Dependency Graph, which is the internal representation of a SIGNAL

program. To each node in the graph, a delay is associated. This delay is represented by
the same data type as the data type used to represent dates andis a function of several



parameters. The actual node delay is obtained by giving values to these parameters.
The delay depends on parameters like: operation performed by the node, data types in-
volved, chosen implementation, etc. Furthermore, a delay can be represented by a pair
of numbers corresponding to the worst and best case delays. Having delays represented
by intervals results in dates represented as intervals too.Computing these dates takes
into account the processing delays.

It is important to underline that this date mechanism permits us to pass from logical
to physical time.

Non-functional interpretations. The temporal interpretation of a SIGNAL specifica-
tion is just a special case of a general non-functional interpretation. The non-functional
interpretations are SIGNAL processes and as such they can be decomposed into a control
and a data part. The control computations are identical to those in the initial processes
from which the interpretations are derived. What changes are the data computations
since they extract the information related to the particular interpretation.

For a SIGNAL processP we know thatP = CP jDP , with CP the control part of
the processP andDP its data part. Similarly an interpretation ofP , denoted byT (P ),
decomposes into a control and a data part:T (P ) = CT (P )jDT (P ).
Since the interpretation of a complex process can be defined as the recursive composi-
tion of the interpretations of the constituent processes for T (P ) we have:T (P ) = T (CP )jT (DP ), with T (CP ) = CT (CP )jDT (CP ) andT (DP ) = CT (DP )jDT (DP ).
For the control part, we haveCT (P ) = CP .
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Figure6. Temporal interpretation of a SIGNAL process P.

The process of obtaining an interpretationT (P ) of a processP is graphically de-
picted infigure 6. This process gives a general form ofmorphismof SIGNAL programs,
which is available in POLYCHRONY. The data part (DP ) of the processP computes out-
put values (OD) from input values (I). The computations are conditioned by activation
events (H) computed in the control part (CP ). To compute the activation conditionsH,CP uses Boolean input signals (Ib) and intermediate Boolean signalsB computed byDP . Finally, certain outputs are output events (HO) computed byCP . The control parts
of the initial process and its interpretation are identical, but the data computations differ.
The data computations inT (P ) extract the information of interest, implicit in the initial
specificationP .



The date computation model. The SIGNAL kernel operators are the simplest pro-
cesses that can be used to build more complex ones. Similarly, the interpretation of a
process can be viewed as the composition of the interpretations of the primitive pro-
cesses making up the initial process.

The interpretations of the kernel processes perform the appropriate computations
relating to a particular interpretation. These interpretations are organized in a collection
which represents thelibrary of cost functions, defined in SIGNAL . For each interpreted
process, this library is extended with the interpretationsof external function calls and
other separately compiled processes, used in the initial process. For example, the “ti-
ming” morphism available in POLYCHRONY associates with the monochronous addi-
tion operatorz := x + y , the following process:

(date_z , done i) := CostPlus ftype(x), type(y) g
(date_x, date_y, date_clk_z, wait i)

The signaldate clk z is the signal associated with the common clock ofx , y andz by
the morphism, the notationtype(x) represents the type ofx . Signalswait i anddone i
are associated with the current node and have the same type asdate signals:wait i accu-
mulates dates coming from incoming precedences other than data dependencies,done i
is defined as being, roughly,date z default wait i.
The first output of the cost functionCostPlus , which corresponds to the date of the
result, is defined as being the sum of the delay taken to perform the addition operation
(some�+) and the maximum of the dates corresponding to the inputs ofCostPlus .
The quantity�+ depends on the desired implementation, on a specific platform. It has
to be provided in some way by the user, with respect to the considered architecture. In
the current implementation in POLYCHRONY, the value�+ is provided by a function
getCostPlus which has the types of the operands as parameters and which fetches the
required value in some table.

The scheme we have illustrated for monochronous operators handles also “con-
trol” operators. For constructs such as thedefault operator, which allows for control
branching, the definition of the associated interpretationaccounts for this branching
(for a default b , the date at which the input value is available is given bydate a

default date b).
Moreover, thanks to compositionality of SIGNAL specifications, the above mecha-

nism can be applied at any level of granularity.

5.2 Obtaining results

figure 7 depicts aco-simulationof the application model composed with its associated
temporal interpretation. At each iteration, the date of an output (d(Ok)) depends on
the date of an input (d(Ij)) and thecontrol configurationrepresented by a “valuation”
of a condition vector[c1; : : : ; cq] corresponding to intermediate boolean signalsB (cf.
Fig. 6) computed in the original program. In a straightforward approach, it is possi-
ble to provide a set of vectors that covers all the possible combinations for the control
flow. A better possibility is to take into account the existing relationships between these



booleans such as provided by the clock calculus (this is expressed through the compo-
sition of the original program and its temporal interpretation). In addition, specificob-
serverprocesses, comparing dates or verifying some conditions (timing requirements)
for example, can be inserted into the model.
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Figure7. Co-simulation of the application with its temporal interpretation.

Finally, all the tools available in the synchronous technology can be used on such
a model, including for example some formal verifications when the corresponding re-
quired abstractions are considered.

Several successful experiments have been done on sample SIGNAL programs. In
the case of the ONFLIGHT model, some simplifications have been made because of
the complexity of used data structures. So, the cost of the accesses to those data struc-
tures and related effects is not taken into account. The costfunction library currently
takes into account only (relatively) simple data structures (e.g. integer, boolean, arrays).
The others are considered as external. As a result, the current computed results are not
enough relevant to be highlighted here. However, the cost function library is being cur-
rently enhanced to allow more efficient experiments on programs with complex data
structures. Thus, more relevant results will be available very soon.

6 Conclusions

In this paper, we have illustrated a component-based approach to the modeling of avio-
nics applications for the purpose of formal verification andanalysis. The whole ap-
proach relies on the use of a single formalism of the SIGNAL language. This is part
of a more general design methodology for distributed embedded application, defined
within POLYCHRONY. This methodology proceeds by successive transformationson
an initial SIGNAL model that preserve semantic properties. During the transformations,
“abstract” components can be instantiated in different ways from modules related to
actual target architecture features, addressing various purposes (embedded code gene-
ration, temporal validation, etc.). Here, we considered models of APEX services [6]



to describe avionics applications. Then, we used the POLYCHRONY tool-set to analyze
applications, in particular, we focused on the real-time behavior. The technique [12]
we considered is still being implemented to take into account SIGNAL programs with
complex data structures (such as the model of the partition ON FLIGHT described in
this paper).
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