
Signal to SynDEx: Translation BetweenSynchronous Formalisms?Qiuling PAN1, Thierry GAUTIER1, Lo��c BESNARD2, and Yves SOREL3fqpan, gautier, lbesnardg@irisa.fr, Yves.Sorel@inria.fr1 IRISA / INRIA2 IRISA / CNRSF-35042 RENNES, France3 INRIA, Domaine de Volucean-Rocquencourt BP 10578153 Le Chesnay CedexAbstract. This paper presents techniques used for the translation be-tween two synchronous languages: Signal and SynDEx (algorithm mod-el). Both are synchronous formalisms and their corresponding integratedenvironments can be used for synchronous executions including GUI edit-ing, compilation, simulation, testing, optimization, and code generation.While the two powerful environments have their inherent features andadvantages, a translation path from Signal to SynDEx makes it possi-ble to access SynDEx functionalities from Signal programs.Keywords. synchronous, Signal, SynDEx, translation, real-time appli-cations, optimized distribution1 IntroductionThe fundamental theory of the synchronous approach is discrete event systemsand automata theory. Time is handled according to the �rst two of its threefollowing characteristic aspects: partial order of events, simultaneity of events,and �nally delays between events. So real-time systems are designed assumingthat time is just a succession of events and that computation is performed in-stantaneously, with no duration, although this idea is unusual in the softwaredomain. For the advantages of this simpli�cation, please refer to [ABL95]. Sig-nal is a programming language particularly suited for real-time applications,reactive, and embedded systems. It is a synchronous language, as opposed tothe asynchronous approach, e.g. Ada, C. Like Lustre [H91], its style is declar-ative, to be compared with imperative synchronous style in Esterel [BD91].SynDEx (Synchronized Distributed Executive) environment is a graphical in-teractive software implementing the AAA methodology [S03]. AAA means Al-gorithm, Architecture and Adequation(French word for e�cient matching). In? This work is supported by the RNTL (R�eseau National de recherche et d'innovationen Technologies Logicielles) project ACOTRIS [A03].

this methodology, the algorithm model has the semantics of synchronous lan-guages. At this point, it is assumed that the result produced by an operationis simultaneous with the input by which it is triggered. Signal and SynDExenvironments are both very useful applications for real-time systems. Being in-dependent, each has its own features. Signal is a language de�ned via a formalmathematical model, which gives it the inherent power in validation and veri�-cation of programs. SynDEx on the other hand has its dedicated architecturemodel with prede�ned hardware components that provides it with an easy ande�cient way to describe distributed architectures (microprocessors along withspeci�c integrated circuits, connected by a network). Further on, the optimizedexecutive codes considering minimizing hardware resources while satisfying real-time and technological constraints can be generated by running \adequation" ofSynDEx. This paper describes the development of an interface from the Signallanguage to the SynDEx algorithm model. It is denoted by SiSy.The rest of this paper is organized as follows. The next two sections presentbrief summaries of the source (Signal) and the target (SynDEx) language.Then follows an explanation of the translation strategy. It describes the theoryof the underlying approach, gives the translation rules we have determined alongwith some examples. Concluding remarks are presented in the �nal section.2 The synchronous language SignalIn the Signal language, a signal is a sequence of values of the same type, whichare present at some instants. The set of instants where a signal is present isthe clock of the signal. At a given instant (denoted by t), signals may have thestatus present, or absent { the latter is denoted by the special symbol ? in thesemantic notation. Only when a signal is present it can carry a value. Signalsthat are present simultaneously for any environment are said to have the sameclock, otherwise they have di�erent clocks. The syntax ^x is used to denote theclock of the signal x.2.1 The Signal - kernelA program expressed in the Signal language de�nes some data and controlprocessing with a system of equations. These equations can be organized inprocesses. Signal has a small number of kernel operations. All other operatorscan be built as macros out of these kernel operations and model declarations.Each operation is explained brie
y below:1. Functional expressions: classical operators (addition, comparison, . . .)can act on a sequence of signal values if the signals are synchronous. Theresult of such operators has the same clock as the operands. They are calledmonochronous operators.In Signal: y : = f(x1; x2; : : : ; xn) is that: yt 6=?, x1t 6=?, x2t 6=?,:::, xnt 6=?, and 8t: yt = f(x1t; x2t; : : : ; xnt).

2. Reference to past values: delay operator $ gives access to past values ofa signal. Delay is also a monochronous operator.In Signal simple delay is: y := x $ init i0 which speci�es xt 6=?,yt 6=?; 8t > 0: yt = xt�1; y0 = i0.3. Downsampling: extracts values from a signal with the action of a booleanexpression. It produces a resulting signal with a less frequent clock and istherefore counted among the polychronous operators.In Signal: y := x when c means: yt = xt if ct = true, else yt =?.4. Deterministic merge: merges two signals while putting a priority on the�rst. The clock of the result is the union of the two operands. Since the mergehandles signals with di�erent clocks, it is also a polychronous operator.In Signal: y := x default z means: yt = xt if xt 6=?, else yt = zt.5. Composition of processes: the above operations may be composed withthe commutative and associative operator "|" like " P | Q" which de�nesthe greatest relation constraining their common signals to respect the con-straints imposed respectively by P and Q. In fact, this operator is the unionof the two equation systems represented by P and Q.2.2 Extended LanguageFor convenience, the Signal language o�ers also many derived operators whichare proved to be very useful in most of the applications we developed, some ofthem are:{ Synchronizer: x1 ^= x2 ^= . . . ^=xn speci�es the equality of the clocksof its operands, i.e., ^x1 = ^x2 = ... = ^xn.{ Delay and Window: Y:= x $ m window n init E0 is called generalizeddelay and sliding window, it follows the de�nition: xt 6=?, yt 6=?; 8(t >0; 0 � i < n),when t+ i�m � n; Yt[i] = yt�n+i+1�m; when 1 � t+ i�m <n; Yt[i] = E0[t�n+i+2�m]. It produces a vector signal Y of length n and m-delay on x.{ Cell: y := x cell b init i0 means that y takes the value of x when x ispresent, otherwise when b is true, y takes its own latest value. The clock ofy is the upper bound of the clock of x and the clock de�ned by the instantsat which b is true. It is obvious this is a polychronous operation, it can beexpressed like this:y := x default (y $ init i0) | y ^= ^x default (when b){ Partial de�nitions: Partial de�nitions are series of equations used to de�nea signal. Each one of the partial de�nition contributes to the overall de�ni-tion of this signal. These partial de�nitions can appear in di�erent syntacticcontexts. The overall de�nition of the signal is considered as complete ina compilation unit. They are syntactically distinguished by the use of thespecial symbol ::=.{ Domains of values: The types of Signal can be prede�ned simple types(integer, real, char,. . .). Among them, there is a special type named eventwhich is a pure signal, useful only for its clock. It can only be present or

absent. Signal also provides composite types including array types, enu-merated types, and tuple types. Moreover, it is allowed to declare externaltypes and state variables, a typed sequence of elements that are present asfrequently as necessary. Default conversions between di�erent types are alsosupported.{ Modularity: The Signal language allows modular programming and ex-ternal function calls. It can be used to describe internal or external commu-nications, facilitating encapsulation and reusability. According to the levelof abstraction, black box and grey box modules are available.The Signal language has all the features needed for real-time applicationprogramming. It has been proved to possess maximum expressive power for syn-chronization mechanisms [BLSS87]. It must be pointed out that this section onlypresents the elementary parts of Signal. Some advanced concepts and the strictformal semantics are not mentioned. For a complete and detailed understanding,please refer to [BGL02], or take a look at the web site of the Espresso [E03].2.3 The Integrated EnvironmentThe Signal environment is an integrated development environment and technol-ogy demonstrator, also called Polychrony, consisting of a compiler, a visualeditor and simulator, and a model checker. Signal provides the programmerwith the nice high-level constructs needed to describe a real-time system in asimple and elegant way. Nevertheless it is a challenge to construct a compiler,able to generate e�cient executable code by using a reasonable amount of com-puting resources. The Signal compilation performs formal calculus on systemsof boolean equations which express the synchronizations in the program. Then,by using an arborescent hierarchical representation of the equations, the compil-er checks the consistency of the synchronizations and generates executable code(e.g. C or Java) [MCL92]. The key feature of the compiler is that it synthesizesthe global timing from the programmers speci�cations. This is di�erent fromother compilers (e.g. Lustre), which require the global view of the timing forthe programmer to write the program. The model checker, called Sigali, givesthe veri�cation of dynamic properties of the programs.While Signal �lls this task quite well, the increasing complexity of the appli-cations and strict real-time constraints often make it a considerable need to usemultiprocessor (parallel, distributed) architectures when real-time algorithmsare executed. SynDEx can automatically generate dead-lock free executablesfor real-time execution of algorithms on distributed architectures. It is based ona static scheduling policy to minimize execution time and program size over-heads. In the end, the m4 macro-processor produces source code in the preferredcompilable language.3 AAA and SynDExThe SynDEx environment is a system level CAD tool, supporting the AAAmethodology. It aims at rapid prototyping and optimization of real-time em-

bedded applications on multicomponent architectures. It has been designed anddeveloped at INRIA-Rocquencourt. SynDEx is a graphical interactive softwareo�ering a seamless environment to help the user from the speci�cation level(functionalities, hardware resources, real-time and embedding constraints of theapplication) to the implementation level. It allows user to import programs astext �les as well as to use a graphic editor.3.1 The Integrated EnvironmentIn the SynDEx environment, an algorithm is modeled by a conditioned data-
ow graph, that is, a folded dependency graph presenting a pattern inde�nite-ly repeated. In the textual formalism, each graph unit is de�ned as an algo-rithm. There are four kinds of special algorithms: constant, sensor, actuatorand memory. The grammar of SynDEx codes will be presented in the fol-lowing subsection. The dependency graph describes dependencies, representedby edges, between operations, represented by vertices. In the SynDEx algo-rithm model, there are four kinds of dependencies: strong precedence data,weak precedence data, precedence and data dependency [M02]. In fact, mostdependencies actually represent a data transfer from a producer operation to aconsumer operation. This involves a partial order on the execution of the op-erations, called potential parallelism. Potential means that this parallelism willbe exploited only if parallel hardware resources are available. The execution ofeach graph pattern of the dependency graph is triggered when an input event,coming from the environment, is received by operations without predecessor.Such special operations are called sensors. The output events that are sent tothe environment by operations without successor are called actuators. Moreover,a dependency graph may be conditioned, that is, a part of this graph may notbe executed. For example, a conditioning vertex, with two inputs and one out-put, does not produce any data when its conditioning input, which must be ofboolean type, is carrying a false value. In this case, by transitivity, all dependentvertices will not be executed. Otherwise, when both inputs are present, but thecondition is true, the output takes the value of the other input. Note that whenwe talk about algorithm model only, the durations of operations and data trans-fers de�ned in the architecture model of SynDEx are not taken into account.In those cases, it produces a logical time which corresponds to the time the in-put / output events are interleaving. The algorithm model of SynDEx has thesemantics of synchronous languages and more speci�cally, has the programmingstyle of a data-
ow language which is just what Signal has.The goal of the AAA methodology is to �nd an optimized implementation ofan application algorithm on an architecture, while satisfying constraints [KS98].AAA is based on graph models to exhibit both, the potential parallelism of thealgorithm, and the available parallelism of the multicomponent. In this method-ology, the �rst A (Algorithm) is the core part to connect with the SiSy transla-tion. In fact, every sub-clock of Signal programs is translated into one algorithmin SynDEx as we will explain in the following sections.

3.2 The SynDEx Algorithm ModelThe grammar of the SynDEx algorithm de�nition is shown below. Here, theterminal symbols are set in bold. Non-terminal symbols are set in italic. Squarebrackets represent optional elements. Curly brackets represent zero, one, or sev-eral repetitions of the enclosed element. Curly brackets with a trailing plus signrepresent one or several repetitions of the enclosed element. Because of the s-pace limitation, some unimportant non-terminal symbol de�nitions are not listedhere. For more details please refer to [M02].algorithm ::= def algorithm NAME [arg name][dim window] :fin portgfout portgfconditions references dependenciesg[description]in port ::= ? NAME [dimension] [NAME] [init port][rank][position]out port ::= ! NAME [dimension] [NAME] [rank] [position]conditions ::= conditions: [boolean |NAME = integer];references ::= references: fref type [arg values] NAME [position];gdependencies ::= dependences:fdependencygdependency ::= strong precedence data ref port -> ref port;| weak precedence data ref port -> ref port;| precedence ref ->ref;| data ref port -> ref port;ref port ::= NAME |NAME . NAMENAME ::= f'a'-'z' 'A'-'Z' ' 'g+ f'a'-'z' 'A'-'Z' ' ' '-' '0'-'9' '*'gThis is a simple example which is the corresponding SynDEx algorithmde�nition of the default operator in Signal language:def algorithm default :? int i1;? bool i2;? int i3;! int o;conditions : i2 =1;references:dependences:strong_precedence_data i1-> o;conditions : i2 = 0;references:dependences:strong_precedence_data i3 -> o;description:"x:=(i1 when i2) default(i3 when (not i2))"Example 1: the de�nition of \default"The SynDEx algorithm model is composed of several algorithm (or sensor,actuator, constant, memory) de�nitions. A sensor receives input signals fromthe environment and an actuator produces output signals to the environment;constant and memory de�nitions are special kinds of algorithm de�nitions whichhave more simple syntax. The main algorithm must be set according to thegrammar \main algorithm ref type [arg values];".

From the sections above, we can see that Signal and SynDEx are bothpowerful environments used for real-time systems. Each of them used isolatedlyhas its speci�c features. The translation from Signal to the SynDEx formalismwill give Signal users access to all SynDEx functionalities.4 SiSy Translation StrategySiSy translation starts o� from the internal abstract representation of a Signalprogram to the input format of SynDEx. It is not done directly from the Signalcode that we introduced in section 2, but from an arborescent hierarchical rep-resentation called Hierarchical Conditional Dependency Graph (HCDG) whichis produced by the Signal compiler.4.1 The Signal Hierarchical Conditional Dependency GraphSignal programs can be compiled into an HCDG which is a generalization ofthe Directed Acyclic Graph (DAG) and can be described with a six-tuple:< G;C;�; fN ; f� ; �� > is a Hierarchical Conditional Dependency Graph i�:{ G =< N;�; I; O > is a dependency graph < N;� > with communicationnodes, inputs I and outputs O such that I � N , O � N and I \O = ;; theset of nodes N is partitioned into Nd, the set of data nodes, and Nc, the setof clock nodes.{ < C;� > is an equational control representation where � is a set of con-straints over a set C of characteristic functions representing clocks.{ fN : N ! C is a mapping each node to a clock; it speci�es the presencecondition of the nodes.{ f� : � ! C is a mapping each edge to a clock; it speci�es precedencerelations between the nodes.{ �� : � ! C is a mapping each edge to a clock while it speci�es data depen-dencies between the nodes.If fN (n) = ^c, there exists a node c 2 Nc such that fN (c) =^c and f� (c; n) =^c. This node is associated with a boolean signal c. The equational control rep-resentation < C;� > is expressed over a set C of characteristic functions repre-senting clocks. The boolean signal c 2 C represents the clock of a given signal xsuch that at every instant t, c holds the value true if and only if x is present. Theequation system � evolves in a boolean algebra B =< C;_;^; 0̂; 1̂ > where 0̂ de-notes the least element of B which stands for the never present clock. < C;� >de�nes a clock system organized as a clock hierarchy. It is a tree-like hierarchyde�ned by a function s: s : C ! C [ftickg , such that for every x in C, thereis a single clock r, and a minimal integer n such that s(sn(x)) = sn(x) = r, tickrepresents the clock that is faster than the fastest clock of all signals in thecompiled unit; r is called a root. A clock hierarchy tree can be seen as a repre-sentation of an inclusion relation between clocks. The set of instants represented

by a node of the clock tree is included in the set of instants represented by itsparent. More generally, a node is included in its ancestors.For a given program, di�erent levels of representation of its clock hierarchyare distinguished. In fact, these di�erent levels correspond to di�erent phasesof the compilation of a Signal program. There are functionalities to changebetween some levels (e.g. from DC+ to bDC+ and from bDC+ to STS):{ In the DC+ level, clocks are represented as signals of the type event.{ In the bDC+ (boolean DC+) level, clocks are represented as boolean sig-nals (no event type is used). Note that boolean signals representing clocksthemselves have clocks represented as boolean signals; the clock hierarchystill exists in bDC+. It is provided with a single root, which is tick.{ The STS level (Symbolic Transition System), which is also called \
at bD-C+", is a bDC+ level with a
at clock hierarchy. It has only one root, whichis tick. State variables are de�ned at tick. Moreover, in the STS level, forevery boolean clock signal b, s(b)=tick. This means there are at most twolevels of clock hierarchy in the STS representation of a Signal program.For generating SynDEx code, STS is the most appropriate level because inSTS, all the clocks, which are the variables representing the control of the appli-cation, have been expanded up to the most frequent clock, and the state variablesare also de�ned at the most frequent clocks: other variables can have a \don'tcare" interpretation at the instants at which they are absent. This correspondsto the SynDEx representation, which considers \remanent" variables.4.2 Translation RulesIn a STS HCDG representation of a Signal program, the clocks of the signalshave been expanded so that the clock hierarchy tree contains at most two levels:the most frequent clock, the root of the tree (tick in SiSy also called masterclock), and the children level, which comprises less frequent clocks de�ned by thetrue value of the boolean signals. Let us denote these booleans by b1; b2; : : : ; bn,and the clock when bi denotes the instants at which bi is true. These clocks arechildren of the clock tick, they are also called sub clocks. Since during the Signalcompilation, each clock is associated with the sub-graph containing the nodesthat are de�ned at this clock, the translation strategy is the following: whenevera graph is associated with a clock, this graph is translated as one algorithm inSynDEx.Translation of Clock Hierarchy. So any graph gi associated with a clockthat is a child of tick, will be translated to an algorithm following the standardSiSy translation scheme. In this algorithm, however, a condition is de�ned, cor-responding to the values of the boolean representation of this sub clock bi, whichis an input of gi, bi = 1. The standard SiSy translation scheme for each graphwill be presented in detail in the following subsection. The translation of gi canbe sketched as follows:

def algorithm P bi:? ...! ...conditions: bi = 1SiSy(gi)The top level graph P contains the nodes associated with the clock tick, aswell as process calls corresponding to each of the graphs associated with the subclocks of tick. The SiSy translation of P is an algorithm P obtained in the stan-dard way (in particular, it contains the translations of all the nodes of P , andthose representing these process calls). The de�nitions of this algorithm are notconditioned (in SynDEx, conditions: true). The input and output signals (inSynDEx, they are called ports) are translated from the communication signalsbetween clock graphs. Interface signals that communicate externally are read/write nodes in STS and get translated into sensors and actuators in SynDEx.At last, after translating the master clock and all the sub clocks, the algo-rithm of the master clock is set to the main algorithm of the SynDEx programfollowing the form \main algorithm ref type [arg values];".Translation of Nodes. Most of SiSy e�ort is spent translating nodes. Theway to translate nodes is just what we called \the standard SiSy translation"before. From the grammar and the example of SynDEx algorithm de�nitions(section 3.2), we can see that generally there are four parts in every algorithm:ports, conditions, references, and dependences. Ports and conditions are producedwhile translating the clock hierarchy. References and dependences are the mainbody of an algorithm de�nition. They are produced according to the attachednodes of the considered clock. In STS, the nodes can be classi�ed into:{ Constants: The constants are explicitly represented by references to con-stant vertices in SynDEx (associated dependences follow trivially).{ Equations: For the equations, we consider a general de�nition X := F(Y1,Y2, ..., Yn) where F is some Signal n-ary operator. It is obvious that itis su�cient to only consider elementary expressions (using only one operatorand adding auxiliary variables), because it is always possible to rewrite a de�-nition containing composed expressions into a composition of elementary def-initions. Such elementary operators include all the basic staticmonochronousoperators (e.g., add or mod), the dynamic monochronous operators (e.g.delay or window), and some polychronous operators (e.g. default or cell).For such elementary operators, including state variables, SynDEx de�neslibraries to provide basic algorithm declarations (example 1 in section 3.2,is the declaration of the Signal \default" operator in the int library ofSynDEx). We assume that X := F(Y1, Y2, ..., Yn) is an operation oftype T , then there is an algorithm named F with type T declared in theprede�ned library. The SiSy translation of this equation is a reference toF associated with T , noted: T/F. This reference must have a unique name

in the algorithm in which it is contained, for example, this name can bethe name of the algorithm, F , su�xed with the current value of a referencecounter: T/F F k. To specify the dependences, this occurrence is designatedby its name F k. There is another polychronous operator in Signal: when.Considering the general form of a when equation, node N , X := E when c,c represents the clock of the considered de�nition of X. Since the booleanvariable c has been considered when the node N was found in a subclock,it is always correct to translate the node N just like an ordinary node, X :=E.{ Memorization:The SiSy translation of a memorization ZX := X $ m windown is analogous to the translation of a de�nition, except that it is a referenceto a memory.{ Partial de�nitions: For the SiSy translation of partial de�nitions, we con-sider:X ::= E1 when c1. . .X ::= En when cnThe ci clocks are exclusive clocks, and the clock cj is the clock at whichX is de�ned by the synchronous expression Ej . When translating such par-tial de�nitions, the original graph is rewritten as follows: At �rst, the nodesrepresenting the list of partial de�nitions associated with the signal X aredeleted from the attached clocks. Then, it is always possible to generate anew subclock which includes the signal X produced by all the nodes repre-senting its partial de�nitions:X := (E1 when c1) default ... default (En when cn)The connections or dependencies involving X are consequently transferred tothis node.{ Process call: The SiSy translation of a process (or sub-process)Q comprisesexactly all the objects mentioned in this section. The process is de�nedexplicitly as an algorithm named Q, then, a call to the processQ is translatedinto a reference to the algorithm Q, with the unique name Q k.{ External call: The SiSy translation of an external process Q is just likethe SiSy translation of any process, except that the description part of thecorresponding algorithm is empty since Q is not de�ned in Signal.{ Subgraph: the nodes and dependencies of a subgraph are subsets of thenodes and dependencies of the graph in which they are contained. So, theyare handled in the standard way by the SiSy translation. If, for some reason,a subgraph has to be kept as a proper object, it has �rst to be transformedinto a graph and replaced in its including graph by a process call to this newgraph. Then, the SiSy translation is the same as for any process call.For non elementary types that may be eventually used in a Signal program,it is not possible to have the declarations before the translation; the correspond-ing library including the prede�ned operators in Signal is produced by thetranslation program. Examples of such types are enumerated types, externaltypes, etc. Arrays, which are also non elementary types, are treated separate-

ly since SynDEx provides an array constructor (one dimensional arrays). Thisconstructor is used to represent the array types of the program. However, allarray operators must be explicitly declared as algorithms.Dependencies. After declaring the references for each node, dependencies mustbe set. The dependencies (the edges of the SynDEx graph) are built from:1. The data
ow connections of the Signal graph,2. The explicit precedence relations.With each data
ow connection d: From the mth output of a node pk tothe nth input of a node pl, the SiSy translation associates a strong precedencedata from the output of the vertex SiSy(pk) corresponding to the mth output ofpk, to the input of the vertex SiSy(pl) corresponding to the nth input of pl. InSynDEx, a reference to some vertex SiSy(pr) in a given algorithm must havea unique name: let us call p ks and p lt the unique names of the consideredreferences to the vertices SiSy(pk) and SiSy(pl). If i n designates the nth inputof the vertex SiSy(pl), and o m designates themth output of the vertex SiSy(pk),the strong precedence data associated with d is:strong precedence data p ks.o m -> p lt.i n;An interconnection communication is a special case of data
ow connection,and get translated into explicit inputs and outputs in SynDEx. Let us takeinputs for example: If i n denotes the nth input of the vertex SiSy(pl), and i mdenotes the mth input of the graph, the strong precedence data associated withd is:strong precedence data i m -> p lt.i n;When the input of the graph is a read node, it is translated into a sensorof the same type. (It is similar for write with actuator.) Then the strongprecedence data is from the reference of this sensor to the input of the vertexwho uses the input signal. Thus, If i n denotes the nth input of the vertexSiSy(pl) and o designates the output of the mth vertex sensor, let us assume ithas the name s m, the strong precedence data associated with d is:strong precedence data s m.o -> p lt.i n;Another kind of dependency is used to express precedence relations. Witheach precedence relation in the graph, the SiSy translation associates a prece-dence de�ned as follows:When an expression of explicit dependency in Signal appears in STS, thatis, there is a node like:Ei --> Ejthis expression is translated directly into a SynDEx precedence.In this case, if Ei and Ej are simple expressions, we use SiSy(E) to representtranslation of the expression E in the standard way and the unique referencenames are produced. The corresponding dependency in SynDEx is:precedence SiSy(Ei) -> SiSy(Ej);If Ei and Ej are expressions with labels in the syntax of Signal, for example:Si :: Ei

Sj :: EjSi --> Sjthe corresponding translation in SynDEx is still the precedence of the results oftranslating the equations:precedence SiSy(Ei) -> SiSy(Ej);4.3 An ExampleLet us see a short, but complete example: a watchdog. Its task is to monitorsome resources. After one action (ORDER) is received, if there is not any oth-er action occurring for longer than the preset time (COUNTER), ALARM isemitted. Moreover, the value of ALARM is the number of the time unit sincethe beginning of execution. This watchdog monitor promotes the e�cient usageof the resources. Here, because of space limitations, we set clock constraints inorder that all signals are synchronous. The Signal process is as follows:process WATCHDOG ={integer COUNTER;}(? boolean ORDER;! integer ALARM;)(| CNT ^= ORDER ^= HOUR ^= ALARM| HOUR := (HOUR $ init 0) +1| ZCNT := CNT $ init 1 | CNT := COUNTER when ORDERdefault ZCNT-1 when ZCNT >0default -1| ALARM := HOUR when CNT =0 default 0|)whereinteger HOUR, ZCNT, CNT;endThe corresponding SynDEx algorithm is :syndex_version : "6.5.2"include "Signal_int.sdx";include "Signal_bool.sdx";#-------------------------def algorithm CLK_CNT_41_0 :? bool ORDER;? int CNT_37;? bool C_CNT;? bool C_70;! int CNT_41;conditions: C_CNT = 1;references:Signal_int/constante<5> constante_3;Signal_int/default default_3;dependences:strong_precedence_data default_3.o -> CNT_41;strong_precedence_data constante_3.o -> default_3.i1;strong_precedence_data ORDER -> default_3.i2;strong_precedence_data CNT_37 -> default_3.i3;#-------------------------def algorithm CLK_ORDER :conditions: true;references:Signal_bool/input input_1;Signal_int/default default_1;Signal_int/constante<1> constante_1;Signal_int/n_delay<1> n_delay_1;Signal_int/usub usub_1;Signal_int/default default_2;

Signal_int/constante<0> constante_2;Signal_int/n_delay<1> n_delay_2;Signal_int/add add_1;Signal_int/sub sub_1;Signal_int/strictly_greate strictly_greate_1;Signal_int/equal equal_1;Signal_bool/logic_or logic_or_1;Signal_bool/logic_not logic_not_1;Signal_bool/logic_and logic_and_1;Signal_int/output output_1;CLK_CNT_41_0 CLK_CNT_41_0_1;dependences:strong_precedence_data default_1.o -> output_1.i;strong_precedence_data add_1.o -> default_1.i1;strong_precedence_data equal_1.o -> default_1.i2;strong_precedence_data constante_2.o -> default_1.i3;strong_precedence_data constante_1.o -> n_delay_1.i1;strong_precedence_data default_2.o -> n_delay_1.i2;strong_precedence_data constante_1.o -> usub_1.i1;strong_precedence_data CLK_CNT_41_0_1.CNT_41 -> default_2.i1;strong_precedence_data logic_or_1.o -> default_2.i2;strong_precedence_data usub_1.o -> default_2.i3;strong_precedence_data constante_2.o -> n_delay_2.i1;strong_precedence_data add_1.o -> n_delay_2.i2;strong_precedence_data n_delay_2.o -> add_1.i1;strong_precedence_data constante_1.o -> add_1.i2;strong_precedence_data n_delay_1.o -> sub_1.i1;strong_precedence_data constante_1.o -> sub_1.i2;strong_precedence_data n_delay_1.o -> strictly_greate_1.i1;strong_precedence_data constante_2.o -> strictly_greate_1.i2;strong_precedence_data default_2.o -> equal_1.i1;strong_precedence_data constante_2.o -> equal_1.i2;strong_precedence_data input_1.o -> logic_or_1.i1;strong_precedence_data strictly_greate_1.o -> logic_or_1.i2;strong_precedence_data input_1.o -> logic_not_1.i1;strong_precedence_data logic_not_1.o -> logic_and_1.i1;strong_precedence_data strictly_greate_1.o -> logic_and_1.i2;strong_precedence_data input_1.o -> CLK_CNT_41_0_1.ORDER;strong_precedence_data sub_1.o -> CLK_CNT_41_0_1.CNT_37;strong_precedence_data logic_or_1.o -> CLK_CNT_41_0_1.C_CNT;strong_precedence_data logic_and_1.o -> CLK_CNT_41_0_1.C_70;# main algorithmmain algorithm CLK_ORDER;It is easy to validate the translation by simultating the application in bothenvironments. As expected, when executing the Signal code and the SynDExcode with the same input data, we get the same results.5 ConclusionReal-time systems are crucial components of controllers for planes, robots, cars,even basic household devices. Malfunction may be dangerous, and repairing isusually very costly. Therefore high competence of developers and powerful toolsare needed for developing this kind of systems. Signal and SynDEx are bothelegant and well de�ned integrated environments that can be used for the de-velopment of synchronous systems. But the two environments are isolated ofeach other, each having its own features. The SiSy translator o�ers an interfaceto reach SynDEx functionalities from Signal code. The main add-ons of thistranslator are the following:

1. It gives Signal designs access to the functionalities of SynDEx, in particularthe possibility to get and to prototype distributed implementations obtainedfrom quantitative criteria;2. It enables Signal as a possible input formalism for SynDEx users;3. It allows the use of SynDEx on applications developed in formalisms forwhich it is of interest to have a Signal intermediate representation.In the Polychrony environment, SynDEx could be made in particular forthe general method we propose for distributed code implementation[GL99]. Inthis method, an application is �rst described as a polychronous Signal process,comprosed of atomic sub-processes, and target architecture is �rst viewed as aset of abstract nodes (tasks and processes) to which functional sub-processesare allocated. Currently, the allocation is manual, but it could be done withhelp of SynDEx optimigation algorithms. The SiSy translator is still in devel-opment, but the prototype has been made available with the newest version ofPolychrony [E03]. Currently, we are concentrated on composite types trans-lation, as well as testing and experimenting on realistic examples provided bythe ACOTRIS project.References[A03] ACOTRIS Web site : http://www.acotris.c-s.fr/[ABL95] P. Amagb�egnon, L. Besnard and P. Le Guernic, Implementation of the Data-
ow Synchronous Language SIGNAL, PLDI'95 (Programming LanguagesDesign and Implementation), 163-173, 1995.[BD91] F. Boussinot, R. De Simone. The ESTEREL language. Proceedings IEEE,79-9, 1991.[BGL02] L. Besnard, Th. Gautier, P. Le Guernic, SIGNAL V4 -INRIA version: Ref-erence Manual, IRISA, December 2002.[BLSS87] A. Beneveniste, P. Le Guernic, Y. Sorel, M. Sorine, A denotational theory ofsynchronous communicating systems, INRIA Research Report 685, Rennes,France, 1987, Also appear in Information and Computation.[E03] ESPRESSO Web site: http://www.irisa.fr/espresso/Polychrony/[GL99] Th. Gautier, P. Le Guernic, Code generation in the SACRES project. To-wards System Safety, Proceeding of the Safety-critical Systems Symposium,SSS'99, Springer, 1999[H91] N. Halbwachs et al. The synchronous data
ow programming language LUS-TRE. Proceedings IEEE, 79-9, 1991.[KS98] R. Koclik, Y. Sorel, A Methodology to Design and prototype OptimizedEmbedded Robotic Systems, 2nd IMACS International Multiconference CE-SA'98, Hammamet, Tunisia, April 1998.[M02] C. Macabiau, SynDEx version 6.5.0 Grammar, August, 2002. Web Docu-mentation, http://www-rocq.inria.fr/syndex/v6/grammar/grammar.html[MCL92] O. Ma�e��s, B. Ch�eron, and P. Le Guernic. Transformations du Graphe desprogrammes SIGNAL. Research report 1574, INRIA France, Rennes, Jan-uary 1992.[S03] SYNDEX Web page, http://www-rocq.inria.fr/syndex

