
Signal to SynDEx: Translation Between

Synchronous Formalisms?

Qiuling PAN1, Thierry GAUTIER1, Löıc BESNARD2, and Yves SOREL3

{qpan, gautier, lbesnard}@irisa.fr, Yves.Sorel@inria.fr

1 IRISA / INRIA
2 IRISA / CNRS

F-35042 RENNES, France

3 INRIA, Domaine de Volucean-Rocquencourt BP 105
78153 Le Chesnay Cedex

Abstract. This paper presents techniques used for the translation be-
tween two synchronous languages: Signal and SynDEx (algorithm mod-
el). Both are synchronous formalisms and their corresponding integrated
environments can be used for synchronous executions including GUI edit-
ing, compilation, simulation, testing, optimization, and code generation.
While the two powerful environments have their inherent features and
advantages, a translation path from Signal to SynDEx makes it possi-
ble to access SynDEx functionalities from Signal programs.

Keywords. synchronous, Signal, SynDEx, translation, real-time appli-
cations, optimized distribution

1 Introduction

The fundamental theory of the synchronous approach is discrete event systems
and automata theory. Time is handled according to the first two of its three
following characteristic aspects: partial order of events, simultaneity of events,
and finally delays between events. So real-time systems are designed assuming
that time is just a succession of events and that computation is performed in-
stantaneously, with no duration, although this idea is unusual in the software
domain. For the advantages of this simplification, please refer to [ABL95]. Sig-

nal is a programming language particularly suited for real-time applications,
reactive, and embedded systems. It is a synchronous language, as opposed to
the asynchronous approach, e.g. Ada, C. Like Lustre [H91], its style is declar-
ative, to be compared with imperative synchronous style in Esterel [BD91].
SynDEx (Synchronized Distributed Executive) environment is a graphical in-
teractive software implementing the AAA methodology [S03]. AAA means Al-
gorithm, Architecture and Adequation(French word for efficient matching). In

? This work is supported by the RNTL (Réseau National de recherche et d’innovation
en Technologies Logicielles) project ACOTRIS [A03].

this methodology, the algorithm model has the semantics of synchronous lan-
guages. At this point, it is assumed that the result produced by an operation
is simultaneous with the input by which it is triggered. Signal and SynDEx

environments are both very useful applications for real-time systems. Being in-
dependent, each has its own features. Signal is a language defined via a formal
mathematical model, which gives it the inherent power in validation and verifi-
cation of programs. SynDEx on the other hand has its dedicated architecture
model with predefined hardware components that provides it with an easy and
efficient way to describe distributed architectures (microprocessors along with
specific integrated circuits, connected by a network). Further on, the optimized
executive codes considering minimizing hardware resources while satisfying real-
time and technological constraints can be generated by running “adequation” of
SynDEx. This paper describes the development of an interface from the Signal

language to the SynDEx algorithm model. It is denoted by SiSy.
The rest of this paper is organized as follows. The next two sections present

brief summaries of the source (Signal) and the target (SynDEx) language.
Then follows an explanation of the translation strategy. It describes the theory
of the underlying approach, gives the translation rules we have determined along
with some examples. Concluding remarks are presented in the final section.

2 The synchronous language Signal

In the Signal language, a signal is a sequence of values of the same type, which
are present at some instants. The set of instants where a signal is present is
the clock of the signal. At a given instant (denoted by t), signals may have the
status present, or absent – the latter is denoted by the special symbol ⊥ in the
semantic notation. Only when a signal is present it can carry a value. Signals
that are present simultaneously for any environment are said to have the same
clock, otherwise they have different clocks. The syntax ^x is used to denote the
clock t t

2. Reference to past values: delay operator $ gives access to past values of
a signal. Delay is also a monochronous operator.
In Signal simple delay is: y := x $ init i0 which specifies xt 6=⊥⇔
yt 6=⊥, ∀t > 0: yt = xt−1, y0 = i0.

3. Downsampling: extracts values from a signal with the action of a boolean
expression. It produces a resulting signal with a less frequent clock and is
therefore counted among the polychronous operators.
In Signal: y := x when c means: yt = xt if ct = true, else yt =⊥.

4. Deterministic merge: merges two signals while putting a priority on the
first. The clock of the result is the union of the two operands. Since the merge
handles signals with different clocks, it is also a polychronous operator.
In Signal: y := x default z means: yt = xt if xt 6=⊥, else yt = zt.

5. Composition of processes: the above operations may be composed with
the commutative and associative operator "|" like " P | Q" which defines
the greatest relation constraining their common signals to respect the con-
straints imposed respectively by P and Q. In fact, this operator is the union
of the two equation systems represented by P and Q.

2.2 Extended Language

For convenience, the Signal language offers also many derived operators which
are proved to be very useful in most of the applications we developed, some of
them are:

– Synchronizer: x1 ^= x2 ^= . . . ^=xn specifies the equality of the clocks
of its operands, i.e., ^x1 = ^x2 = ... = ^xn.

– Delay and Window: Y:= x $ m window n init E0 is called generalized
delay and sliding window, it follows the definition: xt 6=⊥⇔ yt 6=⊥, ∀(t >

0, 0 ≤ i < n),when t + i−m ≥ n, Yt[i] = yt−n+i+1−m; when 1 ≤ t + i−m <

n, Yt[i] = E0[t−n+i+2−m]. It produces a vector signal Y of length n and m-
delay on x.

– Cell: y := x cell b init i0 means that y takes the value of x when x is
present, otherwise when b is true, y takes its own latest value. The clock of
y is the upper bound of the clock of x and the clock defined by the instants
at which b is true. It is obvious this is a polychronous operation, it can be
expressed like this:
y := x default (y $ init i0) | y ^= ^x default (when b)

– Partial definitions: Partial definitions are series of equations used to define
a signal. Each one of the partial definition contributes to the overall defini-
tion of this signal. These partial definitions can appear in different syntactic
contexts. The overall definition of the signal is considered as complete in
a compilation unit. They are syntactically distinguished by the use of the
special symbol ::=.

– Domains of values: The types of Signal can be predefined simple types
(integer, real, char,. . .). Among them, there is a special type named event
which is a pure signal, useful only for its clock. It can only be present or

absent. Signal also provides composite types including array types, enu-
merated types, and tuple types. Moreover, it is allowed to declare external
types and state variables, a typed sequence of elements that are present as
frequently as necessary. Default conversions between different types are also
supported.

– Modularity: The Signal language allows modular programming and ex-
ternal function calls. It can be used to describe internal or external commu-
nications, facilitating encapsulation and reusability. According to the level
of abstraction, black box and grey box modules are available.

The Signal language has all the features needed for real-time application
programming. It has been proved to possess maximum expressive power for syn-
chronization mechanisms [BLSS87]. It must be pointed out that this section only
presents the elementary parts of Signal. Some advanced concepts and the strict
formal semantics are not mentioned. For a complete and detailed understanding,
please refer to [BGL02], or take a look at the web site of the Espresso [E03].

2.3 The Integrated Environment

The Signal environment is an integrated development environment and technol-
ogy demonstrator, also called Polychrony, consisting of a compiler, a visual
editor and simulator, and a model checker. Signal provides the programmer
with the nice high-level constructs needed to describe a real-time system in a
simple and elegant way. Nevertheless it is a challenge to construct a compiler,
able to generate efficient executable code by using a reasonable amount of com-
puting resources. The Signal compilation performs formal calculus on systems
of boolean equations which express the synchronizations in the program. Then,
by using an arborescent hierarchical representation of the equations, the compil-
er checks the consistency of the synchronizations and generates executable code
(e.g. C or Java) [MCL92]. The key feature of the compiler is that it synthesizes
the global timing from the programmers specifications. This is different from
other compilers (e.g. Lustre), which require the global view of the timing for
the programmer to write the program. The model checker, called Sigali, gives
the verification of dynamic properties of the programs.

While Signal fills this task quite well, the increasing complexity of the appli-
cations and strict real-time constraints often make it a considerable need to use
multiprocessor (parallel, distributed) architectures when real-time algorithms
are executed. SynDEx can automatically generate dead-lock free executables
for real-time execution of algorithms on distributed architectures. It is based on
a static scheduling policy to minimize execution time and program size over-
heads. In the end, the m4 macro-processor produces source code in the preferred
compilable language.

3 AAA and SynDEx

The SynDEx environment is a system level CAD tool, supporting the AAA
methodology. It aims at rapid prototyping and optimization of real-time em-

bedded applications on multicomponent architectures. It has been designed and
developed at INRIA-Rocquencourt. SynDEx is a graphical interactive software
offering a seamless environment to help the user from the specification level
(functionalities, hardware resources, real-time and embedding constraints of the
application) to the implementation level. It allows user to import programs as
text files as well as to use a graphic editor.

3.1 The Integrated Environment

In the SynDEx environment, an algorithm is modeled by a conditioned data-
flow graph, that is, a folded dependency graph presenting a pattern indefinite-
ly repeated. In the textual formalism, each graph unit is defined as an algo-
rithm. There are four kinds of special algorithms: constant, sensor, actuator
and memory. The grammar of SynDEx codes will be presented in the fol-
lowing subsection. The dependency graph describes dependencies, represented
by edges, between operations, represented by vertices. In the SynDEx algo-
rithm model, there are four kinds of dependencies: strong precedence data,

weak precedence data, precedence and data dependency [M02]. In fact, most
dependencies actually represent a data transfer from a producer operation to a
consumer operation. This involves a partial order on the execution of the op-
erations, called potential parallelism. Potential means that this parallelism will
be exploited only if parallel hardware resources are available. The execution of
each graph pattern of the dependency graph is triggered when an input event,
coming from the environment, is received by operations without predecessor.
Such special operations are called sensors. The output events that are sent to
the environment by operations without successor are called actuators. Moreover,
a dependency graph may be conditioned, that is, a part of this graph may not
be executed. For example, a conditioning vertex, with two inputs and one out-
put, does not produce any data when its conditioning input, which must be of
boolean type, is carrying a false value. In this case, by transitivity, all dependent
vertices will not be executed. Otherwise, when both inputs are present, but the
condition is true, the output takes the value of the other input. Note that when
we talk about algorithm model only, the durations of operations and data trans-
fers defined in the architecture model of SynDEx are not taken into account.
In those cases, it produces a logical time which corresponds to the time the in-
put / output events are interleaving. The algorithm model of SynDEx has the
semantics of synchronous languages and more specifically, has the programming
style of a data-flow language which is just what Signal has.

The goal of the AAA methodology is to find an optimized implementation of
an application algorithm on an architecture, while satisfying constraints [KS98].
AAA is based on graph models to exhibit both, the potential parallelism of the
algorithm, and the available parallelism of the multicomponent. In this method-
ology, the first A (Algorithm) is the core part to connect with the SiSy transla-
tion. In fact, every sub-clock of Signal programs is translated into one algorithm
in SynDEx as we will explain in the following sections.

3.2 The SynDEx Algorithm Model

The grammar of the SynDEx algorithm definition is shown below. Here, the
terminal symbols are set in bold. Non-terminal symbols are set in italic. Square
brackets represent optional elements. Curly brackets represent zero, one, or sev-
eral repetitions of the enclosed element. Curly brackets with a trailing plus sign
represent one or several repetitions of the enclosed element. Because of the s-
pace limitation, some unimportant non-terminal symbol definitions are not listed
here. For more details please refer to [M02].

algorithm ::= def algorithm NAME [arg name][dim window] :
{in port}{out port}{conditions references dependencies}[description]

in port ::= ? NAME [dimension] [NAME] [init port][rank][position]
out port ::= ! NAME [dimension] [NAME] [rank] [position]
conditions ::= conditions: [boolean |NAME = integer];
references ::= references: {ref type [arg values] NAME [position];}
dependencies ::= dependences:{dependency}
dependency ::= strong precedence data ref port -> ref port;

| weak precedence data ref port -> ref port;
| precedence ref ->ref;
| data ref port -> ref port;

ref port ::= NAME |NAME . NAME
NAME ::= {’a’-’z’ ’A’-’Z’ ’ ’}+ {’a’-’z’ ’A’-’Z’ ’ ’ ’-’ ’0’-’9’ ’*’}

This is a simple example which is the corresponding SynDEx algorithm
definition of the default operator in Signal language:

def algorithm default :

? int i1;
? bool i2;

? int i3;
! int o;

conditions : i2 =1;
references:
dependences:

strong_precedence_data i1-> o;
conditions : i2 = 0;

references:
dependences:

strong_precedence_data i3 -> o;

description:"x:=(i1 when i2) default(i3 when (not i2))"

Example 1: the definition of “default”

The SynDEx algorithm model is composed of several algorithm (or sensor,
actuator, constant, memory) definitions. A sensor receives input signals from
the environment and an actuator produces output signals to the environment;
constant and memory definitions are special kinds of algorithm definitions which
have more simple syntax. The main algorithm must be set according to the
grammar “main algorithm ref type [arg values];”.

From the sections above, we can see that Signal and SynDEx are both
powerful environments used for real-time systems. Each of them used isolatedly
has its specific features. The translation from Signal to the SynDEx formalism
will give Signal users access to all SynDEx functionalities.

4 SiSy Translation Strategy

SiSy translation starts off from the internal abstract representation of a Signal

program to the input format of SynDEx. It is not done directly from the Signal

code that we introduced in section 2, but from an arborescent hierarchical rep-
resentation called Hierarchical Conditional Dependency Graph (HCDG) which
is produced by the Signal compiler.

4.1 The Signal Hierarchical Conditional Dependency Graph

Signal programs can be compiled into an HCDG which is a generalization of
the Directed Acyclic Graph (DAG) and can be described with a six-tuple:

< G, C, Σ, fN , fΓ , δΓ > is a Hierarchical Conditional Dependency Graph iff:

– G =< N, Γ, I, O > is a dependency graph < N, Γ > with communication
nodes, inputs I and outputs O such that I ⊆ N , O ⊆ N and I ∩ O = ∅; the
set of nodes N is partitioned into Nd, the set of data nodes, and Nc, the set
of clock nodes.

– < C, Σ > is an equational control representation where Σ is a set of con-
straints over a set C of characteristic functions representing clocks.

– fN : N → C is a mapping each node to a clock; it specifies the presence
condition of the nodes.

– fΓ : Γ → C is a mapping each edge to a clock; it specifies precedence
relations between the nodes.

– δΓ : Γ → C is a mapping each edge to a clock while it specifies data depen-
dencies between the nodes.

If fN (n) = ^c, there exists a node c ∈ Nc such that fN (c) =^c and fΓ (c, n) =
^c. This node is associated with a boolean signal c. The equational control rep-
resentation < C, Σ > is expressed over a set C of characteristic functions repre-
senting clocks. The boolean signal c ∈ C represents the clock of a given signal x

such that at every instant t, c holds the value true if and only if x is present. The
equation system Σ evolves in a boolean algebra B =< C,∨,∧, 0̂, 1̂ > where 0̂ de-
notes the least element of B which stands for the never present clock. < C, Σ >

defines a clock system organized as a clock hierarchy. It is a tree-like hierarchy
defined by a function s: s : C → C ∪ {tick} , such that for every x in C, there
is a single clock r, and a minimal integer n such that s(sn(x)) = sn(x) = r, tick
represents the clock that is faster than the fastest clock of all signals in the
compiled unit; r is called a root. A clock hierarchy tree can be seen as a repre-
sentation of an inclusion relation between clocks. The set of instants represented

by a node of the clock tree is included in the set of instants represented by its
parent. More generally, a node is included in its ancestors.

For a given program, different levels of representation of its clock hierarchy
are distinguished. In fact, these different levels correspond to different phases
of the compilation of a Signal program. There are functionalities to change
between some levels (e.g. from DC+ to bDC+ and from bDC+ to STS):

– In the DC+ level, clocks are represented as signals of the type event.
– In the bDC+ (boolean DC+) level, clocks are represented as boolean sig-

nals (no event type is used). Note that boolean signals representing clocks
themselves have clocks represented as boolean signals; the clock hierarchy
still exists in bDC+. It is provided with a single root, which is tick.

– The STS level (Symbolic Transition System), which is also called “flat bD-
C+”, is a bDC+ level with a flat clock hierarchy. It has only one root, which
is tick. State variables are defined at tick. Moreover, in the STS level, for
every boolean clock signal b, s(b)=tick. This means there are at most two
levels of clock hierarchy in the STS representation of a Signal program.

For generating SynDEx code, STS is the most appropriate level because in
STS, all the clocks, which are the variables representing the control of the appli-
cation, have been expanded up to the most frequent clock, and the state variables
are also defined at the most frequent clocks: other variables can have a “don’t
care” interpretation at the instants at which they are absent. This corresponds
to the SynDEx representation, which considers “remanent” variables.

4.2 Translation Rules

In a STS HCDG representation of a Signal program, the clocks of the signals
have been expanded so that the clock hierarchy tree contains at most two levels:
the most frequent clock, the root of the tree (tick in SiSy also called master
clock), and the children level, which comprises less frequent clocks defined by the
true value of the boolean signals. Let us denote these booleans by b1, b2, . . . , bn,
and the clock when bi denotes the instants at which bi is true. These clocks are
children of the clock tick, they are also called sub clocks. Since during the Signal

compilation, each clock is associated with the sub-graph containing the nodes
that are defined at this clock, the translation strategy is the following: whenever
a graph is associated with a clock, this graph is translated as one algorithm in
SynDEx.

Translation of Clock Hierarchy. So any graph gi associated with a clock
that is a child of tick, will be translated to an algorithm following the standard
SiSy translation scheme. In this algorithm, however, a condition is defined, cor-
responding to the values of the boolean representation of this sub clock bi, which
is an input of gi, bi = 1. The standard SiSy translation scheme for each graph
will be presented in detail in the following subsection. The translation of gi can
be sketched as follows:

def algorithm P bi:

? ...

! ...

conditions: bi = 1

SiSy(gi)

The top level graph P contains the nodes associated with the clock tick, as
well as process calls corresponding to each of the graphs associated with the sub
clocks of tick. The SiSy translation of P is an algorithm P obtained in the stan-
dard way (in particular, it contains the translations of all the nodes of P , and
those representing these process calls). The definitions of this algorithm are not
conditioned (in SynDEx, conditions: true). The input and output signals (in
SynDEx, they are called ports) are translated from the communication signals
between clock graphs. Interface signals that communicate externally are read
/write nodes in STS and get translated into sensors and actuators in SynDEx.

At last, after translating the master clock and all the sub clocks, the algo-
rithm of the master clock is set to the main algorithm of the SynDEx program
following the form “main algorithm ref type [arg values];”.

Translation of Nodes. Most of SiSy effort is spent translating nodes. The
way to translate nodes is just what we called “the standard SiSy translation”
before. From the grammar and the example of SynDEx algorithm definitions
(section 3.2), we can see that generally there are four parts in every algorithm:
ports, conditions, references, and dependences. Ports and conditions are produced
while translating the clock hierarchy. References and dependences are the main
body of an algorithm definition. They are produced according to the attached
nodes of the considered clock. In STS, the nodes can be classified into:

– Constants: The constants are explicitly represented by references to con-
stant vertices in SynDEx (associated dependences follow trivially).

– Equations: For the equations, we consider a general definition X := F(Y1,

Y2, ..., Yn) where F is some Signal n-ary operator. It is obvious that it
is sufficient to only consider elementary expressions (using only one operator
and adding auxiliary variables), because it is always possible to rewrite a defi-
nition containing composed expressions into a composition of elementary def-
initions. Such elementary operators include all the basic static monochronous
operators (e.g., add or mod), the dynamic monochronous operators (e.g.
delay or window), and some polychronous operators (e.g. default or cell).
For such elementary operators, including state variables, SynDEx defines
libraries to provide basic algorithm declarations (example 1 in section 3.2,
is the declaration of the Signal “default” operator in the int library of
SynDEx). We assume that X := F(Y1, Y2, ..., Yn) is an operation of
type T , then there is an algorithm named F with type T declared in the
predefined library. The SiSy translation of this equation is a reference to
F associated with T , noted: T/F. This reference must have a unique name

in the algorithm in which it is contained, for example, this name can be
the name of the algorithm, F , suffixed with the current value of a reference
counter: T/F F k. To specify the dependences, this occurrence is designated
by its name F k. There is another polychronous operator in Signal: when.
Considering the general form of a when equation, node N , X := E when c,
c represents the clock of the considered definition of X. Since the boolean
variable c has been considered when the node N was found in a subclock,
it is always correct to translate the node N just like an ordinary node, X :=

E.
– Memorization: The SiSy translation of a memorization ZX := X $ m window

n is analogous to the translation of a definition, except that it is a reference
to a memory.

– Partial definitions: For the SiSy translation of partial definitions, we con-
sider:
X ::= E1 when c1

. . .
X ::= En when cn

The ci clocks are exclusive clocks, and the clock cj is the clock at which
X is defined by the synchronous expression Ej . When translating such par-
tial definitions, the original graph is rewritten as follows: At first, the nodes
representing the list of partial definitions associated with the signal X are
deleted from the attached clocks. Then, it is always possible to generate a
new subclock which includes the signal X produced by all the nodes repre-
senting its partial definitions:
X := (E1 when c1) default ... default (En when cn)

The connections or dependencies involving X are consequently transferred to
this node.

– Process call: The SiSy translation of a process (or sub-process) Q comprises
exactly all the objects mentioned in this section. The process is defined
explicitly as an algorithm named Q, then, a call to the process Q is translated
into a reference to the algorithm Q, with the unique name Q k.

– External call: The SiSy translation of an external process Q is just like
the SiSy translation of any process, except that the description part of the
corresponding algorithm is empty since Q is not defined in Signal.

– Subgraph: the nodes and dependencies of a subgraph are subsets of the
nodes and dependencies of the graph in which they are contained. So, they
are handled in the standard way by the SiSy translation. If, for some reason,
a subgraph has to be kept as a proper object, it has first to be transformed
into a graph and replaced in its including graph by a process call to this new
graph. Then, the SiSy translation is the same as for any process call.

For non elementary types that may be eventually used in a Signal program,
it is not possible to have the declarations before the translation; the correspond-
ing library including the predefined operators in Signal is produced by the
translation program. Examples of such types are enumerated types, external
types, etc. Arrays, which are also non elementary types, are treated separate-

ly since SynDEx provides an array constructor (one dimensional arrays). This
constructor is used to represent the array types of the program. However, all
array operators must be explicitly declared as algorithms.

Dependencies. After declaring the references for each node, dependencies must
be set. The dependencies (the edges of the SynDEx graph) are built from:

1. The data flow connections of the Signal graph,
2. The explicit precedence relations.

With each data flow connection d: From the mth output of a node pk to
the nth input of a node pl, the SiSy translation associates a strong precedence
data from the output of the vertex SiSy(pk) corresponding to the mth output of
pk, to the input of the vertex SiSy(pl) corresponding to the nth input of pl. In
SynDEx, a reference to some vertex SiSy(pr) in a given algorithm must have
a unique name: let us call p ks and p lt the unique names of the considered
references to the vertices SiSy(pk) and SiSy(pl). If i n designates the nth input
of the vertex SiSy(pl), and o m designates the mth output of the vertex SiSy(pk),
the strong precedence data associated with d is:
strong precedence data p ks.o m -> p lt.i n;

An interconnection communication is a special case of data flow connection,
and get translated into explicit inputs and outputs in SynDEx. Let us take
inputs for example: If i n denotes the nth input of the vertex SiSy(pl), and i m

denotes the mth input of the graph, the strong precedence data associated with
d is:
strong precedence data i m -> p lt.i n;

When the input of the graph is a read node, it is translated into a sensor

of the same type. (It is similar for write with actuator.) Then the strong
precedence data is from the reference of this sensor to the input of the vertex
who uses the input signal. Thus, If i n denotes the nth input of the vertex
SiSy(pl) and o designates the output of the mth vertex sensor, let us assume it
has the name s m, the strong precedence data associated with d is:
strong precedence data s m.o -> p lt.i n;

Another kind of dependency is used to express precedence relations. With
each precedence relation in the graph, the SiSy translation associates a prece-
dence defined as follows:

When an expression of explicit dependency in Signal appears in STS, that
is, there is a node like:
Ei --> Ej

this expression is translated directly into a SynDEx precedence.
In this case, if Ei and Ej are simple expressions, we use SiSy(E) to represent

translation of the expression E in the standard way and the unique reference
names are produced. The corresponding dependency in SynDEx is:
precedence SiSy(Ei) -> SiSy(Ej);
If Ei and Ej are expressions with labels in the syntax of Signal, for example:
Si :: Ei

Sj :: Ej

Si --> Sj

the corresponding translation in SynDEx is still the precedence of the results of
translating the equations:
precedence SiSy(Ei) -> SiSy(Ej);

4.3 An Example

Let us see a short, but complete example: a watchdog. Its task is to monitor
some resources. After one action (ORDER) is received, if there is not any oth-
er action occurring for longer than the preset time (COUNTER), ALARM is
emitted. Moreover, the value of ALARM is the number of the time unit since
the beginning of execution. This watchdog monitor promotes the efficient usage
of the resources. Here, because of space limitations, we set clock constraints in
order that all signals are synchronous. The Signal process is as follows:

process WATCHDOG =

{integer COUNTER;}
(? boolean ORDER;
! integer ALARM;)

(| CNT ^= ORDER ^= HOUR ^= ALARM

| HOUR := (HOUR $ init 0) +1
| ZCNT := CNT $ init 1

| CNT := COUNTER when ORDER

default ZCNT-1 when ZCNT >0
default -1

| ALARM := HOUR when CNT =0 default 0

|)
where

integer HOUR, ZCNT, CNT;
end

The corresponding SynDEx algorithm is :

syndex_version : "6.5.2"

include "Signal_int.sdx";
include "Signal_bool.sdx";

#-------------------------
def algorithm CLK_CNT_41_0 :

? bool ORDER;
? int CNT_37;
? bool C_CNT;

? bool C_70;
! int CNT_41;

conditions: C_CNT = 1;
references:

Signal_int/constante<5> constante_3;
Signal_int/default default_3;

dependences:

strong_precedence_data default_3.o -> CNT_41;
strong_precedence_data constante_3.o -> default_3.i1;

strong_precedence_data ORDER -> default_3.i2;
strong_precedence_data CNT_37 -> default_3.i3;

#-------------------------
def algorithm CLK_ORDER :

conditions: true;
references:

Signal_bool/input input_1;
Signal_int/default default_1;
Signal_int/constante<1> constante_1;

Signal_int/n_delay<1> n_delay_1;
Signal_int/usub usub_1;

Signal_int/default default_2;

Signal_int/constante<0> constante_2;
Signal_int/n_delay<1> n_delay_2;
Signal_int/add add_1;

Signal_int/sub sub_1;
Signal_int/strictly_greate strictly_greate_1;

Signal_int/equal equal_1;
Signal_bool/logic_or logic_or_1;

Signal_bool/logic_not logic_not_1;
Signal_bool/logic_and logic_and_1;
Signal_int/output output_1;

CLK_CNT_41_0 CLK_CNT_41_0_1;
dependences:

strong_precedence_data default_1.o -> output_1.i;
strong_precedence_data add_1.o -> default_1.i1;
strong_precedence_data equal_1.o -> default_1.i2;

strong_precedence_data constante_2.o -> default_1.i3;
strong_precedence_data constante_1.o -> n_delay_1.i1;

strong_precedence_data default_2.o -> n_delay_1.i2;
strong_precedence_data constante_1.o -> usub_1.i1;

strong_precedence_data CLK_CNT_41_0_1.CNT_41 -> default_2.i1;
strong_precedence_data logic_or_1.o -> default_2.i2;
strong_precedence_data usub_1.o -> default_2.i3;

strong_precedence_data constante_2.o -> n_delay_2.i1;
strong_precedence_data add_1.o -> n_delay_2.i2;

strong_precedence_data n_delay_2.o -> add_1.i1;
strong_precedence_data constante_1.o -> add_1.i2;
strong_precedence_data n_delay_1.o -> sub_1.i1;

strong_precedence_data constante_1.o -> sub_1.i2;
strong_precedence_data n_delay_1.o -> strictly_greate_1.i1;

strong_precedence_data constante_2.o -> strictly_greate_1.i2;
strong_precedence_data default_2.o -> equal_1.i1;

strong_precedence_data constante_2.o -> equal_1.i2;
strong_precedence_data input_1.o -> logic_or_1.i1;
strong_precedence_data strictly_greate_1.o -> logic_or_1.i2;

strong_precedence_data input_1.o -> logic_not_1.i1;
strong_precedence_data logic_not_1.o -> logic_and_1.i1;

strong_precedence_data strictly_greate_1.o -> logic_and_1.i2;
strong_precedence_data input_1.o -> CLK_CNT_41_0_1.ORDER;
strong_precedence_data sub_1.o -> CLK_CNT_41_0_1.CNT_37;

strong_precedence_data logic_or_1.o -> CLK_CNT_41_0_1.C_CNT;
strong_precedence_data logic_and_1.o -> CLK_CNT_41_0_1.C_70;

main algorithm

main algorithm CLK_ORDER;

It is easy to validate the translation by simultating the application in both
environments. As expected, when executing the Signal code and the SynDEx

code with the same input data, we get the same results.

5 Conclusion

Real-time systems are crucial components of controllers for planes, robots, cars,
even basic household devices. Malfunction may be dangerous, and repairing is
usually very costly. Therefore high competence of developers and powerful tools
are needed for developing this kind of systems. Signal and SynDEx are both
elegant and well defined integrated environments that can be used for the de-
velopment of synchronous systems. But the two environments are isolated of
each other, each having its own features. The SiSy translator offers an interface
to reach SynDEx functionalities from Signal code. The main add-ons of this
translator are the following:

1. It gives Signal designs access to the functionalities of SynDEx, in particular
the possibility to get and to prototype distributed implementations obtained
from quantitative criteria;

2. It enables Signal as a possible input formalism for SynDEx users;
3. It allows the use of SynDEx on applications developed in formalisms for

which it is of interest to have a Signal intermediate representation.

In the Polychrony environment, SynDEx could be made in particular for
the general method we propose for distributed code implementation[GL99]. In
this method, an application is first described as a polychronous Signal process,
comprosed of atomic sub-processes, and target architecture is first viewed as a
set of abstract nodes (tasks and processes) to which functional sub-processes
are allocated. Currently, the allocation is manual, but it could be done with
help of SynDEx optimigation algorithms. The SiSy translator is still in devel-
opment, but the prototype has been made available with the newest version of
Polychrony [E03]. Currently, we are concentrated on composite types trans-
lation, as well as testing and experimenting on realistic examples provided by
the ACOTRIS project.

References

[A03] ACOTRIS Web site : http://www.acotris.c-s.fr/
[ABL95] P. Amagbégnon, L. Besnard and P. Le Guernic, Implementation of the Data-

flow Synchronous Language SIGNAL, PLDI’95 (Programming Languages
Design and Implementation), 163-173, 1995.

[BD91] F. Boussinot, R. De Simone. The ESTEREL language. Proceedings IEEE,
79-9, 1991.

[BGL02] L. Besnard, Th. Gautier, P. Le Guernic, SIGNAL V4 -INRIA version: Ref-
erence Manual, IRISA, December 2002.

[BLSS87] A. Beneveniste, P. Le Guernic, Y. Sorel, M. Sorine, A denotational theory of
synchronous communicating systems, INRIA Research Report 685, Rennes,
France, 1987, Also appear in Information and Computation.

[E03] ESPRESSO Web site: http://www.irisa.fr/espresso/Polychrony/
[GL99] Th. Gautier, P. Le Guernic, Code generation in the SACRES project. To-

wards System Safety, Proceeding of the Safety-critical Systems Symposium,
SSS’99, Springer, 1999

[H91] N. Halbwachs et al. The synchronous data flow programming language LUS-
TRE. Proceedings IEEE, 79-9, 1991.

[KS98] R. Koclik, Y. Sorel, A Methodology to Design and prototype Optimized
Embedded Robotic Systems, 2nd IMACS International Multiconference CE-
SA’98, Hammamet, Tunisia, April 1998.

[M02] C. Macabiau, Siau,CE-d
(2l,)Tj
20.587] 1991. ese81
11.389905 0 Td
(1987,)Tj
24.0992 0 Td
(5Td
(SysteTj
5.27849 0 Td
Tj
8.0291Janj
/R34 8dde738 Tf
30.0874ua3 -11.01ony)d
([KS98])T)Tj
44.6(Guy)d
C.site:3
(Y)en

