
 POLYCHRONY
Polychrony_SDP Page 1/11

POLYCHRONY

A TOOLSET FOR SIGNAL

Polychrony Software Development Plan

V1.0

Author(s) Checked by Approbation

Name Members of the
Espresso Team

 Loïc Besnard **
Thierry Gautier

Jean-Pierre Talpin

Company INRIA INRIA, **CNRS INRIA

Department ESPRESSO TEAM ESPRESSO TEAM ESPRESSO TEAM

Date November 2011 November 2011 November 2011

Visa

Summary This document presents the organization of the POLYCHRONY tool
(Signal ToolBox, Signal GUI, SSME Platform) and its development.

Attention : la responsabilité des entreprises et des organismes ayant participé à
l'élaboration de ce document ne peut en aucun cas être engagée en cas de dommages
ou de pertes résultant de l'utilisation ou de l'exploitation des informations qui y sont
contenues.

Disclaimer : Contractors participating to this report shall incur no liability whatsoever for
any damage or loss which may result from the use or exploitation of information and/or
Rights contained in this report.

Apr 27, 2012

 POLYCHRONY
Polychrony_SDP Page 2/11

Table of Contents
1 Preface..4

1.1 Table of versions...4
1.2 Table of references and applicable documents..4
1.3 Acronyms and glossary...4

2 Subject..5
2.1 Purpose of the document..5
2.2 Editing particularities...5

2.2.1 Changes identification..5
2.2.2 Temporary editing..5

2.3 Application scope..5
2.4 Edition and evolution of the document ...5

2.4.1 Responsibilities..5
2.4.2 Evolutions...6

3 Context & Objectives ..6
3.1 SIGNAL language..6
3.2 POLYCHRONY TOOLSET..7
3.3 Objectives..8

4 Hypotheses & constraints...8
5 Roadmap...9
6 Licences..9
7 Project organization ...9
8 Inputs / outputs...9

8.1 Inputs...9
8.2 Outputs..10

9 Strategy of Verification and Validation...10
10 Documentation management...11

10.1 Documentation identification..11
10.2 Editing rules...11
Documentation for the two tool parts, the SSME platform under Eclipse and the
SIGNAL TOOLBOX services, is done in two apparently different ways.........................11
10.3 Templates..12

11 Project management...12
11.1 Planning...12
The development of the tool(s) are defined inside some research projects. The
milestones are induced by these projects...12
11.2 Progress management..12
The development of the tool(s) are defined inside some research projects. The
progress depends on the meeting progress of these projects..12
11.3 Risks management..12
List of the risks (***incomplete***)...12
11.4 Reporting***incomplete***...12

12 Specific tools and standards...12

Apr 27, 2012

 POLYCHRONY
Polychrony_SDP Page 3/11

1 Preface

1.1 Table of versions

Version Date Description & rationale of
modifications

Sections modified

1.2 Table of references and applicable documents

Reference/
Applicable

Reference Title & edition Author or
editor

Year

1.3 Acronyms and glossary

Term Description

Apr 27, 2012

 POLYCHRONY
Polychrony_SDP Page 4/11

2 Subject

2.1 Purpose of the document

This document is the development plan for the tool Polychrony.

It defines the organization and the management of the project.

More precisely, the SDP presents :

– the project objectives and assumptions

– the project organization and the role of the participants

– the expected products

– the roadmap

– the project management including the planning, the reporting, the risks management ...

2.2 Editing particularities

2.2.1 Changes identification

All the changes made since the previous publication are identified using the sign | in

the left margin of each line holding a modification.

2.2.2 Temporary editing

Special points are signaled like this :

. ***temporary***

. ***incomplete***

. ***to be defined***

. ***to be confirmed***

.***TODO***

2.3 Application scope

This document is applicable for the tool Polychrony.

2.4 Edition and evolution of the document

2.4.1 Responsibilities

Author

The development plan is written by the members of the Espresso Team (INRIA Bretagne
Atlantique-IRISA, Rennes).

Authorization

The development plan will be authorized by Loïc Besnard and Thierry Gautier.

Apr 27, 2012

 POLYCHRONY
Polychrony_SDP Page 5/11

Approval

The development plan will be approved by Jean-Pierre Talpin.

Diffusion

The development plan is provided to each member of the development team for
application.

Application

The application of the development plan is ensured by the quality responsible of the team.

2.4.2 Evolutions

 The members of the Espresso Team (INRIA Bretagne Atlantique-IRISA, Rennes) are
responsible of the evolution of the document.

This document shall be modified when :

– The information relative to the project change (organization, context, objectives ...)

– The process is modified in order to improve it or to reflect the reality.

3 Context & Objectives
The POLYCHRONY TOOLSET, is an Open Source development environment for
critical/embedded systems. It is based on SIGNAL, a real-time polychronous dataflow
language. It provides a unified model-driven environment to perform design exploration by
using top-down and bottom-up design methodologies formally supported by design model
transformations from specification to implementation and from synchrony to asynchrony. It
can be included in heterogeneous design systems with various input formalisms and
output languages.

3.1 SIGNAL language

 SIGNAL is a specification and programming language for critical/real-time embedded
applications. The main features of the SIGNAL languages are synchronized flows (flows +
synchronization) and processes: a process is (recursively) a set of equations over
synchronized flows describing both data and control. The SIGNAL formal model provides
the capability to describe systems with several clocks (polychronous systems) as
relational specifications. Relations are mandatory to write partial specifications, to specify
non-deterministic devices (for instance a non-deterministic bus), and to abstract the
behavior of external processes (for instance an unsafe car driver). Using SIGNAL allows
to specify an application, to design an architecture, to refine detailed components down to
RTOS or hardware description. The SIGNAL model supports a design methodology which
goes from specification to implementation, from abstraction to concretization, from
synchrony to asynchrony.

More details can be found in a short introduction to SIGNAL language on the Polychrony
web site.

Apr 27, 2012

http://www.irisa.fr/espresso/Polychrony/
http://www.irisa.fr/espresso/Polychrony/

 POLYCHRONY
Polychrony_SDP Page 6/11

3.2 POLYCHRONY TOOLSET

 The POLYCHRONY TOOLSET provides a formal framework:

• to validate a design at different levels, by the way of formal verification and/or
simulation

• to refine descriptions in a top-down approach,

• to abstract properties needed for black-box composition,

• to assemble heterogeneous predefined components (bottom-up with COTS).

• to generate executable code for various architectures

The POLYCHRONY TOOLSET (See Illustration 1), contains three main components:

• The SIGNAL TOOLBOX, a batch compiler for the SIGNAL language, and a
structured API that provides a set of program transformations. The SIGNAL
TOOLBOX can be installed without the other components.

• The SIGNAL GUI, a Graphical User Interface to the SIGNAL TOOLBOX (editor +
interactive access to compiling functionalities). SIGNAL GUI requires the SIGNAL
TOOLBOX (or an other component that redefines the SIGNAL TOOLBOX ApIs).

• The SSME PLATFORM, a front-end to the SIGNAL TOOLBOX in the ECLIPSE
environment. SSME PLATFORM requires the SIGNAL TOOLBOX (or an other
component that redefines the SIGNAL TOOLBOX ApIs). SSME stands for Signal
Syntax Model under Eclipse.

The POLYCHRONY TOOLSET, also provides:

• libraries of SIGNAL programs,

• a set of SIGNAL programs examples,

• user oriented and implementation documentations,

• facilities to generate new versions.

The SSME PLATFORM may be used to import other formalisms (AADL, Synoptic,
Geneauto). These translators are not described here.

Apr 27, 2012

http://www.eclipse.org/
http://www.eclipse.org/

 POLYCHRONY
Polychrony_SDP Page 7/11

3.3 Objectives

The integration of Polychrony in the Polarsys platform consists in the integration of the
SSME platform, inside an Eclipse environment. The Eclipse plug-ins of the SSME
platform correspond to:

● the definition of the SSME meta-model,

● a reflexive editor for editing SSME programs,

● a Signal textual editor,

● the compilation scenarios that allows to apply the functionalities defined in the
SIGNAL TOOLBOX,

● the connection to the SIGNAL TOOLBOX,

● on-line documentation

4 Hypotheses & constraints
 incomplete

Apr 27, 2012

Illustration 1: Polychrony Tool set

 POLYCHRONY
Polychrony_SDP Page 8/11

The SSME platform depends, for the production of a new version, on the availability of

● the SIGNAL TOOLBOX,

● the TopCased tools which automatically generate editors for specific languages
based on their meta-model.

5 Roadmap
incomplete

The first paper published on the Signal language was in 1983. The (current) SIGNAL
TOOLBOX has been developed during some European projects such as the SACRES
(1995), and SafeAir projects, among others. The SSME platform has been developed
during the OpenEmbDD (2006-2009), TopCased(2007-2010) and SpaCiFY(2007-2010)
projects, OPEES (2010-), CESAR(2010-).

The development of the tool(s) are defined inside some research projects. The milestones
are induced by the projects.

6 Licences
Polychrony toolset components are distributed under the following licenses:

• The SIGNAL TOOLBOX is distributed under GPL V2 licence.

• The SIGNAL GUI is distributed under GPL V2 licence.

• The SSME platform is distributed under EPL licence.

7 Project organization
The members of the Espresso team can be found at the following address:
http://www.irisa.fr/espresso/membres

8 Inputs / outputs

8.1 Inputs

The development of the (current) version of the SIGNAL TOOLBOX began approximately
in 1995 (SACRES project). Consequently, we may say that its current status depends on
the following input documents

● The Reference manual of the Signal Language.

● Research reports

● PhD documents

As regards the Eclipse interface of the Polychrony tool for TopCased, its development
began around 2006. The inputs to this development is to conform with Eclipse
architecture, and the Signal language reference, by means of an Ecore meta-model (and
its reflexive editor) called SSME, which will allow model to model transformations (i.e.

Apr 27, 2012

 POLYCHRONY
Polychrony_SDP Page 9/11

From Signal meta-model to other language meta-model), and providing a seamless
interface to the SIGNAL TOOLBOX services.

8.2 Outputs

The different phases of the development of a new release of SIGNAL TOOLBOX starts
with the definition of a new functionality or the definition of a new feature defined in the
Signal reference manual. We have not a fixed time cycle for such a development. The
new functionality induces its integration in the SSME platform (a new functionality is
available for the batch compiler/the SIGNAL GUI/the SSME platform).

Specification, Design description, Source code

Currently the specification and the design are documentations associated with the
source code.

Tests Plan, Test results

The tests are applied when a new release is delivered. For the application of the
functionalities, the “batch compiler” is used. They are applied using scripts and the
results produced must be (sometimes) revised by a human tester.

TODO: automatic synthesis of the results of a part of the tests (results of a simulation)***

Delivery

When a release is ready and the tests are satisfied, the release can be delivered
with

● the User Guide

● the Installation and Administration Guide

● the release note

● the package (for the delivery)

Reporting ***TODO***

● record of the quality controls

● reporting

9 Strategy of Verification and Validation
 Signal ToolBox

A set of tests are available for the Polychrony kernel. They can be applied using the
“Batch compiler”. A test depends on the tested functionality: recall that SIGNAL
TOOLBOX provides transformations, optimizations, formal verification, abstraction,
separate compilation, mapping, code generation, simulation, temporal profiling....

Different test targets are considered:

– the elementary tests: each class of the operators of the Signal language are
considered

– the composition of several operators

Apr 27, 2012

 POLYCHRONY
Polychrony_SDP Page 10/11

– the fixed bug programs which are added in the benchmark suite

– the examples described in the Signal reference Manual

– the applications provided as examples in Polychrony distributions

For a new feature, some tested examples are provided with the distribution.

This tests are applied for each new release. The trace of the tests can be kept. The tests
can be done on different systems (Linux, Solaris, Windows, Mac OS (Intel and PowerPC
architectures)).

Note that it is not always possible to generate code for simulation for correct Signal
programs. In this case, the tester must look at a new generated Signal program (resulting
of the application of functionalities). The tester must know very well the Signal language
and its semantics.

Eclipse Plugins

Test of the Eclipse Interface for Polychrony is through a set of examples provided with the
distribution, as well as integration tests for the three platforms for which Polychrony is
provided. Those are Linux, Windows and Macintosh.

Integration tests are followed by tests with examples considering editing, loading of
models and randomly generated compilation scenarios.

10 Documentation management

10.1 Documentation identification

No rules are used.

There are the user documents provided for the SIGNAL TOOLBOX services and the user
documents provided for the SSME platform.

The documentations about the Signal language, the kernel services are provided in the
website of the Espresso team http://www.irisa.fr/espresso/Polychrony/. They are updated
with a new release.

The documentation for the source of the kernel services is provided with the distribution.
The version of the documentation is tagged with the version of the Polychrony kernel.

10.2 Editing rules

Documentation for the two tool parts, the SSME platform under Eclipse and the SIGNAL
TOOLBOX services, is done in two apparently different ways.

For documenting the Polychrony services permanent members of the Espresso team are
in charge of describing the features and functionalities of this part. It is an activity that has
evolved since 1995 of joint work and has been largely revised and improved.

By contrast, documentation of the Eclipse interface does not require such a rigorous
editing process, because it only describes what is already provided by the SIGNAL
TOOLBOX services from the point of view of a specific IDE, that of Eclipse. The editing

Apr 27, 2012

http://www.irisa.fr/espresso/Polychrony/

 POLYCHRONY
Polychrony_SDP Page 11/11

here is done by the developers of the Eclipse interface, there is no group editing here.

For the research reports, the leader of the team must authorize their publication.

10.3 Templates

Templates for research reports are those defined at INRIA Rennes Bretagne Atlantique/
IRISA.

11 Project management

11.1 Planning

The development of the tool(s) are defined inside some research projects. The milestones
are induced by these projects.

11.2 Progress management

The development of the tool(s) are defined inside some research projects. The progress
depends on the meeting progress of these projects.

11.3 Risks management

List of the risks (***incomplete***)

● No continuation of the Espresso project. It depends on the result of periodic
evaluations.

● Departure of the developers. Some work is realized by non permanent team
members. This is not the case for the SIGNAL TOOLBOX developers.

11.4 Reporting***incomplete***

The members of the Espresso team publish the results of their work in conferences,
research reports or PhD theses. Moreover, the different developers report of the evolution
of their work during meetings. Demonstrations of the tool(s) are also performed at
conferences.

12 Specific tools and standards
The following tools are used for the development and management of the SIGNAL
TOOLBOX:

● cmake, used for compiling and installation

● doxygen, used for the management of the documentation

Apr 27, 2012

	1 Preface
	1.1 Table of versions
	1.2 Table of references and applicable documents
	1.3 Acronyms and glossary

	2 Subject
	2.1 Purpose of the document
	2.2 Editing particularities
	2.2.1 Changes identification
	2.2.2 Temporary editing

	2.3 Application scope
	2.4 Edition and evolution of the document
	2.4.1 Responsibilities
	2.4.2 Evolutions

	3 Context & Objectives
	3.1 SIGNAL language
	3.2 POLYCHRONY TOOLSET
	3.3 Objectives

	4 Hypotheses & constraints
	5 Roadmap
	6 Licences
	7 Project organization
	8 Inputs / outputs
	8.1 Inputs
	8.2 Outputs

	9 Strategy of Verification and Validation
	10 Documentation management
	10.1 Documentation identification
	10.2 Editing rules
	Documentation for the two tool parts, the SSME platform under Eclipse and the SIGNAL TOOLBOX services, is done in two apparently different ways.
	10.3 Templates

	11 Project management
	11.1 Planning
	The development of the tool(s) are defined inside some research projects. The milestones are induced by these projects.
	11.2 Progress management
	The development of the tool(s) are defined inside some research projects. The progress depends on the meeting progress of these projects.
	11.3 Risks management
	List of the risks (***incomplete***)
	11.4 Reporting***incomplete***

	12 Specific tools and standards

