
The Synchronous Programming Language

SIGNAL

A Tutorial

Bernard HOUSSAIS

IRISA. ESPRESSO Project

24th September 2004

Contents

1 Introduction 5

1.1 An example : the WATCHDOG process . 5

1.1.1 The problem . 5

1.1.2 Input and output signals . 5

1.1.3 Example of progress . 6

1.1.4 Synchronism hypothesis . 6

1.1.5 The process WATCHDOG in Signal language 7

1.1.6 Using WATCHDOG process . 8

2 Signals 11

2.1 Signals in Signal . 11

2.2 Name of signals . 12

2.3 Type of signals . 12

2.3.1 Numerical types . 12

2.3.2 Boolean type . 12

2.3.3 Type event . 13

2.4 Declaration of signals . 13

2.5 Constants, parameters . 13

3 Signal definitions, operators 15

3.1 Definition of a signal . 15

3.1.1 Defining equation . 15

3.1.2 Examples . 15

3.1.3 Clock equality equations . 16

3.2 Monochronous operators . 17

3.2.1 Operators related to types . 17

3.2.2 Delay operator . 17

3.3 Sampling, when operators . 19

3.3.1 Unary when . 19

3.3.2 Binary when . 20

3.4 Merging, default operator . 21

3.5 Complete problem : a Distributor . 22

3

4 CONTENTS

4 More advanced features 25

4.1 The cell operator . 25
4.1.1 Definition . 25
4.1.2 Use of cell operator . 26
4.1.3 Exercices : . 26

4.2 Modularity . 27
4.2.1 Examples of syntax . 27
4.2.2 Sub-process Counter modulo N . 28

4.3 Oversampling . 29

5 Applications 31

5.1 Interval between events . 31
5.1.1 Duration between START and FINISH 31
5.1.2 Is S present between START and FINISH ? 31

5.2 Automata . 32
5.3 Picture analysis . 33
5.4 A railway level crossing . 34

5.4.1 The problem . 34
5.4.2 The Detect process . 35
5.4.3 A Track controller . 35
5.4.4 The Barriers controller . 35

6 Solutions of exercices 39

Chapter 1

Introduction

Signal is a programming language designed for Real Time applications (or reactive, or
embedded systems)[1]. It is a synchronous language, opposite to the asynchronous ap-
proach, like in Ada. Like Lustre[4], its style is declarative, to be compared with imperative
synchronous style in Esterel[5].

This tutorial presents only the elementary parts of the language (V4 version). It aims
to help programmers beginning to write some pieces of programs, for simple applications.
Many advanced concepts, objects, statements are not considered. All definitions - partic-
ularly semantic ones - are very informal.

For a further study, see the Signal V4 Reference Manual[2]. Look also the web site of
ESPRESSO Project[3] at IRISA.

1.1 An example : the WATCHDOG process

As an informal survey, we develop and comment a short, but complete example of real
time module : a watchdog.

1.1.1 The problem

A process emits an ORDER, to be executed within some DELAY. When finished, a DONE
signal is made available. The WATCHDOG is designed to control this delay. It receives
a copy of ORDER and DONE signals. It must emit an ALARM whenever a job is not
finished in time.

More specifications : if a new ORDER occurs when previous one is not finished, the
time counting restarts from zero. A DONE signal out of delay, or not related to an
ORDER, will be ignored.

1.1.2 Input and output signals

An ORDER is supposed to be coded by an integer. So, the WATCHDOG receives as input
a sequence of integers, separated by some undefined amount of time.

The process receives also as other input the DONE signals. A DONE signal is only a
pulse, a simple information, as one obtained by pushing a button. Its type is named in
Signal an event, and is coded by a “boolean” always true.

5

6 CHAPTER 1. INTRODUCTION

In order to count the time, synchronous languages do not use language-defined devices,
like seconds, whose accuracy is not sufficient. The source of time is also an input signal, of
type event. The amount of time between two such time events is defined (and guaranteed !)
by the environment. We suppose this time signal is named TICK. The parameter DELAY
is a number of TICKs, so the unit of physical time must not be given.

As output, the WATCHDOG produces an ALARM when the DELAY between ORDER
and DONE is exceeded. This ALARM could be an event, or better the HOUR of the alarm,
i.e. the number of TICK since the beginning of execution. Its type is integer.

So, inputs and outputs are sequences of values of some type, each value of the sequence
being present at some instants. Such a sequence is called a signal. The set of instants
where a signal takes a value is the clock of the signal.

1.1.3 Example of progress

To show a possible scenario for the WATCHDOG, we use a time diagram, with the time
as abciss. Each signal is represented on an horizontal line, with a mark for each value.
Values which occur at the same time are on the same vertical.

We assume here: DELAY = 5 :

7 8 9

ORDER : -----*---------------*----------------------*-------

t t t

DONE : ------------*----------------------------*-----*----

t t t t t t t t t t t t t t t t t

TICK : --*--*--*--*--*--*--*--*--*--*--*--*--*--*--*--*--*-

12

ALARM : -----------------------------------*----------------

ALARM occurs on the 5th TICK following ORDER number 8. It was also the 12th
TICK from the beginning.

An other representation (more precise) of a scenario would be to show only these
moments where at least one signal is present. Absent signals are then represented by the
bottom symbol : ⊥

ORDER : ⊥ 7 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 8 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 9 ⊥ ⊥
DONE : ⊥ ⊥ ⊥ ⊥ t ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ t ⊥ t ⊥
TICK : t t t t ⊥ t t t ⊥ t t t t t t t t t t
ALARM : ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 12 ⊥ ⊥ ⊥ ⊥ ⊥

We see more precisely that ORDER no 7 arrived exactly on a TICK; the first DONE
occurs between TICK 4 and TICK 5.

1.1.4 Synchronism hypothesis

A Signal program does not deal with the exact duration between two signals. It only
knows the relative order of signals, with the fact they are simultaneous, or not.

The language assumes the environment is able to say if two input signals are simulta-
neous, or which of them is before the other. The only instants considered in a program

1.1. AN EXAMPLE : THE WATCHDOG PROCESS 7

are those where at least one signal is present. At these moments, some computing can be
done on signals, producing new values.

An other hypothesis is that computations take a null time. So we consider that new
values are produced at the same logical instant as data used in their computation.

For example, ALARM signal is produced on some TICK, the 5th after an ORDER, if
no DONE has arrived before or at the same time. The decision to produce an ALARM
depends on TICK and DONE signals, and is necessarly after them. But we assume that
the decision can be taken in a null time, and the ALARM is produced at the same instant
as the 5th TICK.

1.1.5 The process WATCHDOG in Signal language

Numbered lines are those of the program.

1 : process WATCHDOG =

2 : % emits an ALARM if an ORDER is not DONE within some DELAY %

3 : { integer DELAY;}

4 : (? integer ORDER;

5 : event DONE, TICK;

6 : ! integer ALARM;)

These lines are the interface of the process. They are the only ones an other process
has to know to use it.

Syntactically, DELAY is a parameter. It is a constant, to be fixed before compilation.
The ? symbol introduces input signals, with their types. The ! symbol is for output
signals.

7 : (|

Beginning of process body, made of a set of equations. These equations define values
or constraints on signals. They are separated by vertical bars : (| . . . | . . . | . . . |).

8 : HOUR ^= TICK

9 : | HOUR := (HOUR$ init 0) + 1

Signals can be input/output signals (like TICK), or local signals (like HOUR), whose
declaration is placed at end of text. HOUR is a counter designed to number TICK signals.
It will be output to give the HOUR associated with an ALARM.

Line 8 makes this signal present at the same instants as TICK : HOUR and TICK have
the same clok, they are synchronous signals. ˆ= is the clock equality operator. Equations
like 8 are necessary when the context is not sufficient to define by itself the clock of a
signal.

The value of HOUR signal is defined on line 9. As a declarative language, Signal does
not modify variables, like in HOUR := HOUR+1. The previous value (at previous instant)
is made available at current instant by HOUR $. Its value at first instant is set to 0, after
init keyword.

The present value of HOUR is the previous one + 1. This definition by itself does not
define the clock of HOUR, so line 8 is necessary.

8 CHAPTER 1. INTRODUCTION

10 : | CNT ^= TICK ^+ ORDER ^+ DONE

11 : | ZCNT := CNT $ init (-1)

12 : | CNT := DELAY when ^ORDER

13 : default -1 when DONE

14 : default ZCNT - 1 when ZCNT >= 0

15 : default -1

The time between an ORDER and its completion is counted by a decreasing counter,
named CNT (for COUNT is a Signal keyword !). Its initial value is set to DELAY when
an ORDER arrives. Then, it decreases on each TICK, until arrival of a DONE signal, or
until it reaches 0 if no DONE comes.

The equation line 10 defines the instants where CNT is present. Its clock is the union
(ˆ+ operator) of clocks of the 3 input signals, i.e. the set of instants where at least one of
them is present.

ZCNT has the value of CNT at the previous instant, according to the clock of CNT. Its
first value is -1, the “rest” value of CNT when the process is not waiting for a termination.

Line 12 gives to CNT the value DELAY when an ORDER arrives. The ˆ operator
extracts from ORDER its clock, of type event. If at the instant, there is no ORDER, but
a DONE signal, CNT takes immediately the rest value -1. We have not to write ˆDONE,
because DONE is already an event.

If there is no ORDER nor DONE signal, we are on a TICK signal : CNT is decreased
as long as it is positive or null; otherwise, it remains to -1.

The when and the default are polychronous operators. The when has a higher priority
than the default.

16 : | ALARM := HOUR when CNT = 0

The ALARM signal takes the value of HOUR when the decreasing counter reaches 0.
It means that DONE is not arrived in time, to set it directly to -1. Notice that HOUR
is always present when CNT=0, because the clock of CNT includes TICK’s one, which is
the same as HOUR’s one.

17 : |)

This line terminates the set of equations. These equations could be written in any
order : the compiler analyses their dependencies, and determines the moments where they
must be calculated.

Declaration of local signals :

18 : where

19 : integer HOUR, ZCNT, CNT;

20 : end % WATCHDOG %;

1.1.6 Using WATCHDOG process

The watchdog process is a piece of a larger application, which will produce its inputs, and
knows what to do with the ALARM. Editing of the program can be done textually, or
with a graphical syntax-directed editor.

1.1. AN EXAMPLE : THE WATCHDOG PROCESS 9

The process can also be edited by itself, in a file watchdog.sig. An other file, named
watchdog.par, contains the value of DELAY. This file can then be compiled separately.

The compiler analyses the syntax, verifies the clock definitions, and defines the order
of calculations. An original part is the clock calculus : clocks of signals must be well
defined, coherent, and without circularities; their analysis may reveal hidden constraints,
not explicitly designed by the programmer. Compilation may establish that some clocks
are included in others; so the computation of their values is less frequent, and the object
code reflecting that is more efficient.

When source program is correct, object code is first generated in C, which is compiled
afterwards. Object code is then easier to read. This gives also automatic access to C
libraries for input/output, mathematical functions,... and facilitates connection with other
parts of the application.

Input signals must be prepared in files, whose name is predefined :
- a RORDER.dat file contains the values of ORDER : 7, 8,...
- In this example, clocks of input signals must also be given, in one file for each signal :

RC ORDER.dat for the clock of ORDER,... They contain the same number of booleans,
one for each instant where at least one signal is present. At some instant, RC X.dat
contains a 1 if X is present, a 0 if it is absent.

Here follows input files corresponding to the scenario given above :

RORDER.dat : 7 8 9

RC_ORDER.dat : 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

RC_DONE.dat : 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0

RC_TICK.dat : 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1

The number of values in RORDER.dat is the number of 1 in RC ORDER.dat.
The values of output signal are produced in a file WALARM.dat, without clock.
This is a time diagram including local signals :

ORDER : ⊥ 7 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 8 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 9 ⊥ ⊥
DONE : ⊥ ⊥ ⊥ ⊥ t ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ t ⊥ t ⊥
TICK : t t t t ⊥ t t t ⊥ t t t t t t t t t t
HOUR : 1 2 3 4 ⊥ 5 6 7 ⊥ 8 9 10 11 12 13 14 15 16 17
ZCNT : −1 −1 5 4 3 −1 −1 −1 −1 5 4 3 2 1 0 −1 −1 5 −1
CNT : −1 5 4 3 −1 −1 −1 −1 5 4 3 2 1 0 −1 −1 5 −1 −1

ALARM : ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 12 ⊥ ⊥ ⊥ ⊥ ⊥

Chapter 2

Signals

2.1 Signals in Signal

In Signal language, a signal is a sequence of values of the same type, which are present at
some instants. The set of instants where a signal is present is the clock of the signal.

These discrete signals differ from continuous analogic signals used in some applications;
but they can be obtained by sampling such continuous signal.

The physical amount of time between two values, for instance in seconds, is not relevant
in this language. If needed, the physical time must be given as an input signal, among
others. It would be the environment’s responsability to provide for instance a sequence of
pulses separated by exactly one second.

In the matter of time, events are considered only according to their relative order : a
value from a signal can occur before a value of another signal, or after, or at the same
instant. It is also the environment’s responsability to determine if two input values are
simultaneous, or not. The language constructs can test if given values are simultaneous;
following actions are then defined in a deterministic way.

Consequently, at some instant, a signal may be present, an other one absent, and a
third one also present. An “absent value” for a signal is denoted by the bottom symbol :
⊥. It means that some other signal is present at the same instant. Instants where all
signals are absent are not considered.

For instance, the set of sequences :

a1 : 1 2 ⊥ ⊥ 7 ⊥ 5 ⊥ ⊥ ⊥...
a2 : ⊥ 10 ⊥ ⊥ 123 ⊥ 5 −1 ⊥ ⊥...
a3 : 0 6 ⊥ ⊥ 13 ⊥ 2 ⊥ ⊥ ⊥...
a4 : ⊥ 11 ⊥ ⊥ ⊥ ⊥ 1 ⊥ ⊥ ⊥...

can be simplified in :

a1 : 1 2 7 5 ⊥
a2 : ⊥ 10 123 5 −1
a3 : 0 6 13 2 ⊥
a4 : ⊥ 11 ⊥ 1 ⊥

11

12 CHAPTER 2. SIGNALS

Two signals are synchronous if they are always present (or absent) at the same instants.
They have the same clock (operator ˆ=). In the example above, a1 and a3 are synchronous :
a1 ˆ= a3.

Clocks have also a (partial) order relation : all instants of a4 are also instants of a3 ;
a4 is less frequent than a3, or a4’s clock is included in a3’s, or a4 ˆ< a3. But, clocks of a1

and a2 are not comparable.

2.2 Name of signals

In a Signal program, signals must be declared, with an identifier and an associated type
for their values.

A name of signal is not a classical variable : it represents a sequence of values, even
if, at a given instant, it holds only one value, or is bottom. Nevertheless, operators give
access to past values of a signal : previous one, or the N’th before present, or even the set
of N previous values, in a sliding window.

Like in declarative languages, the present value held by a name cannot be modified,
as in : S := S + 1

2.3 Type of signals

The values of a signal may be : predefined simple values (integer,...), strings, enumerated
types, multiples (arrays,..),... In this tutorial, we consider only simple values.

2.3.1 Numerical types

Signals of following types hold numerical values : integer, real, dreal (double in C), complex.
They have classical operators, with usual priorities. Operands must be of the same type,
but we can write : X + real(N). The division between integers yields an integer quotient.
Modulo is written modulo (% is the comment symbol). Functions are those of the host
language (C); their heading must be declared locally (see below).

2.3.2 Boolean type

This type is named boolean; it differs from integer. A boolean value may be obtained by
true or false constants, by an event signal (see below), by comparison of values (operators :
= /= < <= > >=), or by boolean operators not, and, or, with usual priorities.

The boolean expression :

not OK and A /= B + N modulo 2

is implicitly parenthesized as :

(not OK) and (A /= (B + (N modulo 2)))

2.4. DECLARATION OF SIGNALS 13

2.3.3 Type event

It is a pure signal, useful only for its clock. It has a unique value, which is the boolean
true. An event is accepted with this true value in a boolean expression.

The ˆ operator (clock operator), applied to any signal, extracts its clock, and yields an
event signal :

ORDER : ---- 7 -------- 8 --------------- 9 ------

^ORDER : ---- t -------- t --------------- t ------

In the WATCHDOG program, integer values of ORDER are not used. This identifier
appears only with the clock operator, and it would be sufficient to put this clock as input.

2.4 Declaration of signals

Signals may be declared as input signals, output signals, or local signals. Following example
intends to show some points of syntax. Output and local signals may be initialized,
especially when they represent past values of other signals.

process DECLARE =

{ integer NBL, NBC; } % Parameters = Constants %

(? real a; % Input signals%

event EV, HH_2; integer B;

! boolean ok init false, FOUND;) % Output signals %

(| XX := sqrt(fabs(-A))

| ...

| OK := inter <= NBC when FOUND

|)

where % Local signals %

real XX, YY init -1.5; % only YY initialized %

integer inter;

% functions interfaces %

function sqrt = (?dreal A !dreal B); % double in C %

function fabs = (?dreal A !dreal B);

end %DECLARE%;

2.5 Constants, parameters

Usual denotations like 18, true,... are constants. Other constants can be given as param-
eters, like DELAY in WATCHDOG example, or NBL, NBC above. They must be known
before compilation. For instance, above DECLARE process could be called by :

... DECLARE {20,M+1} (.. effective input signals ..)

where M is also a parameter in its calling context. No clocks are associated with constants
(they are not signals). They are present whenever context need them.

Chapter 3

Signal definitions, operators

A Signal program body is a set of equations defining output and local signals. For each
signal, its clock must be defined, and also the value it holds when it is present.

Specific operators on signals are used to build new signals. Some of them use only syn-
chronous signals, and their result have the same clock as operands : they are monochronous
operators. Other operators act on signals with any clock, and their result may have an-
other clock : they are polychronous operators.

3.1 Definition of a signal

3.1.1 Defining equation

Each output or local signal must be defined by a unique equation of the form :

Name := Signal Expression

This equation says :
- Name and Signal Expression have the same clock
- the type of Expression must be acceptable by Name; at these instants defined by the
clock, the Expression is computed in a null time (synchronism hypothesis) ; the Name
takes the value given by the Expression.

As long as operators are monochronous, we consider that all signals have the same
clock.

3.1.2 Examples

In the program :

process PLUS1 =

(? integer IN;

! integer OUT;)

(| OUT := IN + 1 |)

the equation says that IN and OUT have the same clock. If this process is inserted in a
larger application, this clock equality is added to others equations of the system.

15

16 CHAPTER 3. SIGNAL DEFINITIONS, OPERATORS

At run time, each time an integer value is available on IN, it is immediately increased,
and the result is delivered on OUT, at the same logical instant.

In a testing environment, where this process is run alone, a file containing input values
is read at normal speed, and an output file is produced at the same speed. No input clock
file is needed.

In this other process :

process ONES =

(? % no input %

! integer S;)

(| S := 1 |)

the constant expression 1 has no clock by itself. The clock of S has to be set by the
environment where this process is placed. Each time S will be “asked to be present”, its
value will be 1. If run by itself, clock of S will be a “main clock”, which is the normal
speed of the host machine : an infinite sequence of 1 will be produced !

If a process contains several unrelated signals :

process TWO =

(? % no input %

! integer S1, S2;)

(| S1 := 1

| S2 := 2 |)

the environment must set from outside the clocks of S1 and S2. If used alone, clock files
for S1 and S2 will be asked at run time (even for output !)

3.1.3 Clock equality equations

In cases like previous one (and many others more useful!), the defining equation of a signal
may not be sufficient to define its clock. The syntax provides an other form of equation :

| S1 ^= S2

which tells explicitly that S1 and S2 have the same clock.
If we want a signal S to be produced with the clock of an other signal A, and the values

of S are not related to A, we must write such an equality :

process S_ON_A = % produces a 1 on each input A %

(? event A;

! integer S;)

(| S := 1

| S ^= A |) % or A ^= S %

If we know two input signals are synchronous, or if we want to impose them to be
synchronous, we write :

process SYNC_IN =

(? integer A, B;

! ...)

(| A ^= B

| ...

3.2. MONOCHRONOUS OPERATORS 17

Two values from input A and input B will be read at the same time. In a larger system,
the set of clock equations (including this process’ one) will guarantee that effective signals
for A and B are synchronous. If run alone, files for A and B values will be read in parallel.
No clock files are required.

The clock equality may have several terms : one of them may be a (polychronous)
expression ; see WATCHDOG example.

The equation defining the value of S must be unique, but its clock may be defined in
several ways. Of course, the compiler verifies their compatibility.

3.2 Monochronous operators

3.2.1 Operators related to types

Classical operators (addition, comparison, and, or,..) and library functions can act on
signal values only if they are synchronous. Writing such an operator between signals is
even a mean to put equality between their clocks. Result has the same clock as operands.
In :

process ADD =

(? integer A, B;

! integer S;)

(| S := A + B |)

the operator + introduces an implicit clock equality between A and B. The expression
A + B and the signal S have also this same clock : the time necessary for the addition
and the assignment is considered as null.

The result of an unary operator (-, not, clock operator ˆ) is also synchronous with the
operand.

3.2.2 Delay operator

Delay operator $ gives access to past values of a signal. Delayed values of A have the
same clock as A.

A $ is the previous value of A.
A $ N is the value hold by the signal N instants before present A, if we count only

instants where A was present. N is a constant positive expression; it may contain param-
eters, but not signals.

PIXEL $ (NBL*NBC-1)

Initialization

The N first values of A $ N are undefined. They can be initialized :
- on the place where used :

| S := A $ init 0

| Y := 5*(X $ 2 init [10,20]) + X$ init 0

- or in the declaration of a signal holding delayed values :

18 CHAPTER 3. SIGNAL DEFINITIONS, OPERATORS

| ZA := A $ 1

| ZB := A $

| ZC := A $ 3

where

integer ZA, ZB init 0, ZC init [10,20,30];

A : --- 1 --- 2 ------- 3 --- 4 --- 5 ------- 6 ---

ZA : --- ? --- 1 ------- 2 --- 3 --- 4 ------- 5 ---

ZB : --- 0 --- 1 ------- 2 --- 3 --- 4 ------- 5 ---

ZC : --- 10 --- 20 ------- 30 --- 1 --- 2 ------- 3 ---

Using delayed signals

To program a counter 1, 2, 3,.. we write :

| CNT := (CNT$ init 0) + 1

or

| ZCNT := CNT$

| CNT := ZCNT + 1 |)

where

integer ZCNT init 0;

ZCNT and CNT have the same clock. But definitions above does not set this common
clock. If run alone, an infinite sequence 1,2,3,4,... will be produced for CNT. Generally, a
separate clock equality links the counter to some other signal.

HOUR ^= TICK

| HOUR := (HOUR$ init 0) + 1

Exercices :

1. A unique button, activating an event signal named BUTTON, is used to start or stop
a machine. Write a process emitting a boolean BUSY, with the clock of BUTTON,
and whose value reflects the state of the machine after pushing the button.

2. Produce for each value of an input signal A, of type real, the SUM of all values
entered until now.

3. Produce on each A the MEAN of these values. To be divided, the counter must be
converted to real by real(CNT)

4. Produce on each A the mean of the N last values (N : constant identifier). All N
previous values have not to be written ! A$N and A are sufficient, with the previous
sum.

A$N may be initialized to 0 by : init [{ to N } : 0.0]. The N first values of the
mean will not be considered.

3.3. SAMPLING, WHEN OPERATORS 19

5. Produce, with the clock of some signal A, a boolean signal FIRST, true on the first
value of A, then false on following ones. Try to avoid using a counter !

We consider now polychronous operators : when and default.

3.3 Sampling, when operators

These operators extract from some boolean expression on signals the instants where its
value is true. So the clock of the result is less frequent than the expression’s clock (or is
included in it).

3.3.1 Unary when

when Boolean_expression

Example :

NULL := when CNT = 0

The result is of event type : it is present (and always true) only when boolean expression
is true.

CNT : --- 1 --- 0 ------ 2 --- 0 --- 0 --- 3 ----

NULL : --------- t ------------ t --- t ----------

This operator is used to “mark” some instants where signals have particular properties.
It can be used in a clock equality to synchronize another signal. For instance, to count
false values of some boolean signal B :

| CNT ^= when not B

| CNT :=(CNT $ init 0) + 1

Exercices

1. Let A be an input signal, made of positive integers. Produce an UP event signal for
each A greater than previous one. For initialization, assume the value “before the
first A” is 0.

2. Produce a TOP event signal each time a summit for A values has been passed. This
is possible only on the first decreasing value !

3. Suppose now that some consecutive values of A may be equal. There is a summit on
decreasing A only if A was increasing before it became flat ! Use a boolean signal
to remember the up/down status of A.

20 CHAPTER 3. SIGNAL DEFINITIONS, OPERATORS

3.3.2 Binary when

Signal_expression when Boolean_expression

Example :

ALARM := HOUR when CNT = 0

The result is the Signal expression when it is present, and that Boolean expression is
present and true.

HOUR : --- 2 ------------- 4 --- 6 --- 8 -----

CNT : -------- 1 -- 0 --- 0 --- 3 --- 0 -----

ALARM : ------------------- 4 --------- 8 -----

The priority of binary when operator is lower than priorities of classical operators.
The clock of A when B is less frequent than clock of A and clock of B. It is the

intersection of ˆA and of when B.

Examples of use

A when prop(A) extracts those values of A for which the property prop(A) is verified.
If B is an event, the clock of A when B is the intersection of ˆA and B. For instance,

A when ˆC holds the values of A only at instants where C is also present.
Beware that when B cannot be used to synchronize a signal with B, like in :

CNT := (CNT $ init 0) + 1 when ^C % ERROR !! %

Clock of the when is seen as lower than clock of CNT$+1 ; so the result cannot be given
as value of CNT. As seen above, this must be written :

| CNT ^= C

| CNT := (CNT $ init 0) + 1

This is one of the most common errors in Signal ! But :

S := 1 when ^C

is correct and equivalent to :

S := 1 | S ^= C

Exercices

1. Simplify the expression : true when ˆA
Can we detect instants where A is absent by : when not (ˆA) ?

2. Let A be a positive integer signal; produce values of A which are local maximum
values. See in an exercice above how to detect these maxima.

3. Extract one value every N from an input signal : 1st, (N+1)st,.. Use modulo operator.

4. Let S1 and S2 be independent signals, of any type. Produce an event whenever
S1 and S2 are present together. Beware of and, whose effect is to synchronize its
operands !

3.4. MERGING, DEFAULT OPERATOR 21

3.4 Merging, default operator

The expression A default B merges signals A and B, with priority to A when a value
from A comes at the same instant as a value from B.

S := A default B

A : ---- 1 ---------- 2 ---- 3 -------------- 4 --- 5 ---

B : ---------- 10 --- 20 --------- 30 -- 40 -------- 50 ---

S : ---- 1 --- 10 --- 2 ---- 3 -- 30 -- 40 -- 4 --- 5 ---

The types of A and B must be compatibles. The clock of S is the union of clocks of A and
B. Priority of default is lower than priorities of all other operators.

Examples of use

• Signal A can never be a constant. If B is one, the clock of default is not set, and
must be fixed from outside. In :

S := X default false

clock of S must be set elsewhere, and must include instants of X. For instance :

S ^= X ^+ Y

So, S will be false on each instant of Y which not also an instant of X.

• We often use expressions like :

S := A when B default C

which looks like usual if then else statement. But here, clocks have to be considered :
S takes the value of C not only when B is false, but also when A or B are absent
(see exercice 1).

• In :

| SIGN := 1 when X >= 0 default -1

SIGN has no reason to have the clock of X. We should write :

SIGN ^= X

If we had written when X < 0 after -1, the two operands of default would have
clocks lower than ˆX : so the union has the same property, and the clock equality
would be incorrect. It is not the compiler’s job to prove that union of conditions on
X covers all possible cases !

22 CHAPTER 3. SIGNAL DEFINITIONS, OPERATORS

• More than 2 signals can be merged by default. We often write sequences of tests
like :

| S := val1 when cond1

default val2 when cond2

default val3 when cond3

See CNT definition in WATCHDOG example.

Exercices

1. What is the clock of following expressions, where A and X are independent signals :
- f(A) when cond(X) default g(A)
- f(X) when cond(A) default g(A)

2. Give all possible cases of result for A when B default C : A, B, C may be present or
absent, and B true or false when present (12 cases).

3. When the following expression is it correct ?

B := true when condition default false

When can it be simplified in B := condition ?

4. Let A be an integer positive signal. Produce at the same clock as A a signal MAX
equal to the greatest value of A encountered until now.

5. Let S1 and S2 be 2 independent signals, of any type. Produce on each input :
- 1 if S1 is alone
- 2 if S2 is alone
- 3 if S1 and S2 are simultaneous.

6. Keep updated an integer signal PRESENTS counting a number of items in a room,
according to 2 event signals IN and OUT. IN or OUT signals can occur at the same
instant.

7. Write a SUBSTRACT between events A and B, present on instants of A where there
is not also a B.

8. Produce a ONLY ONE event when there are only one of S1 or S2 (of any type), but
not S1 and S2 together.

3.5 Complete problem : a Distributor

We want to program a fresh goods distributor. It contains at every moment at most only
one item, denoted by an integer input signal A. A user wanting an item pushes a button,
giving an input event Demand. To give the item A, the distributor produces its integer
value on output S.

3.5. COMPLETE PROBLEM : A DISTRIBUTOR 23

Step 1 : we first suppose a good is for instance an information, and can be delivered
several times. On Demand, the distributor gives the last A, or 0 if any A has yet been
read.

Step 2 : make sure that if a Demand arrives exactly on a A, it is the current (more
fresh !) A which is delivered.

Step 3 : suppose now that objects cannot be stored. Every demand has to wait until
the next A arrives. One (and only one) A is output if (and only if) there was at leat one
demand since previous A.

Step 4 : One A is given for all demands before, including a demand exactly on that
A.

Final step : A good is now some material object, that can be given only once. A new
object is given if there was waiting demands. Else, it is stored, until a demand arrives,
or a new object replaces it. If a demand arrives exactly with an object, this one is given,
and possible pending demands are deleted.

Example of scenario (for final step) :

1 2 3 4 5 6

A : ------------ * -- * -- * ---------------- * ------ * -- * ---

Demand : -- * -- * ---------------- * -- * -- * ------ * -- * --------

1 3 4 5

S : ------------ * ----------- * ------------ * ------ * --------

Chapter 4

More advanced features

4.1 The cell operator

4.1.1 Definition

Some systems have only a unique basic clock, and all signals are constrained to have
this clock, to allow classical operations between then. This may give poorly optimized
programs, but some confusing clock problems can be solved by this way.

To repeat some signal A on the instants of an other signal, the Signal Language intro-
duces the cell operator :

C := A cell B

where B is a boolean expression. C contains all values of A, and also, on true values of B,
the value of previous A, or some init value if no A has yet been read.

A : --------- 1 ------------------ 2 ------- 3 ------------

B : --- t --------- t -- f -- t ------- t -- f -- f -- t --

C (init 0) : --- 0 --- 1 --- 1 ------- 1 -- 2 -- 2 -- 3 ------- 3 --

Clock of C is the union of clock of A and of when B.

Priority of cell operator is the same as priority of when.

As for the delay, the cell may be initialized where it is used, or when the assigned
signal is declared :

C1 := A cell B init 0

| C2 := A cell B

...

where integer C1, C2 init 1;

The cell operator is not part of the language’s kernel. It can be rewritten :

C ^= A ^+ (when B)

C := A default (C $ init 0)

25

26 CHAPTER 4. MORE ADVANCED FEATURES

4.1.2 Use of cell operator

To set all signals X, Y,... to some common clock H, we write :

H ^= X ^+ Y ^+ ...

XX := X cell H

YY := Y cell H

....

To repeat values of A on the instants of another signal X, clock of X is used as a
boolean signal always true :

AX := A cell ^X

If A has only to be moved on instants of X, without keeping A itself :

A_ON_X := (A cell ^X) when ^X

So, A ON X has the clock of X.

For instance, suppose a COEF is given at the beginning of a computation; then, COEF
is applied to all following X :

(? real COEF, % one value %

X; % sequence of reals %

! real Y;) % Y = COEF * X for all X %

(| Y := ((COEF cell ^X) when ^X) * X |)

4.1.3 Exercices :

Can also be solved without the cell !

1. Pixels from a sequence of pictures are given as boolean input, line after line, and for
each line, by column. A picture has NL lines and NC columns (constant parameters).
The last pixel of a picture is followed by the first one of the next picture. Produce
for each pixel its LINE and COLUMN number.

In a separate compiling, effective values of NL and NC, for instance 4 and 8, are
given in a file picture.par, containing 4,8

2. To be added, integers A and B must be synchronous. Suppose they can arrive at
“slightly” different instants ; we want nevertheless to add them !

A : -- 1 ------- 3 --- 5 ------ 7 --- 9 ---- 11 ----- 13 --

B : ----- 2 -- 4 ----- 6 --- 8 -------- 10 ---- 12 -- 14 --

SUM : ----- 3 ---- 7 -- 11 ----- 15 ----- 19 ---- 23 -- 27 --

4.2. MODULARITY 27

3. A two-tracks railway crossing is protected by a barrier. Each track orders closing for
itself, through a boolean signal CLOSEi, true to order closing, false to allow opening.
Write the barrier’s controller making the synthesis between CLOSE1 and CLOSE2
signals.

CLOSE1 : --T--------F-----T-----F--T--F-----

CLOSE2 : -----T--F-----T--F--T--F--T-----F--

CLOSE : --T--------F--T--------F--T-----F--

A program with counter can be written, but the cell allows a purely boolean solution.

4. Resynchronizing : let A be some signal, and H be a clock, much faster than A. To
resynchronize A is to move it (without repeat) on the next tick of H. Moving is not
necessary if A is already on a tick of H.

A : - 1 -------- 2 -------------- 3 --- 4 ----

H : -----*--*--*---*--*--*--*--*--*--*----*---

AH : ---- 1 ------- 2 ------------ 3 ----- 4 --

4.2 Modularity

A process may be used as a sub-process by other parts of a system. The calling process
set constant parameter values (if any), gives input signals, and uses output values. For
instance, the WATCHDOG process could be called by :

PB_TIME := WATCHDOG {5} (DEMAND, when OVER, ^SECONDS)

Parameter value may be any constant expression; it may include local parameters, but
not signals. Effective input signals are expressions on signals. If called process has only
one output, the calling statement can be used as a function call, in any signal expression.

4.2.1 Examples of syntax

Other possible forms are presented in following example :

process MODU =

(? integer A;

! integer S;)

(| BOOL ^= A

| S := -1 when BOOL

default 2 * ONE (A) + 1

default INT

| (INT, BOOL) := NO_IN {false} ()

| NO_OUT (INT, BOOL)

|)

where

integer INT; boolean BOOL;

28 CHAPTER 4. MORE ADVANCED FEATURES

process ONE =

(? integer I;

! integer RES;)

(| RES := I/2 when I modulo 2 = 1 |)

;

process NO_IN = {boolean B0;}

(?

! integer I; boolean B;)

(| I := 0

| ZB := B$ | B := ZB |)

where

boolean ZB init B0;

end % NO_IN %;

process NO_OUT =

(? integer I; boolean B;

!)

(| I ^= when not B |)

end % MODU %;

Exercice : what are the values output by this process ?

4.2.2 Sub-process Counter modulo N

A classical example of modularity is the counting of time, using some instances of a Counter
modulo N.

An input signal TICK is supposed to occur each second. The process produces at these
instants the day, hour, minute and second numbers.

The CNT MOD process has two events as input : one to increase counter, an other
to obtain (on output CNT) the current value of the counter. The process also emits an
event when the counter becomes RESET to zero.

process BIG_BEN =

(? event TICK;

! integer DAY, HOUR, MINUTE, SECOND;)

(| (SECOND, NEW_MINUTE) := CNT_MOD {60} (TICK, TICK)

| (MINUTE, NEW_HOUR) := CNT_MOD {60} (TICK, NEW_MINUTE)

| (HOUR , NEW_DAY) := CNT_MOD {24} (TICK, NEW_HOUR)

| DAY ^= TICK

| DAY := DAY$ + 1 when NEW_DAY default DAY$ init 1

|)

where

event NEW_MINUTE, NEW_HOUR, NEW_DAY;

process CNT_MOD = % Counter modulo N %

4.3. OVERSAMPLING 29

{ integer N;}

(? event EV_OUT, % when Counter must be output %

EV_INC; % when Counter must be increased %

! integer CNT;

event RESET;)

(| CNT ^= EV_OUT ^+ EV_INC

| CNT := (ZCNT+1) modulo N when EV_INC

default ZCNT

| ZCNT := CNT$ init 0

| RESET := when CNT = 0 when EV_INC

|)

where

integer ZCNT;

end % CNT_MOD %;

end % BIG_BEN %;

4.3 Oversampling

We have already seen that clocks of input signals may be constrained :

process ADD =

(? integer A, B;

! integer S;)

(| S := A + B |)

Clocks of A and B are requested to be equal.
Clocks of input signals may be related in a more complex way :

(? integer X, Y;

....

| X ^= when Y = 0

The clock of Y is the “main clock”. A value for X is read only when a null value is read
for Y. In a separate run, no clock file has to be given.

The clock of some input can even be related to a local signal :

(? integer X;

...

(| FLIP := not (FLIP$ init false)

| X ^= when FLIP

where

boolean FLIP; ...

So, the faster clock of a process is not always an input clock. The FLIP signal is present
on an “intermediate” instant between two readings of X. The place of this instant has not
to be more defined. If there was several instants between two inputs, they are supposed
to have enough time to all take place. This “addition of instants” is named oversampling.

30 CHAPTER 4. MORE ADVANCED FEATURES

This faster signal can be synchronized with other signals, and its clock can then be
more precisely set.

Of course, there are limits in constraints that can be imposed on clocks. For instance,

when A=0 ^= when B=0

is not accepted, because it’s impossible at compile time to guarantee that A and B will
always be null at the same time.

Even a constraint like :

A default B ^= when condition

may be rejected. We’ll see in the compilation chapter how the clock equations are managed.

Exercices :

1. Let A be an integer signal, whose value is between 0 and 99. Produce for each A
two integers DIGIT, one with the tens, and the following one with the units. For
input 35,7,10,.., we want : 3,5,0,7,1,0,..

2. Let N be a positive or null integer signal. Produce after each N, and before the next
N, a sequence of N events. Use a decreasing counter, and synchronizes input N on
some value of the delayed counter (to avoid circularities).

N : - 4 --------------- 1 ------ 0 --- 2 ----------

CNT : --4--3--2--1--0-----1--0-----0-----2--1--0-----

CNT$: --0--4--3--2--1-----0--1-----0-----0--2--1-----

S : -----*--*--*--*--------*--------------*--*-----

Chapter 5

Applications

We study here larger problems, intended to show some programming methods in Signal.

5.1 Interval between events

Let START and FINISH be two events separated by some amount of time.

5.1.1 Duration between START and FINISH

It can be measured only as a number of pulses of a clock event H. CNT will be a counter,
present on every event, but increased only on H. It is reset on START, and its value on
FINISH gives the duration.

| CNT ^= START ^+ FINISH ^+ H

| CNT := 0 when START

default CNT$ + 1 when H

default CNT$

| DURATION := CNT when FINISH

START : -----*-------------*------------------------

FINISH : -------------*-------------------------*----

H : -*---*---*---*---*---*---*---*---*---*---*--

CNT : -?---0---1---2---3-0-1---2---3---4---5-5-6--

DURATION: ------------ 2 ----------------------- 5 ---

If START and FINISH occur exactly on a H, the time measurement is exact. Else, DU-
RATION is the number of H between START and FINISH, bounds excluded ; the error
is less than one interval.

5.1.2 Is S present between START and FINISH ?

The status in/out of any instant must be memorized, in a boolean signal MEM :

| MEM ^= START ^+ FINISH ^+ S

| MEM := START default not FINISH default (MEM$ init false)

31

32 CHAPTER 5. APPLICATIONS

% true when START default false when FINISH default MEM$ %

| IN := MEM when S

What about signals coming exactly on START or FINISH ? With definition above, a
S on START is IN the interval, a S on FINISH is OUT.

Exercice : Modify this definition to obtain the 3 other cases : interval opened on left,
and/or closed on right.

5.2 Automata

A finite state automaton is often used to modelize real-time systems. An automaton has
some states Si ; one of them is the initial state S0. When an event ei occurs, the automaton
may change its current state, or loop on this same state, and some appropriate action may
be executed.

In Signal, a name S holds the arrival state of a transition, and its delayed value ZS is
the departure state. The clock of S is the union of clocks of all input events. Actions are
managed by changing values of other signals. A transition may also take place when such
a signal reaches a given value.

In the asynchronous approach, automata may be non-deterministic : when 2 events
occur at the same time, the transition to take is undefined. The Signal programmer must
specify for a given state in which order input events are considered (default operator).

Example : A passage may be lightened by pushing a switch. Light is put off by the
same switch, or automatically after 1 minute. The process doing that may be written as
a two-state automaton : S = 1 when light is OFF, S = 2 when ON.

process LIGHT =

(? event SWITCH, H; % H every second %

! event PUT_ON, PUT_OFF;

)

% State changes %

(| S ^= SWITCH ^+ H ^= CNT

| S := 3 - ZS when SWITCH

default 1 when ZS = 2 when ZCNT = 1

default ZS % loop on current state %

| ZS := S $ init 1

% Actions on transitions %

| CNT := (60 when ZS = 1 default ZCNT - 1) when S = 2

default ZCNT

| ZCNT := CNT $ init 0

| PUT_ON := when S = 2 when ZS = 1

| PUT_OFF := when S = 1 when ZS = 2

|)

where

integer S, ZS, CNT, ZCNT;

end % LIGHT %;

5.3. PICTURE ANALYSIS 33

The counter CNT is useful only in state 2; but its delayed value ZCNT has the same clock,
and is also used when S becomes 1. In any way, the defining equation of CNT is recursive;
so, its clock has to be set from outside. It’s easier to give it the clock of S.

Exercices.

1. Add to the previous process a boolean signal PRESENCE, true when somebody is
in the passage. It is normally a continuous signal : we suppose it is sampled every
second, with the clock of H. This signal can even be used as a source of time, so H
becomes no more necessary.

PRESENCE is used only to delay putting off the light, if it was on, until there is
nobody during 10 seconds.

2. A STOPWATCH is a classical example of system modelized by an automaton.

It has two buttons : SS to Start or Stop counting of time, and LAP (intermediate
time) which stops Display without stopping the time counter. A new push on LAP
makes current counter be displayed. Even when displaying is stopped, time counting
may be started/stopped by SS.

When time counting is stopped, and display is free, LAP resets the stopwatch.

Add a source of time, which is supposed to have a sufficient accuracy. Displayed
values are numbers of pulses of this input signal.

5.3 Picture analysis

An picture is a sequence of pixels, boolean values obtained by reading the picture line
after line, and for each line, by column. A PIXEL is true when it is a point in an object,
false outside.

A picture has NL lines and NC columns (constant parameters). So, the point just
before the current point is PIXEL $; the point above is PIXEL $NC.

If we have a sequence of pictures, and the first pixel of a picture follows immedi-
ately the last one of the previous picture, the same point in this previous picture is
PIXEL $(NL*NC).

Exercices : We have seen in a previous exercice how to keep updated line and column
number of the current pixel.

1. A pixel is INTO an object if it’s true, and its 4 surrounding pixels (above, under,
left, and right) are also true. A pixel on the border is never INTO. Produce only
coordinates of pixels which are INTO.

2. Supposing pictures are successive views of the same scene, detect only points having
moved, ie whose INTO status has changed since last picture.

3. We assume a picture contains only separate convex objects : any line crosses it only
once. Detect these points where the sequence of pixels enters an object, or leaves
it. Ouput the coordinates of the first and the last point of an object crossing, by a
horizontal line. Such a line can cross several objects. An object can be “cut” by the
left or right border.

34 CHAPTER 5. APPLICATIONS

4. Detect for each object its first crossing : between the first pixel of an object crossing,
and the last one, it is the first crossing if we found no true pixel just above each
(true) pixel of this crossing. It’s also a first crossing if the current line is line 1. True
pixels which are neighbours only along a diagonal are not assumed to belong to the
same object (see example below).

5. Use this property to detect each object only once. Give the coordinates of one point
of the object (anyone), and, at the end of the picture, the number of objects.

The following sequence of pictures contains 7 objects ; false values are replaced by a
dash for seek of lisibility :

- t - - t - t t t - - ...
t t - t - t t - - - ...
- - t - - t - t ...
t t t t t - - t

Here is shown the same pictures with the number of each object, in their order of detection.

- 1 - - 2 - 3 3 7 - - ...
1 1 - 4 - 3 3 - - - ...
- - 5 - - 3 - 6 ...
5 5 5 5 5 - - 6

5.4 A railway level crossing

A two-tracks railway level crossing is an interesting real-time system, where modularity
can be exercised.

5.4.1 The problem

The level crossing area is protected by barriers, that must be closed in time on the arrival
of a train, on one or the other track. They remain closed until all trains have leaved the
area, and also if some railway vehicle is present in this area (maybe stopped).

The barriers must be closed 30 seconds before the expected time of arrival of a train.
When the area becomes free, barriers could be opened, but it’s not secure to open them
for less than 15 s. So the controller must be warned 45 s before a train arrives.

Since the speed of trains may be very different, this speed has to be measured, by
detecting the train in two points separated by a known distance. A first detector is placed
2500 m before the crossing, and a second one 100 m after this first. So the time between
Detect1 and Detect2 has to be multplied by 24 to obtain the remaining time to reach the
crossing (at constant speed). A Detect3 is placed after the crossing area, and records the
train’s leaving.

5.4. A RAILWAY LEVEL CROSSING 35

5.4.2 The Detect process

The passage of a train is detected by a mechanical device, producing a pulse (type event)
every time a wheel runs on it. The Detect process receives all these pulses, but warns the
controller only once, on the first wheel. All following pulses are ignored. So, the detector
has to be reset, after the full train has gone, to be able to detect a new train.

WHEEL : --------*-*-*-*-*-*-------------------------*--*--*--*---

RESET : ----------------------------- * -------------------------

COMING : ------- * --------------------------------- * -----------

Write in Signal this process DETECT.

5.4.3 A Track controller

On each track, a controller receives COMING signals from the 3 detectors. From DE-
TECT1 and DETECT2, it must compute the train’s speed, and warn the barriers 45 sec-
onds, then 30 seconds before expected time of arrival at crossing. So, this process needs a
source of time. At the maximum speed of 180 km/h, the 100 m between DETECT1 and
DETECT2 are covered in 2 s. So, a clock pulse every 0.1 s would be of good accuracy.

From DETECT3, barriers controller knows the head of the train is leaving the crossing
area.

An automaton would be useful to modelize this Track process.
It’s also the Track’s work to reset the detectors. Here occurs an interesting circularity

problem. We are tempted to reset 1 and 2 with DETECT3, and 3 with DETECT1 :

| DETECT1 := DETECT (WHEEL1, DETECT3)

| DETECT3 := DETECT (WHEEL3, DETECT1)

But this program is rejected, because the RESET signal is used to define DETECT output,
so these definitions contain a circularity. It’s the same is we use for RESET some expression
including a state of the automaton, or a counter, whose definitions rely on DETECT.

A good solution would be to reset a detector after a fixed amount of time without
any wheel. If we insist on a switch between beginning and end of the area, we must use
a boolean signal, true on each wheel at the beginning, false at the end. Reset can occur
when this signal changes its value.

5.4.4 The Barriers controller

It receives 3 sorts of warning signals from the two tracks. It also receives the PRESENCE
boolean signal, true if the crossing area is occupied. We suppose this continuous signal is
sampled every 0.1 second. So the clock of PRESENCE could be given as source of time
for Track processes.

With all these informations, the controller has to fix the opened/closed status required
for the barriers. When this status changes, it has to order their effective closing or opening,
for instance through a boolean output.

Bibliography

[1] Paul Le Guernic, Thierry Gautier, Michel Le Borgne, Claude Le Maire. Programming
real-time applications with Signal. Proceedings of the IEEE, v. 79, p. 1321-1336, Sept
1991.

[2] Löıc Besnard, Thierry Gautier, Paul Le Guernic. Signal V4 - INRIA version: Reference
Manual. Access through the ESPRESSO web site.

[3] ESPRESSO web site : http://www.irisa.fr/espresso/welcome english.html

[4] Nicolas Halbwachs et al. The synchronous data flow programming language LUSTRE.
Proceedings IEEE, 79-9, 1991.

[5] Boussinot, De Simone. The ESTEREL language. Proceedings IEEE, 79-9, 1991.

37

Chapter 6

Solutions of exercices

Delay operator

process MACHINE =

(? event BUTTON;

! boolean BUSY;)

(| BUTTON ^= BUSY

| BUSY := not (BUSY $ init false)

|)

process MEANS =

{integer N;}

(? real A;

! real S, MEAN, MEAN_N;)

(| S := (S$ init 0.0) + A % synchronizes S and A %

| CNT := (CNT$ init 0) + 1

| MEAN := S / real(CNT) % synchronizes CNT and S (and also A) %

| SN := (SN$ init 0.0) - (A $ N init [{to N}: 0.0]) + A

| MEAN_N := SN / real(N)

|)

where

integer CNT;

real SN;

end % MEANS %;

% FIRST: true on first A, false on following ones %

| FIRST := FCA $ init true

| FCA := not (^A) % always false, with clock of A %

where

boolean FCA;

39

40 CHAPTER 6. SOLUTIONS OF EXERCICES

Unary when operator

(| ZA := A $ init 0

| UP := A > ZA or A = ZA and ZUP

% UP takes the clock of A %

% UP’s value is kept when flat %

| ZUP := UP $ init true

| SUMMIT := when (ZUP and not UP)

% we were going up, and now going down %

|)

where

integer ZA;

boolean UP, ZUP init true;

end;

Binary when operator

Exercice 1 : true when ˆA is simplified as ˆA.

Exercice 2 :

| LOCALMAX := A $ when (ZUP and not UP)

ou

| LOCALMAX := A $ when SUMMIT

Exercice 3 :

(| CNT ^= A

| CNT := (CNT $ init 0) modulo N + 1

| S := A when CNT = 1

|)

where

integer CNT;

Exercice 4 : The expression ˆS1 and ˆS2 is not correct, for it imposes the same clock
for S1 and S2.

Solution: ˆS1 when ˆS2

Default operator

Exercice 1 : the two expressions have the clock of A.

Exercice 2 : If A present and B true : A (2 cases : C present or not)
else if C present : C (5 cases)
else bottom (5 cases).

Exercice 3 :

B := true when condition default false

is correct only when clock of B is fixed from outside, and if the compiler can proof that
this clock includes (or is equal to) clock of condition.

41

Simplification: true can always be deleted. B := condition is equivalent only if B
and condition have exactly the same clock.

Exercice 4 :

| ZMAX := MAX $ init 0

| MAX := A when A > ZMAX default ZMAX

% A > ZMAX makes A and ZMAX (and also MAX) synchronous %

Exercice 5 :

| S := 3 when ^S1 when ^S2

default 1 when ^S1 default 2 when ^S2

Exercice 6 :

| PRESENTS ^= IN default OUT

| ZPRESENTS := PRESENTS $ init 0

| PRESENTS := ZPRESENTS when IN when OUT

default ZPRESENTS + 1 when IN

default ZPRESENTS - 1 when OUT

The separate definition of clock is necessary : Clock of right hand expression is the inter-
section of clocks of ZPRESENTS and IN default OUT. It equals to PRESENTS only if
ZPRESENTS is already equal to IN default OUT. The last when OUT may be omitted.

Definition of PRESENTS may be shortened :

| PRESENTS := (ZPRESENTS when OUT default ZPRESENTS + 1) when IN

default ZPRESENTS - 1

Exercice 7 : events’ substract A - B

| NOT_B_A := not B default A

| SUB_AB := A when NOT_B_A

Exercice 8 :

| TOGETHER := ^S1 when ^S2

| ONLY_ONE := when (not TOGETHER default ^S1 default ^S2)

Distributor

process DISTRIBUTOR =

(? integer A;

event Demand;

! integer S;)

(| S := A when Demand

default A when WAIT$ init false

default MEM_A when AVAIL_A$ init false when Demand

42 CHAPTER 6. SOLUTIONS OF EXERCICES

| AVAIL_A ^= A ^+ Demand ^= WAIT ^= MEM_A

| AVAIL_A := not ^S default ^A

default AVAIL_A$ init false

| WAIT := not ^S default Demand

default WAIT$ init false

| MEM_A := A default MEM_A$

|)

where

boolean AVAIL_A, WAIT;

integer MEM_A;

end % DISTRIBUTOR %;

The cell operator

Exercice 1 :

process PICTURE =

{integer NL, NC;} % size of the picture %

(? boolean PIXEL;

! integer LINE, COLUMN;)

(| PIXEL ^= COLUMN

| COLUMN := (COLUMN$ init 0) modulo NC + 1

| LINE := (((LINE$ init 0) modulo NL + 1) when COLUMN=1) cell ^PIXEL

|)

For the clock of LINE, left operand of the cell has a clock included in PIXEL’s, due to the
when. So, the clock of right hand expression is well defined as PIXEL.

Exercice 2 :

process A_NEAR_B = % Sum of A and B arriving at "close" instants %

(? integer A, B;

! integer SUM;)

(| SUM := AA + BB when SECOND

| AA := A cell ^B

| BB := B cell ^A

| SECOND ^= A ^+ B

% SECOND is true if A and B together, or on the second one %

| SECOND := ^A when ^B

default not (SECOND$ init true)

|)

where

integer AA, BB;

boolean SECOND;

end % A_NEAR_B %;

43

Exercice 3 :

process BARRIER = % of a two-tracks railway crossing %

(? boolean CLOSE1, CLOSE2; % true to close, false to allow opening %

! boolean CLOSE;) % effective closing/opening %

(| STATE := (CLOSE1 cell ^CLOSE2 init false)

or (CLOSE2 cell ^CLOSE1 init false)

| CLOSE := STATE when STATE /= STATE$ init false

|)

where

boolean STATE;

end % BARRIER %;

The or is allowed between these cell expressions, because their clocks are equal.
Exercice 4 : Resynchronizing

process RESYNC = % moves A on the nearest H %

(? integer A;

event H;

! integer AH;)

(| AH := (A cell FIRST_H) when H

| FIRST_H := ON_A $ init false

| ON_A := not H default ^A

|)

where

boolean FIRST_H, ON_A;

end % RESYNC %;

FIRST H is true only on the first H following a A, except when the A was exactly on a
H : in this latter case, it remains false. So, A cell FIRST H holds all values of A, plus the
previous A on the first H following a A without H. We keep only its values on a H.

A : - 1 -------- 2 -------------- 3 --- 4 ----

H : -----*--*--*---*--*--*--*--*--*--*----*---

ON_A : --t--f--f--f-t-f--f--f--f--f--f--f--t-f---

FIRST_H : --f--t--f--f-f-t--f--f--f--f--f--f--f-t---

AH : ---- 1 ------- 2 ------------ 3 ----- 4 --

Modularity

Values output by process MODU :
From process NO IN, INT is set to 0, and BOOL to the parameter, here false. So, the

first branch of default is never taken.
ONE(A) is (A − 1)/2 when A is odd, absent otherwise. So the second branch is A when
A is odd.
From NO OUT, INT has the clock of not BOOL, i.e. of BOOL, i.e. of A. So, the third
branch is taken when A is not odd.

Finally, output has the clock of A, and is A when A is odd, and 0 when even.

44 CHAPTER 6. SOLUTIONS OF EXERCICES

Oversampling

Exercice 1 :

process DIGITS = % output tens, then units, from A %

(? integer A;

! integer DIGIT;)

(| TENS := not TENS$ init false

| A ^= when TENS

| DIGIT := A/10 default (A cell (not TENS)) modulo 10

|)

where

boolean TENS;

end % DIGITS %;

Exercice 2 :

process N_INTER = % N intermediate events after input N %

(? integer N;

! event I;)

(| CNT := N default ZCNT - 1

| ZCNT := CNT$ init 0

| N ^= when ZCNT = 0

| I := when ZCNT > 0

|)

where

integer CNT, ZCNT;

end % N_INTER %;

S in an interval

| MEM ^= START ^+ FINISH ^+ S

| MEM := START default not FINISH default ZMEM

| ZMEM := MEM $ init false

| IN := MEM when S

gived START in the interval, and FINISH out.

| IN := ZMEM when S % makes a shift: START out, FINISH in %

...

| IN := (FINISH default MEM) when S % START in, FINISH in %

...

| IN := ((not START) default MEM) when S % START out, FINISH out %

Lightening a passage

H is replaced by PRESENCE in input list, and in clock definitions. CNT definition
becomes :

45

| CNT := (10 when ZS=1 default 10 when PRESENCE default ZCNT-1) when S = 2

default ZCNT

The first term is in cases where PRESENCE is not immediately true when SWITCH is
pushed on.

Stopwatch

The 4 states are best defined as the product of two booleans : RUNNING and DIS-
PLAY ON.

process STOPWATCH =

(? event SS, LAP, H;

! integer DISPLAY;)

(| CNT ^= RUNNING ^= DISPLAY_ON ^= DISPLAY ^= SS ^+ LAP ^+ H

| RUNNING := not ZRUNNING when SS default ZRUNNING

| DISPLAY_ON := not ZDISPLAY_ON when LAP when RUNNING

default LAP when not RUNNING % always set true if not running %

default ZDISPLAY_ON

| CNT := 0 when LAP when ZDISPLAY_ON and not RUNNING

default ZCNT + 1 when H when RUNNING default ZCNT

| DISPLAY := CNT when DISPLAY_ON default DISPLAY$ init 0

| ZCNT := CNT$ init 0

| ZRUNNING := RUNNING$ init false

| ZDISPLAY_ON := DISPLAY_ON$ init true

|)

where

boolean RUNNING, ZRUNNING, DISPLAY_ON, ZDISPLAY_ON;

integer CNT, ZCNT;

end % STOPWATCH %;

Picture analysis

See in The cell operator how to compute LINE and COLUMN.

| INTO := LINE>2 and COLUMN>1 and COLUMN<NC and

PIXEL and PIXEL$(NC-1) and PIXEL$NC and PIXEL$(NC+1) and PIXEL$(2*NC)

| L_INTO := LINE$NC when INTO

| C_INTO := COLUMN$NC when INTO

The INTO boolean for a given pixel can only be set NC pixels after. In INTO definition,
and operators are sufficient, because all operands have the same clock. We assume the
evaluation stops as soon as an operand is false, so the initial values in delays have not to
be set.

Movements are detected by :

| MOVED := when (INTO /= INTO $(NL*NC))

46 CHAPTER 6. SOLUTIONS OF EXERCICES

In a picture containing convex objects, FIRST and LAST are pixels where a line enters
and leaves an object :

| FIRST := PIXEL and (COLUMN=1 or not PIXEL$)

| LAST := (PIXEL$ init false) and (COLUMN=1 or not PIXEL)

| L_LAST := LINE$ when LAST

| C_LAST := COLUMN$ when LAST

In fact, LAST is the first pixel following the object crossing.

We are crossing an object for the first time if we are in an object (PIXEL true), and
if there is no true pixel just above.

| NEW := PIXEL and (LINE=1 or (not PIXEL$NC) and (FIRST or NEW$))

Inside each object, NEW remains true on first line. Otherwise, it becomes (and remains)
false in case of true pixel above; else, it is true on first pixel, and may keep this value until
last pixel.

| NEW_OBJECT := when LAST and NEW$

| L_OBJECT := LINE$ when NEW_OBJECT

| C_OBJECT := COLUMN$ when NEW_OBJECT

| NUM_OBJECT := 1 + NUM_OBJECT$ init 0

| NUM_OBJECT ^= NEW_OBJECT

Railway level crossing

process DETECT =

(? event WHEEL, RESET;

! event COMING;)

(| READY := RESET default not WHEEL

| COMING := WHEEL when READY$ init true

|)

where

boolean READY;

end % DETECT %;

RESET is the first operand of READY, because it must be catched, even if a wheel passed
at the same time.

process TRACK =

(? event WHEEL1, WHEEL2, WHEEL3, TENTHS;

! integer CLOSE; % 1=crossing in 45s, 2=in 30s, 3=gone %

)

(| S ^= CNT ^= DETECT1^+ DETECT2^+ DETECT3^+ TENTHS

% States of the automaton %

| S := -1 when DETECT1

default 0 when DETECT2

47

default 1 when ZS = 0 and CNT <= 450

default 2 when ZS = 1 and CNT <= 300

default 3 when DETECT3

default ZS

| ZS := S$ init 3

% counting of time, unit assumed: 0.1 sec %

| CNT := 0 when DETECT1

default 240*ZCNT when DETECT2

default ZCNT+1 when ZS = -1

default ZCNT-1 when ZCNT > 0

default 0

| ZCNT := CNT$ init 0

| CLOSE := S when S /= ZS and S > 0

| BUSY := WHEEL1 default not WHEEL3

| ZBUSY := BUSY$ init false

| DETECT1 := DETECT (WHEEL1, when ZBUSY and not BUSY)

| DETECT2 := DETECT (WHEEL2, when ZBUSY and not BUSY)

| DETECT3 := DETECT (WHEEL3, when BUSY and not ZBUSY)

|)

where

integer S, ZS, CNT, ZCNT;

event DETECT1, DETECT2, DETECT3;

boolean BUSY, ZBUSY;

process DETECT = ...

end % TRACK %;

Numbering of states S is choosen to be equal to output values for CLOSE. Initial and rest
state is 3.

CNT counts tenths of seconds, increasingly between DETECT 1 and 2, decreasingly
after. Changing of states at 45s, then 30s before crossing, are tested by <= operators : if
a train had an excessive speed, the delays could be over, but actions have nevertheless to
be taken.

For detector reset, boolean BUSY reflects the fact that a train (more exactly, its first
wheel) is present in the area.

process BARRIER =

(? integer CLOSE_A, CLOSE_B; % closing orders from tracks A or B %

boolean PRESENCE; % sampled every 0.1 s %

! boolean CLOSE; % effective action on barriers %

)

(| COMMON := ^CLOSE_A default ^CLOSE_B default ^PRESENCE

| C_A := CLOSE_A cell COMMON

| C_B := CLOSE_B cell COMMON

| IS_CLOSED := PRESENCE cell COMMON

48 CHAPTER 6. SOLUTIONS OF EXERCICES

or C_A = 2 or C_B = 2 % imperative closing %

or WAS_CLOSED and (C_A = 1 or C_B = 1)

| WAS_CLOSED := IS_CLOSED$ init false

| CLOSE := IS_CLOSED when IS_CLOSED /= WAS_CLOSED

|)

where

event COMMON;

integer C_A, C_B;

boolean IS_CLOSED, WAS_CLOSED;

end % BARRIER %;

At each moment, the closed/opened status of barriers has to be known. The or operators
are necessary to ensure that every closing order will be catched, even when it is simultane-
ous with another order allowing open. So, all events have to be put to the same COMMON
clock. Main events are PRESENCE, or CLOSING emitted 30 s before crossing (value 2).
When CLOSE is 1 (crossing in 45 s), the barrier keeps only its previous status.

Main process is the following :

process RAILWAY = % Two-tracks railway level crossing %

(? event A1, A2, A3, B1, B2, B3; % wheels on tracks A and B %

boolean PRESENCE;

! boolean CLOSE;)

(| CLOSE_A := TRACK (A1, A2, A3, ^PRESENCE)

| CLOSE_B := TRACK (B1, B2, B3, ^PRESENCE)

| CLOSE := BARRIER (CLOSE_A, CLOSE_B, PRESENCE)

|)

where

integer CLOSE_A, CLOSE_B;

process TRACK =...

process BARRIER = ...

end % RAILWAY %;

