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Abstract Modeling is widely accepted to be essential to all desigiviagt A
major benefit is that formal methods can be applied for amafysd predictability.
In POLYCHRONY, the SGNAL language tool-set, we have defined a component-
based approach to the modeling of avionics applicationsbraty of so-called
APEX services relying on the avionics standard ARINC 653 hesn defined
in the SGNAL model. This allows the access to the formal tools and tectesiq
available within ®LYCHRONY for verification and analysis.

In this paper, we illustrate this approach by consideringnalsexample avio-
nics application. We show how an associate@ML model is obtained for the
purpose of temporal validation. This brings out the cajitghilf the SGNAL lan-
guage to seamlessly address critical issues in the desiglefime systems.

Keywords Component-based Modeling, Avionics applicatidBg§NAL, Tempo-
ral Validation.

1 Introduction

Today, in the design of embedded systems such as aviontesrsy;key challenges are
typically the correctness of the design with respect to ¢ggiirements, the development
effort and time to market, and the correctness and reltglufithe implementation. So,
one can observe the need of a seamless design process wiashrtm account these
challenges. In such a context, modeling plays a central Auteong its advantages
[15], we mention the enhanced adaptability of models anid plagameters; more gene-
ral descriptions by using genericity, abstraction, betv@linon determinism, and the
possibility of applying formal methods for analysis anddictability.

Several model-based approaches have been proposed [16[LB112] for the
development and verification of embedded systems. They iffeeetht kinds of for-
malisms for the modeling and provide tools for system dgwalent and validation.
While our approach aims at the same objective, its mainqaatiity relies on the use
of a single semantical model, ;&AL [9], to describe embedded applications from

* This work has been supported by the european project ISESIR (Advanced Design Tools
for Aircraft Systems and Airborne Software) [10].



specification to implementation with the possibility of ifieation and analysis. This
facilitates the validation. ®LYCHRONY, the tool-set for 8NAL, which is developed
by INRIA? (http://www.irisa.fr/espresso/Polychrony ), offers the re-

quired functionalities (high level specifications, modularification and analysis, au-
tomatic code generation, etc.).

The study presented in this paper is part of a more generagrdesthodology for
distributed embedded applications, defined earlier dutiegSACRES project [8] and
currently improved. This methodology is based on an iteeatipplication of transfor-
mations on a &NAL model that preserve semantic properties. During the toame-
tions, “abstract” components can be instantiated in difieways from modules related
to actual target architecture features, addressing vaparposes (e.g. embedded code
generation, temporal validation). In this context, a ligraf specific components has
been defined in &NAL. Itincludes on the one hand elementary communication mecha
nisms likeFIFOs [7], and on the other hand more complex models like thoseepted in
[6] for the description of avionics applications based @&RINC standard. In particu-
lar, we illustrate here how thel®&NAL model corresponding to an avionics application
can be specified using these components in order to perfaaipsas: As such analysis,
we present the techniques implemented @LPCHRONY for performance evaluation.

The remainder of the paper is organized as follows: SectifirsRdiscusses the
ARINC 653 specification. Then, Section 3 introduces the main featof the $G-
NAL language, while Section 4 concentrates on the modeling @vamics applica-
tion in SIGNAL. In section 5, we address issues of performance evaluatidarmporal
validation based on thei&NAL language. Finally, conclusions are given in Section 6.

2 The standard ARINC 653

The ARINC specification 653 [4] defines the interface between the epidin soft-
ware and the core softwar@$, system specific functions), call@dPEX (APplication
EXecutive). This specification is based on the Integrated N&wdiwionics approach
(IMA) [3]. In an IMA system, several avionics applications which constitut@r c
module, can be hosted on a single shared computer systeran&ayitical aspect is
to ensure that shared computer resources are safely adbsatthat no fault propa-
gation occurs from one hosted avionics function to anofileis is addressed using a
partitioning of the system. Basically, it consists in a functional decosifon of the
avionics applications, with respect to available time arghmary resources.

A partition [4] is an allocation unit resulting from this decompositi®uitable mecha-
nisms are provided in order to prevent a partition from hgvabnormal” access to the
memory area of another partition. The processor is allodateach partition for a fixed
time window within a major time frame maintained by the coredule levelOS. A par-
tition cannot be distributed over multiple processorsh®iin the same core module
nor in different core modules. Partitions communicate akyonously via logicaports
andchannels

Every partition is composed of one or mgecessesvhich represent the executive

! There is also an industrial version|LBEX, implemented and commercialized by TNI-
Valiosys http://www.tni-valiosys.com ).



units. Processes run concurrently to achieve functions assaokcisith the partition
they are contained in. Each process is uniquely charaetely information (priority,
deadline time, etc.), useful to the partition level OS whighlesponsible for the cor-
rect execution of processes within a partition. The schieduwolicy for processes is
priority preemptive. The communications between procease achieved by three ba-
sic mechanisms. The boundbdfferis used to send and receive messages. It allows
storing messages iRIFO queues. Theventpermits the application to notify an oc-
currence of a condition to processes which may wait for ie Blackboardis used to
display and read messages; no message queues are allodiadyanessage written in
a blackboard remains there until the message is eitheredaaroverwritten by a new
instance of the message. Synchronizations are achieveddmaphore

The APEX interface includes services for communication betweetitjmars on the
one hand, and processes on the other hand; services forribkrepization of pro-
cesses; services for management of partitions and pragetse

3 About the SIGNAL language

The underlying theory of the synchronous approach [1] i$ ¢iiaiscrete event sys-
tems and automata theory. Time is logical: it is handled ating to partial order and
simultaneity of events. Durations of execution are viewe@@nstraints to be verified
at the implementation level. Typical examples of synchumlanguages aresSEEREL,
LUSTRE, or SGNAL which is used here.

The SGNAL language [9] handles unbounded series of typed valugscn, de-
noted asx in the language, implicitly indexed by discrete time (dembby¢ in the
semantic notation): they are callsjnals At a given instant, a signal may be present,
then it holds a value; or absent, then it is denoted by theal®anbol L in the seman-
tic notation. There is a particular type of signals cakkegnt . A signal of this type is
alwaystrue when it is present (otherwise, it is). The set of instants where a sigixal
is present is called itslock It is noted asx (which is of typeevent ) in the language.
Signals that have a same clock are said tsyrechronousA SIGNAL program, also
calledprocessis a system of equations over signals. TheN8\L language relies on a
handful of primitive constructs which are combined usingmposition operator. They
are:

— Functions.y:= f(x1,...,xn) ,Wherey; #1< zl; £#1< ... & ang #L1, andVi:
ye = f(xle, ..., xne).

— Delay.y:= x $ 1 init yO ,wherez; #1l& ye L, Vt > 0: y¢ = x¢—1,y0 = y0.

— 2-arguments down-samplingy:= x when b , wherey; = x; if by = true, elsey; =_1.

— Deterministic merging.z:= x default y ,wherez, = x if x¢ #.1, elsez, = y,.

— Hiding. P where x denotes that the signalis local to the procesB.

— Synchronous parallel compositiorof PandQ encoded by] P | Q |) .ltcorresponds
to the union of systems of equations represente® bpdQ

2|n fact, there is an analogy between ARINC partitions and XJNiocesses on the one hand,
and ARINC processes and UNIX tasks on the other hand.



These core constructs are of sufficient expressive powegiigedother constructs
for comfort and structuring. We mention some of the derivedrators used in the next
sections:

1-argument down-samplingy:= when b , wherey; = true if by = true, elsey, =1.

— Synchronizer.x1 "= ... "= xn ,wherezl; #1& ... & ang #L (i.e.xl,...,zn are
synchronous).

— Clockunion.y := x1 = +... " +4xn,wherey; #L& (21 #L V... Vans #1).

— Memorizing.y = var x init y0 , Wherey always carries the latest valuef The

clock ofy is defined by the context in which it is used.

Verification and analysis of SIGNAL programs. Two kinds of properties may be
distinguishedinvariant properties (e.g. a program exhibits no contradiction betwe
clocks of involved signals) on the one hand, alyshamicalproperties (e.g. reachabi-
lity, liveness) on the other hand. ThecBIAL compiler itself addresses only invariant
properties. For a givenISNAL program, it checks the consistency of constraints be-
tween clocks of signals, and statically proves properges. the so-calledndochrony
property guaranteeing determinism). A major part of the pitentask is referred to as
theclock calculusDynamical properties are addressed using other conntxikdike
SIGALI [14], an associated formal system that can be used for mbeekang. Perfor-
mance evaluation is another functionality adi® CHRONY, Section 5 discussesiitin a
detailed way.

Finally, put together, all these features 068AL programming favor modular and
reliable designs.

4 Modeling of an avionics application

A presentation of the basic component models required fod#scription of avionics
applications has been given in [6]. We discussed the maglefiAPEX services (com-

munication and synchronization services, process manageservices, etc.). On the
other hand, a model has been proposehRINC processes Here, we show how the
models can be used to describe avionics applicatidvisreover, we illustrate how per-
formance evaluation applies on the resulting descripfimninstance to determine the
worst case execution times of applications.

Informal specification of the application. figure 1 depicts the considered applica-
tion which is represented by a partition calletLFLIGHT. Roughly speaking, it is in
charge of computing the current position and the fuel lefxeleport message is pro-
duced in the following format:

[date_of the_report::height::latitude::longitude::f uel_level]
The partition includes the following objects:

3 We use “ARINC processes” to distinguish fromcSIAL processes which are not identical.
4 The example considered in the following takes its inspirafrom a real world avionics appli-
cation which is currently being modeled.



POSITION_INDICATOR
buffl

PARAMETER_REFRESHER I . s_port

board

Global_params
Figurel. The partition ONFLIGHT.

— A blackboardoard , two buffersbuffl andbuff2 , an evenevt , a semaphore
sema, and a sampling pors_port
— A resourceGlobal_params contains parameters required by the partition pro-
cesses.
— There are three processes.
1. The procesBOSITIONINDICATOR(irst produces the report message which is
updated with the current position information (heightitlate and longitude).
It works as follows:
elaborate the report message and set the current date;
send a request to the process PARAMETRIEFRESHER for a refreshment of global
parameters, via buff2 (in order to be able to update the repoessage with position
information);
wait for notification of end of refreshment, using evt;
read the refreshed position values displayed on board;
update the report message with height, latitude and lodgitmformations;
send the report message to the process FURDICATOR, via buffl;
2. The main task oFUEL_INDICATORIs to update the report message (produced
by POSITIONINDICATOR) with the current fuel level.
if a message is contained in the buffer buffén
retrieve this message;
end if
update it with the fuel level information from Globphrams, via a protected access
(using sema);
send the final report message via the sampling pgrog;

5 A sampling port allows no message queuing. There are twoskirighorts:sourceand des-
tination. A message remains in a source port until it is transmittedhieychannel or it is
overwritten by a new occurrence of the message. Duringrmassons, channels ensure that
messages leave source ports and reach destination pdréssarne order. A received message
remains in the destination port until it is overwritten.



re-initialize evt;
3. Finally, the procesBARAMETERREFRESHERefreshes all the global parame-
ters used by the other processes in the partition.
if a refresh request arrives in the buffer buffizn
retrieve this message;
end if
refresh all the global parameters in Glohpharams, using a protected access;
display refreshed position values on board,;
notify the end of the refreshment, using evt;

From the above informal specification, we now derive an dased synchronous
model.

The SIGNAL model of the partition. The executive model of a partition consists of
three basic components: first, the executive units repteddsyARINC processes; se-
cond, the interactions between processes describ@d®b¥ services; and finally, the
partition levelOSwhich allocates the resources (e.g. processor, commignaaecha-
nisms) to processes within the partition.

>
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Figure2. A SIGNAL model of the partition ONFLIGHT.

figure 2 depicts the model corresponding to the partit@KFLIGHT, obtained
with PoLYCHRONY. We clearly distinguish the partition levels as well as the three
processes. The box that contains theM\L processCREATE_RESOURCH®S been
added for structuring. It provides the processes with comoation and synchroniza-
tion mechanisms (e.guffl , sema). These mechanisms are created on the occurrence
of the input signalnitialize . The presence of this signal corresponds toittie
tialization phase of the partition. The inpuictive_partition_ID represents the



identifier of the running partition selected by the modulele©<’, and it denotes an
execution order when it identifies the current partition. 8Never the partition exe-
cutes, the partition level OS designates an active procéh@vthe partition. This is
represented by its output signadtive_process_ID . It is sent to all the processes.
Every process which runs to completion notifies the OS thinaugpecial signal (e.g.
end_processingl  for the ARINC procesOSITION_INDICATOR), in order to take a
decision about the next process to execute.

A process can be blocked during its execution. For instawben it tries to send a
message to a full buffer. So, a time counter may be initiadeddit for the availability
of space in the buffer. The signithedout  produced by the partition levels notifies
processes the expiration of their associated time counters

" (end_ i
Active_pfocess_ID active._block) =
CONTROL{PID
[NB_BLOCK)(
Active_proc
ess_ID, ret2
timedout, ret3
retl,ret2, el5
nd_processing ret3ret5)

retl

timedout

@

(| (retLret2,ret3,

active_block reportL ets) =

COMPUTE{)(

active_block

buff2,evt, reportl

board,buff1)
)

eportl

board
buffl

buff2

evt

Figure3. A SIGNAL model of the process POSITIQWNIDICATOR.

Modeling of processes.To illustrate the description of the processe®FLIGHT,

we mainly focus on the proceSOSITIONINDICATOR(the modeling of the other pro-
cesses follows the same scheme).

As shown infigure 3, a process is basically composed of two sub-componenis:
TROLandCOMPUTE The former specifies the execution flow of an ARINC process.
Typically, it is a transition system that indicates whicatetments in the body of the pro-
cess should be executed whenever the process is activeaftdéredescribes the actions
computed by a process. It is composed of so-cdllledks They represent elementary

5 The activation of each partition depends on this signas piroduced by the module level OS
which is in charge of the management of partitions in a madule



pieces of code to be executed without interruption Flaments[5]. Furthermore, the
statements associated with a Block must complete withiruatbed amount of time.

In figure 3, the signahctive_block identifies a Block selected by tt@ONTROL
sub-component. This Block is executed instantaneouslstéfore, one must take care
of what kinds of statements can be put together in a same Blwes sorts of state-
ments can be distinguished. First, those which may causgemuption of the running
process (e.g. 8ENDBUFFERrequest on a full buffer). We call thesystem callgin
reference to the fact that they involve the partition lev8)OT he others are statements
that never interrupt the running process. Typically, datamputation functions. They
are referred to afsinctions Clearly, only one system call at most can be associated with
a Block, and no other statement can follow this system cahiwithe Block. Since
a Block is executed instantaneously, what would happereifsirstem call interrupts
the running process? All the other statements within thelBloould be executed in
spite of the interruption, and this would not be correct. ®&awer, when the process is
resumed, the whole Block may not necessarily require to fexeeuted, so one must
take care of that.

(| trigger0 := when (active_block=0)

ac‘wk— | report := SET_DATE{}(when trigger0) report
1)
+—>P(| trigger1 := when (active_block=1) etl
| retl := SEND_BUFFER{L}((var buff2) when trigger1,99999.0,2,10.0) Ef‘
buff2 ]
(| trigger2 := when (active_block=2) e
| ret2 := WAIT_EVENT{1}((var evt) when trigger2,20.0) ng
ewt )
(| trigger3 := when (active_block=3) al
| (d_area,d_size,ret3) := READ_BLACKBOARD{1)(... when ...,2.0) d| size
board 1) yews
y
(| trigger4 := when (active_block=4)
| | reportl := COMPUTE_POS{}((var report) when triggerd,(var diag_area) Il

when trigger4,(var diag_size) when trigger4)

1)
(| trigger5 := when (active_block=5)

| ret5 := SEND_BUFFER{1}((var buff1) when trigger5 var report.

Message_Area,var report.Message_Size,10.0) | ow—
buffl ) ret5

eportl

et5

Figure4. COMPUTE sub-component of the process POSITINDICATOR.

The COMPUTESsub-componentis depicted figure 4. The Blocks (represented by
boxes within the model) describe the actions that are aetibyPOSITIONINDICATOR
The statements associated with a Bldclre executed whenever the Block is selected
by the CONTROLsub-component, i.e. whenever the eveijgerk  is present. For
instance, from top to bottom, the first Block contains a fioltSET_DATEwhich pro-
duces an instance of the report message, where only thelfigldof the_report



is updated. The other fields will be completed later. The sé&lock contains the sys-
tem callSEND_BUFFERwhich is used to send a message in the buftéi2 . Input
parameters are the message address and size (respedévelied by 99999.0 and 2),
and a time-out value (10.0 time units) to wait for space wierbiuffer is full. A return
code (etl ) is sent for diagnostic. Here, Blocks are computed seqalnfrom top to
bottom. However, there could be consecutive executionsafiee Block. This happens
when a system call is executed and the required resourcéygnavailable. For exam-
ple, consider th&@EAD_BLACKBOARRquest in the fourth Block from the top (used to
get a message froboard ), if no message is currently displayed in the blackboarl, th
calling process will get suspended on this Block. After thailability of a message, the
process s putin the “ready” state. As soon as it becomessadtshould re-execute the
same Block (which induced its suspension) to read the latessage available in the
blackboard. The automaton which describes the executiBfooks is specified within
the CONTROLsub-component. Automata are very easy to specify@NaL .

Modeling of the partition level OS. The main task of the partition levelSis to ensure
a correct concurrent execution of processes within thetjeartlts modeling requires
on the one handhPEX services (e.g. ifigure 5, CREATE_PROCESaNd STARTused
respectively to create and start processes), and implet@midependent functions, for
instance to define a scheduling policy ((PROCESS_SCHEDULINGREQUEHSTigure
5) on the other hand.

(| (attl,att2,att3) := GET_PROCESSES_ATTRIBUTES{}(when initialize) (@
| (pid1,return_codel) := CREATE_PROCESS({}(attl when init ialize) (b)
| (pid2,return_code2) := CREATE_PROCESS({}(att2 when init ialize)
| (pid3,return_code3) := CREATE_PROCESS({}(att3 when init ialize)
| return_code4 := SET_PARTITION_MODE{}(#NORMAL when (‘re turn_code3)) (c)
| return_code5 := START{}(pidl) (d)
| return_code6 := START{}(pid2)
| return_code7 := START{}(pid3)
| partition_is_running := (Active_partition_ID = Partiti on_ID) (e)
| diagnostic := PROCESS_SCHEDULINGREQUEST{}
when partition_is_running) f)

| (Active_process_ID,status) := PROCESS_GETACTIVESTATU S0 (9)
| timedout := UPDATE_COUNTERS{}() (h)
| Active_process_ID "= timedout "= when partition_is_runn ing
| return_code8 := SUSPEND{}(Active_process_ID when (end_ processingl

"+ end_processing2 "+ end_processing3)) (@)
| return_code9 := SET_PARTITION_MODE{}(#IDLE when ("end_ processing2)) 0]

)

Figure5. The partition level OS model.

figure 5 shows a partial view of thelSNAL description of the partition leveds.
Let us take a look at the specified equations. On the presétive signalinitialize
(which corresponds to the initialization phase of the fiart), process attributes are
first defined in equatiofa) , example of attributes are procesame priority, periodi-



city. Just after that, processes are created and staffed instance, the lineg)
and(d) correspond to the creation and starting of the processifiehby pid1 (in
fact POSITION_INDICATOR). In the equatior{c) , the partition is set to thiORMAL
modé. The signalctive_partition_ID represents the identifier of the running par-
tition selected by thenodule leveDS. It denotes an execution order when it identifies
the current partition, this is the meaning of the boolgaition_is_running defi-
nition in (e) . So, process rescheduling is performed whenever theiparis active,
and the process with the highest priority in the ready sttkesignated to execute. The
process is identified byctive_process_ID . This is achieved in the equatio(fs
and(g) . On the other hand, all time counters used in the partitienuadated when-
ever the partition executes (equati@) ). The signatimedout is sent to processes
to notify them a (possible) expiration of their associatetktcounters. A running pro-
cess gets suspended as soon as it completes (one of thessigthgdrocessingl
end_processing2 , or end_processing3  is received from the three processes in
the partition). This is expressed in equati®n . Finally, the partition is set ttDLE
mode when no process executes while the partition is stiivagline (j) ). In the
partition, the process which completes the lasEW£L_INDICATOR and the signal
end_processing2 s received from this process.

We observe that using the services defined in the librancf@hbined with the features
of SIGNAL programming such as modularity, the basic components (@éxecunits,
communication and synchronization mechanisms, and jpartgvel OS) required for
the modeling of the application are easily specified.
Now, let us consider the resulting model (depictediguire 2). It is represented by a
SIGNAL process for which a simulation C code has been generatedén tw execute
the partition. Furthermore, various properties can befiedrion this program using
available tools (compiler functionalities)&aLI, etc.). In particular, one can address
timing issues (e.g. to compute worst case execution tim&apuhe performance eva-
luation technique implemented iroPYCHRONY.

The next section focuses on this technique, it gives theclpasiciples for deriving
a temporal interpretation of a@GNAL process for the purpose of studying the real-time
behavior of modeled applications.

5 Performance evaluation

A SIGNAL process that models an application is recursively compofsub-processes,
where elementary sub-processes belong to the kernel lgaglet us call thenatomic

" The STARTservice only puts the specified process in the “ready” stageprocess does not
execute yet!

8 There are four operating modes [4]: in tfi2LE mode, the partition is not executing any pro-
cess within its allocated windows; in O LD_STARTmMode, the partition is executing a cold
start initialization; in theVARMSTARTmMode, the partition is executing a warm start initiali-
zation; and in théNORMALmode, the scheduler is activated, and all the required ressin
the partition must have been created before.



nodes A profiling of such a process substitutes each signal witevasignal represen-
ting availability datesiate_r and automatically replaces atomic nodes with their ti-
ming model counter-part (“timing” morphism). The resudtitime model is composed
(by standard synchronous composition) with the originakttional description of the
application, and for each signa) a synchronization with the signdhte_z is added.
The resulting process is close to (or even represents gx#utl model of the temporal
behavior of the application running on its actual architeetOne can obviously design
less strict modeling to get faster simulation (or formalifieation); it is sufficient to
consider more abstract representations either of thetaothie or of the program.

5.1 Temporal interpretation of SIGNAL processes

Aninterpretation of a &NAL specification is a &NAL process that exposes a different
view of the initial SGNAL specification. The structure of the interpretation proégss
essentially the same but its computations exhibit anotbpeet of its behavior. The
temporal interpretation exposes the time aspect and petonsee how an implementa-
tion of a specified function will behave over time [12].

For each 8sNAL process independent of its complexity level, anothemaL pro-
cess can be automatically derived to model its temporahbehan a given implemen-
tation. These processes are called temporal interpregatimr a SNAL processP its
temporal interpretation for an implementatiowill be denoted byr'(Pr), wherep;
is the SGNAL process that models implementatibof P. Thus, if a system specified
by a SGNAL processP has a variety of possible implementatiof(g) to I(k), then
each implementation can be modeledmy;), i € [1, k], and for eachP; ;) a temporal
interpretatiori’(P; ;) can be derived.

In this way a comparative performance evaluation of theedéfiit implementations
can be performed and the design space of possible impletiters@an be effectively
explored before committing the design to one in particiaich an approach permits
to concentrate the design effort to a set of candidate im@htations.

Signal availability dates. For each signal in the initial IBNAL specification a date
signal is defined in its temporal interpretatione P — T'(z) € T(P).
For any signak in P we have alate_z in T(P) with  synchronous tdate_z:

P - T(P), x = T(v) = date_v, x "= date_x.

These date signals are some sorts of time-stamps providéngvailability times for

the values of the corresponding signals in the functionat#jeation, in respect to a
global time reference. Depending on the implementatiomedntime can be measured
using either physical time units or full clock cycles. In first case the date signals are
positive real numbers and in the second positive integemsnR cycle count integer
measurement we can go on to physical time measurement bypiyinlg the cycle
count to the cycle period.

Each operation in aiSNAL specification is represented by a node in the Hierarchi-
cal Conditional Dependency Graph, which is the internatesgntation of a SNAL
program. To each node in the graph, a delay is associatesid€hy is represented by
the same data type as the data type used to represent datesadindction of several



parameters. The actual node delay is obtained by givingegalo these parameters.
The delay depends on parameters like: operation performétenode, data types in-
volved, chosen implementation, etc. Furthermore, a dedaybe represented by a pair
of numbers corresponding to the worst and best case delaysdidelays represented
by intervals results in dates represented as intervalsGomputing these dates takes
into account the processing delays.

Itis important to underline that this date mechanism peyumtto pass from logical
to physical time.

Non-functional interpretations. The temporal interpretation of a@\AL specifica-
tion is just a special case of a general non-functional prtgation. The non-functional
interpretations areISNAL processes and as such they can be decomposed into a control
and a data part. The control computations are identicaldsetlin the initial processes
from which the interpretations are derived. What changestla data computations
since they extract the information related to the particinterpretation.

For a SGNAL processP we know thatP = Cp|Dp, with Cp the control part of
the process$® and Dy its data part. Similarly an interpretation 8f denoted byr(P),
decomposes into a control and a data paf) = Crp)|Dr(p)-

Since the interpretation of a complex process can be defmétearecursive composi-
tion of the interpretations of the constituent processeg{®) we have:

T(P) = T(CP)|T(DP), with T(CP) = CT(Op)|DT((7p) andT(DP) = CT(DP)|DT(DP)-
For the control part, we hav€py = Cp.

| 'p T(1)
I
B op O B Drp T(0)
L Co N} Cp H (P)
H, I
T
P — T(P)

Figure6. Temporal interpretation of ai&SNAL process P.

The process of obtaining an interpretatib(¥) of a process” is graphically de-
picted infigure 6. This process gives a general forrmodérphisnmof SIGNAL programs,
which is available in BLYCHRONY. The data partl§») of the proces® computes out-
put values Qp) from input values X). The computations are conditioned by activation
events ) computed in the control part:). To compute the activation conditions
Cp uses Boolean input signalg,) and intermediate Boolean signakscomputed by
Dp. Finally, certain outputs are output events,) computed byC». The control parts
of the initial process and its interpretation are identibat the data computations differ.
The data computations in(P) extract the information of interest, implicit in the initia
specificationP.



The date computation model. The SGNAL kernel operators are the simplest pro-
cesses that can be used to build more complex ones. Similaglynterpretation of a
process can be viewed as the composition of the interppatatf the primitive pro-
cesses making up the initial process.

The interpretations of the kernel processes perform theogpiate computations
relating to a particular interpretation. These interpiete are organized in a collection
which represents thiérary of cost functionsdefined in $6NAL. For each interpreted
process, this library is extended with the interpretatiohexternal function calls and
other separately compiled processes, used in the initiadgss. For example, the “ti-
ming” morphism available in ®LYCHRONY associates with the monochronous addi-
tion operatoz := x + y , the following process:

(date_z ,done;) := CostPlus {type(x), type(y) }
(date_x, date_y, date_clk_z, wait i)

The signablate _clk _z is the signal associated with the common clock of andz by
the morphism, the notatiagpe(x) represents the type ef Signalswait ; anddone ;
are associated with the current node and have the same tgpéeasignalswait ; accu-
mulates dates coming from incoming precedences other ditardépendenciedgone ;
is defined as being, roughlyate z default wait ..

The first output of the cost functioBostPlus , which corresponds to the date of the
result, is defined as being the sum of the delay taken to perfloe addition operation
(someA.) and the maximum of the dates corresponding to the inpu@ostPlus
The quantityA, depends on the desired implementation, on a specific ptatidhas
to be provided in some way by the user, with respect to theidered architecture. In
the current implementation ind2YCHRONY, the valueA_ is provided by a function
getCostPlus  which has the types of the operands as parameters and widble$dhe
required value in some table.

The scheme we have illustrated for monochronous operatrdlés also “con-
trol” operators. For constructs such as tleéault  operator, which allows for control
branching, the definition of the associated interpretasiocounts for this branching
(for a default b , the date at which the input value is available is giverdbte _a
default date  _b).

Moreover, thanks to compositionality of VAL specifications, the above mecha-
nism can be applied at any level of granularity.

5.2 Obtaining results

figure 7 depicts aco-simulatiorof the application model composed with its associated
temporal interpretation. At each iteration, the date of atpot ((Oy)) depends on
the date of an inputd(Z;)) and thecontrol configuratiorrepresented by a “valuation”
of a condition vectofcy, . .. , ¢4] corresponding to intermediate boolean sigri&f.

Fig. 6) computed in the original program. In a straightfordvapproach, it is possi-
ble to provide a set of vectors that covers all the possibmehioations for the control
flow. A better possibility is to take into account the exigtielationships between these



booleans such as provided by the clock calculus (this isesged through the compo-
sition of the original program and its temporal interprieta). In addition, specifiob-
serverprocesses, comparing dates or verifying some conditiamén@ requirements)
for example, can be inserted into the model.

.
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Library of
cost functions
Temporal l
interpretation uses
of ON_FIGHT Platform—
d@l.) (morphism) dependent
Generator i cost values d(Ok ) Vi
of dates - -
| Observer
*

Figure7. Co-simulation of the application with its temporal integtation.

Finally, all the tools available in the synchronous teclgglcan be used on such
a model, including for example some formal verifications witee corresponding re-
quired abstractions are considered.

Several successful experiments have been done on sangialSprograms. In
the case of the ONFLIGHT model, some simplifications have been made because of
the complexity of used data structures. So, the cost of thesaes to those data struc-
tures and related effects is not taken into account. Thefaostion library currently
takes into account only (relatively) simple data structi{eeg. integer, boolean, arrays).
The others are considered as external. As a result, thentwaeputed results are not
enough relevant to be highlighted here. However, the costtion library is being cur-
rently enhanced to allow more efficient experiments on o with complex data
structures. Thus, more relevant results will be availaklgy goon.

6 Conclusions

In this paper, we have illustrated a component-based apptoahe modeling of avio-
nics applications for the purpose of formal verification ahlysis. The whole ap-
proach relies on the use of a single formalism of theN\L language. This is part
of a more general design methodology for distributed eméeédxpplication, defined
within PoLYCHRONY. This methodology proceeds by successive transformatians
an initial SGNAL model that preserve semantic properties. During the toamsttions,
“abstract” components can be instantiated in differentsvisgm modules related to
actual target architecture features, addressing variogsoges (embedded code gene-
ration, temporal validation, etc.). Here, we considerediet® of APEX services [6]



to describe avionics applications. Then, we used theyBHRONY tool-set to analyze
applications, in particular, we focused on the real-timbéwor. The technique [12]
we considered is still being implemented to take into act@ANAL programs with
complex data structures (such as the model of the partitiddFOIGHT described in
this paper).
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