
Signal and SigaliUser's ManualHerv�e Marchand & �Eric RuttenFebruary 1, 2002AbstractThis documentation is designed to serve as a user's manual for Signal and Sigali. It explains how onecan use Signal and Sigali from scratch, without any previous knowledge about the architecture of eitherof them. Signal is the compiler of a synchronous data-
ow language of the same name. This languageis used for precise speci�cation of real-time reactive discrete event systems. When used with one ofits options, the Signal compiler produces a Polynomial Dynamical System(PDS) model of the Signalprogram in a code appropriate for Sigali. Sigali is a model-checking tool based on formal calculuswhich takes this PDS model as input and o�ers functionalities for veri�cation of system properties anddiscrete controller synthesis. The Signal compiler can also produce code in other formats like the Dc+(declarative code) format (which is an equational level encoding of implicit automata) or sequential Ccode.1 Modelling a system in Signal
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Figure 1: The speci�cation stage.To specify our model, we use the synchronous data 
ow language Signal [?]. The aim of Signal is tosupport the design of safety critical applications, especially those involving signal processing and processcontrol. The synchronous approach guarantees the determinism of the speci�ed systems, and supportstechniques for the detection of causality cycles and logical incoherences. The design environment featuresa block-diagram graphical interface [?], a formal veri�cation tool, Sigali, and a compiler that establishesa hierarchy of inclusion of logical clocks (representing the temporal characteristics of discrete events),checks for the consistency of the inter-dependencies, and automatically generates optimized executablecode ready to be embedded in environments for simulation, test, prototyping or the actual system.Further, the model read by Sigali has to be in z3z format which is obtained by compiling the Signalprogram using the -z3z option. Fig. 1 shows the speci�cation stage.1



1.1 The Signal language & Speci�cationFor speci�cation of a system, one can use the syntax of the language Signal V4 [3]. The Signallanguage [?] manipulates signals X, which denote unbounded series of typed values, indexed bytime. An associated clock determines the set of instants at which values are present. The constructsof the language can be used in an equational style to specify the relations between signals, i.e.,between their values and between their clocks. Data 
ow applications are activities executed overa set of instants in time. At each instant, input data is acquired from the execution environmen-t; output values are produced according to the system of equations considered as a network of operations.The Signal language is de�ned by a small kernel of operators. The basic language constructs aresummarized in Table (1). Each operator has formally de�ned semantics and is used to obtain a clockequation and the data dependencies of the participating signals. For a more detailed description of thelanguage, its semantic, and applications, the reader is referred to [?].Language Construct Signal syntax Descriptionstepwise extensions C := A op B where op : arithmetic/relational/boolean operatordelay ZX := X $ n memorization of the nth past value of Xextraction C := A when B C equal to A when B is present and truepriority merging C := A default B if A is present C:=A else if B present C:= B else C absentProcess Composition (jPjQj) processes are composed, common names correspond to shared signalsuseful extensions when B the clock of the true instants of Bevent B the presence instants of BA^= B Clock of A equal with clock of BTable 1: Basic Signal language constructs1.1.1 A 1 bit shift-register.For example, the process m modelled by the following code represents a 1 bit memory:process m = {boolean Minit}(? boolean Min ! boolean Mout; )(| Z_Mout := Min default Mout)| Mout := Z_Mout $ 1 init Minit|)/ Z_MoutThere is one Boolean input Min, one Boolean output Mout, and a constant initialization parameterMinit. The output is de�ned as a combination of the input and the value in memory with delay of oneclock cycle.The program is compiled by the Signal compiler which analyses the clocks and checks the constraints,but does not generate executable code because Mout is not completely determined by the input. It canbe present between two successive occurences of the input, arbitrarily often.1.1.2 A 
ip
op.The 1 bit memory de�ned above is used in the following process called flipflop. It has one Booleanoutput B denoting its two states: true and false, and one Boolean input C. The 
ip
op changes its statewhen C is true(see Fig. 2):process flipflop =(? boolean C ! boolean B; )( % One Boolean memory %| B := m{false}(NewB)% New value is the negation of the current value %| NewB := not B when C% The memory is synchronized with the input %| B ^= C|)where(declaration of m)end; 2
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Figure 2: Behavior of flipflop.The program when compiled with the -c option, generates C code from which an executable can beobtained in the manner described in the next section. This executable can be simulated on an input �lecontaining the values of the input and produces an output �le containing the values of the output.1.1.3 Boolean double memory.In the process double_m, there are two inputs C1, C2 and two outputs B1, B2. The two outputs encodefour states. The inputs and outputs are synchronized meaning that they have the same clock. Theprocess makes use of two Boolean memories:process double_m =(? boolean C1, C2! boolean B1, B2; )( % Two Boolean memories %| B1 := m{false}(NewB1)| B2 := m{false}(NewB2)% The new value is the value of the input %| NewB1 := C1| NewB2 := C2% The memory is synchronized with the inputs %| B1 ^= B2 ^= C1 ^= C2|)where(declaration of m)end;Thus, in the above model, the outputs take the values of the respective inputs with a delay of oneclock cycle. So essentially the system memorizes two Boolean values(see Fig. 3).1.2 CompilationCompilation into executable C code. For this, the compilation is done with the -c option. Forexample, for the �le D.SIG, the command is sig -c D.SIG. This produces the relevant .c and .h �leswhich are used to build the executable:
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Figure 3: Behavior of double m.prakashp @ yeti >sig -c D.SIGSIGNAL/DC+ Compiler version V4.13.10 (Jan 2001) / linuxINRIA - All rights reserved-----------------You are entitled to use this software onlyif your organization has signed an agreement with INRIA-----------------This software uses a Binary Decision Diagram Package -- Copyright (c) 1988, 1989Regents of the University of California. All rights reserved.-----------------===> Program analysis===> Reduction to the kernel language===> Graph generation===> Clock calculus (Process: double_m)------------ DC+2bDC .... BEGIN --------------....BEGIN for node : double_m....DONE....------------ DC+2bDC .......END --------------===> Graph processing(Process : double_m)------------ bDC+2sbDC+ .... BEGIN -------------------------- bDC+2sbDC+ .......END --------------===> C generation (Process : double_m)* Externals Declarations : double_m_externals.h* Types Declarations : double_m_types.h* Main Program : double_m_main.c* Instant Execution : double_m_body.c* Header file (body) : double_m_body.h* Input/Output procedures : double_m_io.cprakashp @ yeti >Now the C �les obtained can be compiled to get the executable:prakashp @ yeti >cc -o double_m double_m_main.c double_m_body.c double_m_io.cdouble_m_body.c:double_m_io.c:double_m_main.c:prakashp @ yeti >Fig. 4 summarizes the compilation stage.In this case the executable is double m. For execution, two �les RC1.dat and RC2.dat are requiredwhich contain the Boolean values of the inputs C1 and C2 respectively. The execution of ./double_mproduces two �les WB1.dat and WB2.dat which contain the Boolean values of the outputs B1 and B2respectively(see Fig. 5). As an example, the input and output �les obtained after a sample simulationare:RC1.dat: 1 0 0 1 1 1 0 1 0 0 0 1WB1.dat: 0 1 0 0 1 1 1 0 1 0 0 0RC2.dat: 0 0 0 1 1 0 1 1 1 0 1 0WB2.dat: 0 0 0 0 1 1 0 1 1 1 0 1 4
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Figure 5: Simulation by an executable and input-output �les.Thus, the output values are same as their corresponding input values delayed by one clock cycle,which is the expected result.Compilation into the z3z format. In order to analyze the system using Sigali, one has tocompute a polynomial dynamical system. For this,the speci�cation of the system written in Signal iscompiled with the -z3z option. Suppose the �le in which the process double m is speci�ed is D.SIG.When D.SIG is compiled by the command sig -z3z D.SIG, a �le called double m.z3z is obtained asoutput: prakashp @ yeti >sig -z3z D.SIGSIGNAL/DC+ Compiler version V4.13.10 (Jan 2001) / linuxINRIA - All rights reserved-----------------You are entitled to use this software onlyif your organization has signed an agreement with INRIA-----------------This software uses a Binary Decision Diagram Package -- Copyright (c) 1988, 1989Regents of the University of California. All rights reserved.-----------------===> Program analysis===> Reduction to the kernel language===> Graph generation===> Clock calculus (Process: double_m)# Equations over Z/3Z generation: double_m.z3zprakashp @ yeti >we will come back to this point in the next section.5



2 The model checker SigaliThe Signal environment also contains a veri�cation and controller synthesis tool-box, named Sigali.This tool allows to prove the correctness of the dynamical behavior of the system. The equational natureof the Signal language leads naturally to the use of a method based on polynomial dynamical equationsystems (PDS) over Z=3Z (i.e., integers modulo 3: f-1,0,1g) as a formal model of program behavior.2.1 Basic facts about SigaliThe theory of Polynomial Dynamical Systems uses classical tools in algebraic geometry, such as ideals,varieties and comorphisms [?]. The techniques consist in manipulating the system of equations insteadof the sets of solutions, which avoids enumerating the state space.2.1.1 The mathematical framework : an OverviewLet Z = fZ1; Z2; :::; Zpg be a set of p variables and Z=3Z [Z] be the ring of polynomials with variables Z.Thus Z=3Z[Z] is the set of all polynomials of p variables. Given an element of Z=3Z[Z], P (Z1; Z2; : : : ; Zp)(shortly P (Z)), we associate its set of solutions Sol(P ) � (Z=3Z )m:Sol(P ) def= f(z1; :::; zk) 2 (Z=3Z )kjP (z1; :::; zk) = 0g (1)It is worthwhile noting that in Z=3Z [Z], Zp1 � Z1; :::; Zpk � Zk evaluate to zero. Then for any P (Z) 2Z=3Z [Z], one has Sol(P ) = Sol(P + (Zpi � Zi)). We then introduce the quotient ring of polynomialfunctions A[Z] = Z=3Z [Z]=<Zp�Z>, where all polynomials Zpi � Zi are identi�ed to zero, written forshort Zp � Z = 0. A[Z] can be regarded as the set of polynomial functions with coe�cients in Z=3Zfor which the degree in each variable is lower than 2. [?] showed how to de�ne a representative ofSol(P ) called the canonical generator. Our techniques will rely on the following: For all polynomialsP1; P2; P 2 Z=3Z [Z]� Sol(P1) � Sol(P2) whenever (1� P 21 ) � P2 � 0. (inclusion)� Sol(P1) \ Sol(P2) = Sol(P1 � P2) (intersection), whereP1 � P2 def= (P 21 + P 22 )2 (2)� Sol(P1) [ Sol(P2) = Sol(P1 � P2) (union) and (Z=3Z )m n Sol(P ) = Sol(1� P 2) (complementary).2.1.2 Dynamical systems: BasicsA dynamical system can be mathematically modelled as a system of polynomial equations over ZZ/3ZZ (the Galois �eld of integers modulo 3) of the form:8<: Q(X;Y ) = 0X 0 = P (X;Y )Q0(X) = 0 (3)where,� X is the set of n state variables, represented by a vector in ( ZZ=3ZZ )n;� Y is the set of m event variables, represented by a vector in ( ZZ=3ZZ )m;� Q(X;Y ) = 0 is the constraint equation;� X 0 = P (X;Y ) is the evolution equation. It can be considered as a vectorial function from( ZZ=3ZZ )n+m to ( ZZ=3ZZ )n; and,� Q0(X) = 0 is the initialization equation.In order to prove its dynamical properties, every Signal process is translated into a system ofpolynomial equations over ZZ=3ZZ = f�1; 0; 1g having the above form. The principle is to encode the 3possible values of a Boolean signal by: 6



8<: present^ true () +1present^ false () �1absent () 0For the non-boolean signals, we only code the fact that the signal is present or absent: (present ! 1and absent ! 0). Note that the square of present is 1, whatever its value, when it is present. Hence,for a signal X, its clock can be coded by x2. It follows that two synchronous signals X and Y satisfy theconstraint equation: x2 = y2. This fact is used extensively in the following. Primitive operators.Each of the primitive processes of Signal can be encoded in a polynomial equation. For example C :=A when B, which means "if b = 1 then c = a else c = 0" can be rewritten in c = a(�b� b2): the solutionsof this are the set of behaviors of the primitive process when. The delay $, which is a dynamic operatordeserves some extra explanations. It requires memorizing the past value of the signal into a state variable.Translating B := A $1, requires the introduction of two auxiliary equations: (1) x0 = a+(1� a2)x, wherex0 denotes the next value of state variable x, expresses the dynamics of the system. (2) b = a2x deliversthe value of the delayed signal according to the memorization in state variable x. Table 2 shows howall the primitive operators are translated into polynomial equations. For the non boolean expressions,we just translate the synchronization between the signals. By composing the equations representing theboolean instructionsB := not A b = �aC := A and B c = ab(ab� a� b� 1)a2 = b2C := A or B c = ab(1� a� b� ab)a2 = b2C := A default B c = a+ (1� a2)bC := A when B c = a(�b� b2)B := A $1 (init b0) x0 = a+ (1� a2)xb = a2xx0 = b0non-boolean instructionsB := f(A1; : : : ; An) b2 = a21 = � � � = a2nC := A default B c2 = a2 + b2 � a2b2C := A when B c2 = a2(�b� b2)B := A $1 (init b0) c2 = a2Table 2: Translation of the primitive operators.primitive processes, any Signal speci�cation can be translated into a set of equations called polynomialdynamical system (PDS) as the one described in (3).We now explain how one can use the model-checker Sigali, in order to analyze the obtain polynomialdynamical system.2.2 The Sigali commands & Operations2.3 General CommandsStarting and exiting The Sigali environment can be started by the sigali command. A promptSigali : appears. To quit, one can use the Sigali command quit():Sigali : quit();-----------------------------------------------------------------^D works also �ne.Loading the �le of a model The .z3z �le which contains the PDS model of the system (or anyother Sigali �les, can be loaded by using the load or the read command. For example, in case ofdouble m the command is: 7



Sigali : load("double_m.z3z");---------------------------------------------------------------Trace By the trace command it is possible to save in a �le all the commands executed and resultsobtained in the Sigali environment:� trace("filename"); opens the �le for trace.� fintrace(); closes the current trace �le.All commands executed(and the corresponding responses) in between are saved in the trace �le.Execution time Sigali allows the measurement of the time taken for each computation. The com-mand chrono(true); starts the clock. After each subsequent command, the time taken for the compu-tation is displayed. The command chrono(false); stops the clock.2.3.1 Symbols and declarationsA symbol or an identi�er can be assigned to an expression in the following format:symbol : <expression>;For example:p : a^2 * b + c^2;assigns the identi�er p to the expression a2b+ c2.Indeterminate symbols can be delared by the command: declare or ldeclare. For example:declare(a,b,c,d); takes one or more parameters.ldeclare([a,b,c,d]); takes only one parameter (as a list).Once a symbol is declared, its not possible to modify its value. The command indeter(); lists all theindeterminate symbols.2.3.2 Polynomials and equationsA polynomial is an expression. An equation is of the form p1=p2 where p1 and p2 are two polynomialexpressions. Sigali can also manipulate lists of polynomials and equations. For example, [a + b, a, b,0, 1]; is a list of 5 polynomials and [a ^2 = b ^2, c = a and b]; is a list of 2 equations. Of coursea symbol can be assigned to a list as well. For example:list : [a + b, a, b, 0, 1];equations : [a ^2 = b ^2, c = a and b];The command eval evaluates a polynomial:eval(p,[a,b,c],[0,1,-1]);evaluates the polynomial p after substituting 0, 1 and -1 for a, b and c respectively. Of course thesevariables must occur in p.If p is a polynomial, lp1 and lp2 are two lists of polynomials,lvar1 and lvar2 are two lists of variables,and lconst is a list of constants(with values 0, 1 or -1), then:rename(p, lvar1, lvar2);replaces in p, the ith variable of lvar1 by the ith variable of lvar2.subst(p, lvar1, lp1);replaces in p, the ith variable of lvar1 by the ith polynomial of lp1.In case of the functions:l eval(lp1, lvar1, lconst);l rename(lp1, lvar1, lvar2);l subst(lp1, lvar1, lp2);the �rst argument is a list of polynomials instead of one polynomial and they perform they same functionas their counterparts for each polynomial of the list.The command equal compares two polynomials:Sigali: ldeclare([a, b]);-----------------------------------------------------------------Sigali: equal(a,b);False-----------------------------------------------------------------Sigali: equal(a when b, a * (- b - b^2));True-----------------------------------------------------------------8



01-1

0

1, -1
1, -1

00

1, -1

b

  a

c c c

1, -1

0

1
-1

0

Figure 6: TDD representation of the polynomial a2b+ c2.2.3.3 Representation of polynomialsA variable or polynomial can only take values belonging to F3 = f�1; 0; 1g. In Sigali, a polynomial isrepresented by means of a Ternary Decision Diagram(TDD) which is an extension of a Binary DecisionDiagram(BDD). In a TDD, each non-leaf node represents a variable and each leaf node is a value of thepolynomial. An arbitrary ordering of the variables must be done to facilitate the assignment of a node toa variable. Further, each non-leaf node has 3 edges emanating from it, labelled by the 3 possible values:f(-1 or 2), 0, 1g that the corresponding variable may take. So, each path from the root to a leaf assigns aunique sequence of values to the variables and the value of the leaf gives the value of the polynomial forthat particular assignment. For example, if p is the polynomial a2b+ c2, and the ordering is a < b < c,then p is represented by Sigali as follows (The TDD representation of p is shown in Fig. 6.):Sigali : p : a^2 * b + c^2;-----------------------------------------------------------p-----------------------------------------------------------Sigali : p;-----------------------------------------------------------a=0#0#c=0%0c=1%1c=2%1ca=1#1#b=0subformula 0b=1c=0%1c=1%2c=2%2cb=2c=0%2c=1%0c=2%0cba=2subformula 1a-----------------------------------------------------------Note: The value 2 is equivalent to -1. 9



In order to avoid repetitions in listing, portions occuring more than once are labelled as #n# (n = 0, 1,2, ...). These repetitions tend to occur when two or more edges enter a non-leaf node in the TDD. Whilereading the TDD, the label subformula n, wherever it occurs, is to be replaced by the portion labelled#n#.2.3.4 (System of) Polynomials manipulationThe canonical generator of a polynomial system given by a list of polynomials can be computed by thefunction gen. The command: gen(lpoly);s where lpoly is a list of polynomials. For example:gen([a + b - c, a^2 - 1]); gives the canonical generator of the polynomial system given by thetwo polynomials a + b - c and a^2 - 1. The previous command can also be given as:gen([a + b = c, a^2 = 1]);Complementation. Let g be a polynomial and V its set of solution, then the generator of thecomplement of V is obtained by: complementary(g);Intersection. Let p1 and p2 be two polynomials and V 1 and V 2 be the corresponding set of solutions,then: intersection(p1,p2); is the canonical generator of V1 \ V2. The number of arguments can begreater than 2. For example one can write intersection(p1,p2,p3,p4);Union. Let p1 and p2 be two polynomials and V 1 and V 2 be the corresponding set of solutions,then: union(p1,p2); is the canonical generator of V1 [ V2. As in case of intersection, the number ofarguments can be greater than 2.Tests of inclusion Let p1 and p2 be two polynomials and V 1 and V 2 be the corresponding set ofsolutions, then: inclus(g1,g2); is True if and only if V1 � V2. For example:> declare(a);> g1 : gen([a^2 = 1]);g1> g2 : gen([a = 1]);g2> inclus(g2,g1);True> inclus(g1,g2);FalseAn Example:> declare(a, b);> list : [a = 1, b = -1];list> poly : gen([a = 1, b = -1]);poly> A : gen([a = 1]);A> B : gen([b = -1]);B> AnB : intersection(A, B);AnB> AuB : union(A, B);AuB> equal(poly, AnB);True> equal(poly, AuB);False> equal(complementary(AuB), intersection(complementary(A), complementary(B)));True> equal(AuB, A + B - AnB);True-----------------------------------------------------------------2.4 Systems and ProcessesSigali distinguishes between two categories of dynamical systems: systems and processes.
10



2.4.1 SystemsSystems are general dynamical systemss in which null transitions(basically self loops) are taken intoaccount even when all the signals are absent. For example in case of the process double m, a system canbe constructed as follows:sys_double_m : systeme(conditions,etats,evolutions,initialisations,contraintes,controlables);----------------------------------------------------------------------------sys_double_m----------------------------------------------------------------------------conditions is a list of variables encoding the event variables, whereas etats is a list of variables whichencodes the states variables. controlables is a subset of conditions and corresponds to the controllableevent variables. evolutions is a list of polynomials (one for each state variables) which corresponds to theevolution of each state variables. initialisations is a list of polynomials (the solutions of this polynomialsystems correspond to the initial states of the system). contraintes is also a list of polynomial encodingthe constraints part of the polynomial dyanmical system (i.e. Q(X;Y ) = 0).2.4.2 ProcessesIn a process, null transitions are excluded i.e. no transition can take place in the absence all the signals.All dynamical systems originating from Signal programs fall under this category. In case of the processdouble m, a process can be constructed as follows:proc_double_m :processus(conditions,etats,evolutions,initialisations,contraintes,controlable);----------------------------------------------------------------------------proc_double_m----------------------------------------------------------------------------2.4.3 Access to the componentsIf syst is a dynamical system constructed by the command systeme or processus, then the 6 componentsof syst can be accessed by:event var(syst);state var(syst);evolution(syst);initial(syst);constraint(syst);controllable var(syst);2.4.4 Some special setsIf g is the canonical generator of a set of states E, then: pred(syst, g); is the canonical generator ofthe set of predecessors of E. Similarly, all succ(syst, g); is the canonical generator of the set of statesall of whose successors belong to E. evnt adm(syst, g);is the canonical generator of the set of eventsadmissible in E. If g is the canonical generator of a set of events F , then: etats adm(syst, g); is thecanonical generator of the set of states compatible with at least one of the events in F .3 Veri�cation of systems using SigaliSigali provides certain functionalities for the veri�cation of the properties of a dynamical system.3.1 Loading of the necessary librariesThe following �les must be loaded:load("Creat_SDP.z3z");--------------------------------------------------------------------------------------------------------------------------------------------------------load("Verif_Determ.bib");--------------------------------------------------------------------------------------------------------------------------------------------------------11



A more convenient way is to make a �le called Bibli.z3z containing the read commands for theabove �les and then to load Bibli.z3z at the Sigali prompt.3.2 Liveness3.2.1 RudimentsDe�nition: A dynamical system is alive i� 8x; y such that Q(x; y) = 0, 9y0 such that Q(P (x; y); y0) =0.In other words, a system is alive i� it contains no sink states.If syst is a system or a process, then:vivace(syst);is True if and only if syst is alive.In case of the process proc double m for example:vivace(proc_double_m);----------------------------------------------------------------------------True----------------------------------------------------------------------------3.2.2 An example of the di�erence between system and processA 
ip
op with constraint on the input. One may use the 1 bit memory m to de�ne the processflipflop_c:process flipflop_c =(? event E! boolean B; )( % One Boolean memory %| B := m{false}(NewB)% New value : negation of the current value %| NewB := not B% Memory no more frequent than input %| E ^+ B ^= E% Input admissible when the memory value is True %| E ^= when B|)where(declaration of m)end;The clock constraint speci�es that an input is accepted only when the value of the memory is true.It also speci�es that the memory value is present only when the input is present. These together tryto impose constraints on the external event from within the system. This prevents the generation ofexecutable code in this case.Also, once the memory value becomes false, it remains false since no further input is accepted.Thus the process is blocked and it is not alive. On the other hand, in case of the system, null transitionscan still take place from the false state to itself and so the system is alive.Relative liveness. The evaluation of liveness of the two representations(system and process) bySigali yields:load("flipflop_c.z3z");--------------------------------------------------------------------------------------------------------------------------------------------------------sys_flipflop_c : systeme(conditions,etats,evolutions,initialisations,contraintes);----------------------------------------------------------------------------sys_flipflop_c----------------------------------------------------------------------------proc_flipflop_c : processus(conditions,etats,evolutions,initialisations,contraintes);----------------------------------------------------------------------------proc_flipflop_c----------------------------------------------------------------------------vivace(proc_flipflop_c);----------------------------------------------------------------------------False----------------------------------------------------------------------------vivace(sys_flipflop_c);----------------------------------------------------------------------------True----------------------------------------------------------------------------As expected, the system is alive but the process is not.12



3.3 Safety Properties3.3.1 InvarianceDe�nition: A set of states E is invariant for a dynamical system i� for every state x in E and everyevent y admissible in x, the successor state x0 = P (x; y) is also in E.If syst is a dynamical system and g is the canonical generator polynomial of a set of states E,invariant(syst, g);is True if and only if E is invariant for syst.For example, in case of the process double m, one can specify a property pr eq : [etat 1 =etat 2];. The invariance of this property can then be tested by the command:invariant(pf, gen(pr eq));,where pf is the process constructed by the command processus.3.3.2 Greatest invariant subsetGiven a set of states E, there exists a set F which is the greatest invariant subset of E. If syst is adynamical system and g is the canonical generator of E,then:pg invariant(syst, g);gives the canonical generator of F . Abbreviation: pgi(syst, g);3.3.3 Invariance under controlDe�nition: A set of states E is control-invariant for a dynamical system i� for every state x in E,there exists an event y such that Q(x; y) = 0 and the successor state x0 = P (x; y) is also in E.If syst is a dynamical system and g is the canonical generator polynomial of a set of states E,c invariant(syst, g);is True if and only if E is control-invariant for syst.3.3.4 Greatest control-invariant subsetGiven a set of states E, there exists a set F 0 which is the greatest control-invariant subset of E. If systis a dynamical system and g is the canonical generator of E,then:pg c invariant(syst, g);gives the canonical generator of F 0. Abbreviation: pgci(syst, g);3.4 Reachability Properties3.4.1 ReachabilityDe�nition: A set of states E is reachable i� for every state x 2 E there exists a trajectory startingfrom the initial states that reaches x.If syst is a dynamical system and g is the canonical generator polynomial of a set of states E,accessible(syst, g);is True if and only if E is reachable from the initial states of syst.Note that Reachable(syst, g); works also �ne3.4.2 AttractivityDe�nition: A set of states F is attractive for a set of states E i� every trajectory initialized on Ereaches F . If syst is a dynamical system and g is the canonical generator polynomial of a set of statesE, Attractivity(syst, g);is True if and only if E is Attractive from the initial states of syst.Note: To avoid confusion between states and properties, it is essential to keep in mind thatwhen a property is de�ned, Sigali computes the set of states where the property holds. Sofor every property, there always corresponds a unique set of states. This set is empty ifthe property does not hold at any state of the system.13



3.5 A demonstrationIn order to demonstrate how one can use the Sigali commands given in this section, as well as interpretSigali's response to these commands, a small example is given below. It is for the process double mwhich is de�ned and explained in Section 2.1. It will be a good exercise to check for oneself the resultsproduced by Sigali in order to get a clear picture of the issues involved.> trace("double_m.log");> load("double_m.z3z");> pf : processus(conditions, etats, evolutions, initialisations, contraintes);pf> varetat(pf);[etat_1, etat_2]> varevent(pf);[C1, C2]> pr_eq : [etat_1 = etat_2];pr_eq> pr_sync : [etat_1^2 = etat_2^2];pr_sync> pr_val : [etat_1 = -1, etat_2 = 1];pr_val> pr_par : [etat_2 = -1];pr_par> pr_eq;------------------------etat_1=0etat_2=0%0etat_2=1%1etat_2=2%1etat_2etat_1=1etat_2=0%1etat_2=1%0etat_2=2%1etat_2etat_1=2etat_2=0%1etat_2=1%1etat_2=2%0etat_2etat_1------------------------> pr_sync;------------------------etat_1=0etat_2=0%0etat_2=1%1etat_2=2%1etat_2etat_1=1#0#etat_2=0%1etat_2=1%0etat_2=2%0etat_2etat_1=2subformula 0etat_1------------------------> pr_val;------------------------etat_1=0%1etat_1=1%1etat_1=2%0etat_1------------------------etat_2=0%1etat_2=1%0etat_2=2%1etat_2------------------------> pr_par; 14



------------------------etat_2=0%1etat_2=1%1etat_2=2%0etat_2------------------------> invariant(pf, gen(pr_eq));False> invariant(pf, gen(pr_sync));True> invariant(pf, gen(pr_val));False> invariant(pf, gen(pr_par));False> accessible(pf, gen(pr_eq));True> accessible(pf, gen(pr_sync));True> accessible(pf, gen(pr_val));True> accessible(pf, gen(pr_par));True> c_invariant(pf, gen(pr_eq));True> c_invariant(pf, gen(pr_sync));True> c_invariant(pf, gen(pr_val));True> c_invariant(pf, gen(pr_par));True> pg_invariant(pf, gen(pr_eq));%1> pgi(pf, gen(pr_eq));%1> pgci(pf, gen(pr_eq));etat_1=0etat_2=0%0etat_2=1%1etat_2=2%1etat_2etat_1=1etat_2=0%1etat_2=1%0etat_2=2%1etat_2etat_1=2etat_2=0%1etat_2=1%1etat_2=2%0etat_2etat_1> pgi(pf, gen(pr_sync));etat_1=0etat_2=0%0etat_2=1%1etat_2=2 15



%1etat_2etat_1=1#0#etat_2=0%1etat_2=1%0etat_2=2%0etat_2etat_1=2subformula 0etat_1> pgci(pf, gen(pr_sync));etat_1=0etat_2=0%0etat_2=1%1etat_2=2%1etat_2etat_1=1#0#etat_2=0%1etat_2=1%0etat_2=2%0etat_2etat_1=2subformula 0etat_1> pgi(pf, gen(pr_val));%1> pgci(pf, gen(pr_val));etat_1=0%1etat_1=1%1etat_1=2etat_2=0%1etat_2=1%0etat_2=2%1etat_2etat_1> pgi(pf, gen(pr_par));%1> pgci(pf, gen(pr_par));etat_2=0%1etat_2=1%1etat_2=2%0etat_2> pg_c_invariant(pf, gen(pr_par));etat_2=0%1etat_2=1%1etat_2=2%0etat_2> quit();3.6 Expression of system properties in Signal+It was already seen how system properties can be declared in Sigali by means of symbols, identi�ers andindeterminates. The subsequent sections will explain how to verify these properties and synthesize thecontroller using Sigali. Using an extension of the Signal language, called Signal+, it is also possibleto express the properties to be checked, as well as the control objectives to be synthesized, in the Signalprogram. The syntax is: 16



(| SIGALI(Objective(B ?(PROP))) |)The keyword SIGALI means that the subexpression has to be evaluated by Sigali. The function B ? willencode the \value" of the boolean PROP de�ned in the Signal program, that we want to analyse (itcan be either B True or B False, which means that we are interested in analyzing the set of states wherethe boolean PROP is true (resp. false The function Objective can be a veri�cation objective: it can beAlways, C Invariant, Reachable, Attractivity, etc, or a control objective to be synthesized. we willcome back to this point in the next section.
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