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2 Scope of this document 
 
This document describes the principals of a framework for reasoning about the 
execution time of programs developed in the SafeAir project. This description is based 
on the SIGNAL language, which is the basis of ModelBuild. However, the timing 
evaluation framework implemented by TNI in ModelBuild will not necessarily be a direct 
application of the principals presented here. The timing evaluation framework 
implemented in ModelBuild is described in the ModelBuild manual [MB], which will be 
updated following the evolutions. The framework described in this document will be 
made available during the SafeAir project in the INRIA POLYCHRONY environment, 
based on the SIGNAL language. POLYCHRONY can handle ModelBuild models via the 
ModelBuild export of textual SIGNAL programs. Both approaches, that directly 
accessible in ModelBuild, and that provided in POLYCHRONY, will be complementary. 
 
New versions of the present document might be provided, following the evolutions of the 
project. 
 
Part of the results presented here were obtained previously by Apostolos Kountouris 
[KL96]. However, they have not been implemented in the SIGNAL environment. This 
will be done in SafeAir. In addition, previously obtained results are further developed. 
 
Given an implementation Q of a program and a model of time consumption for each of 
the atomic actions in Q, we propose to automatically generate a program T(Q) 
homomorphic to Q; T(Q) is the parallel composition of the images T(Qi) of the 
components Qi (including communications) of Q. T(Qi) are given by the user as 
SIGNAL components whose interfaces are composed of integer signals T(ak) instead 
of the original ak signals. T(ak) represents the sequence of the availability dates for 
the occurrences of the original ak signal. 

T(Q) is thus a model of real time consumption of the application (functional 
specification and architectural support), that can be simulated. Some real time 
properties to be satisfied can also be described as predicates in SIGNAL. Then some of 
these properties may be checked by using verification tools. 
 

3 Motivation and general approach 
 
During the Development Lifecycle of an application, at some point of the design 
process, implementation details have to be introduced in the specification in order to 
transform it into an executable one. Introducing these details at an early phase has the 
advantage of refining the specification without a great cost in effort and time. 
Consequently a means of evaluating different implementation alternatives is needed as 
a facility in the design space exploration which by the way is one of the principal 
preoccupations in Hardware/Software co-design. 
We consider here the development of such a facility in the context of the SIGNAL 
language and its POLYCHRONY environment. Speaking of a facility we mean the tool 
that implements the mechanism of design evaluation and the methodology that 
implements the policy of using the tool to perform such an evaluation. 
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To address the temporal validation issues, a particular interpretation of synchronous 
SIGNAL specifications is defined. It is called the temporal interpretation because it aims 
in extracting the temporal dimension implicit in a functional specification when 
implementation related design choices are known. First, it is described how a generic 
interpretation scheme can be used to derive the temporal interpretation. This 
interpretation consists of a specific renaming for the specification entities (i.e., signals, 
operators, processes) and a specific computation model that extracts the desired 
information. This is the date computation model that computes output dates from input 
dates, accounting for data dependencies and control execution flow. This model is 
described in detail and it is shown how it can easily account for a variety of system-level 
implementation related decisions, like for instance partitioning and scheduling. A 
parameterization scheme is used to account for lower-level implementation decisions 
like specific component choice (i.e., processors and interconnects). 
To evaluate the system performance against the timing constraints, performance 
evaluation platforms can be automatically built using the temporal interpretations. 
Composing the temporal interpretation with the initial specifications and some additional 
processes, special simulators can be derived. These simulators co-simulate the 
functional and temporal behaviors of a system. The additional processes needed are 
one that models the scheduling policy (if one is defined) and one that validates the 
timing requirements. For the first one, a brief summary of how scheduling decisions can 
be represented in the HCDG (Hierarchical Conditional Dependency Graph, which is the 
internal representation of a SIGNAL program), is given. For the second, a 
representation of timing constraints as constraint edges between HCDG nodes, is used. 
These edges can be used to produce the date equations between the corresponding 
dates in the temporal interpretation, evaluating whether the timing constraint is 
respected. 

4 Temporal interpretation of SIGNAL processes 
 
An interpretation of a SIGNAL specification is a SIGNAL process that exposes a 
different view of the initial SIGNAL specification. The structure of the interpretation 
process is essentially the same but its computations expose another aspect of its 
behavior. The temporal interpretation exposes the time aspect and permits to see how 
an implementation of a specified functionality will behave over time. 
 
A SIGNAL process specifies a piece of functionality as a system of equations. This 
functionality can be of arbitrary complexity ranging from primitive operations to complex 
tasks. Parallely composing kernel processes (operators) results in more complex 
processes which in turn can be further composed to build even more complex ones. In 
this way a system specification can be viewed as a composition of simpler processes. 
Even more, an initial, implementation independent functional specification in SIGNAL, 
can be transformed in a functionally equivalent specification that models various 
system-level design choices (e.g., distribution, scheduling). Consequently, as a design 
evolves from higher to lower levels of abstraction, where implementation related design 
decisions and choices are known, a model in SIGNAL can be derived. 
 
For each SIGNAL process independently of its complexity level, another SIGNAL 
process can be automatically derived to model its temporal behavior on a given 
implementation. These processes are called temporal interpretations. For a SIGNAL 
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process P its temporal interpretation for an implementation I will be denoted by T(PI), 
where PI is the SIGNAL process that models implementation I of P. Thus, if a system 
specified by a SIGNAL process P has a variety of possible implementations I1, to Ik, 
then each implementation can be modeled by: 
 

PI(i)      i ∈ [1,k] 
 

and for each PI(i) a temporal interpretation T(PI(i)) can be derived. 

 

In this way a comparative performance evaluation of the different implementations can 
be performed and the design space of possible implementations can be effectively 
explored before committing the design to a particular one. Such an approach permits to 
concentrate the design effort to a set of candidate implementations. 

4.1 Signal availability dates 
 
For each signal in the initial SIGNAL specification a date signal is defined in its temporal 
interpretation: 
 

x ∈ P → T(x) ∈ T(P) 
 
For any signal x in P we have a date_x in T(P) with x synchronous to date_x. 
 

P → T(P) 
x → T(x) = date_x 

x ^= date_x 
 

These date signals are a kind of time-stamps providing the availability times for the 
values of the corresponding signals in the functional specification, in respect to a global 
time reference. Depending on the implementation context, time can be measured using 
either physical time units or full clock cycles. In the first case the date signals are 
positive real numbers and in the second positive integers. From a cycle count integer 
measurement we can pass to physical time measurement by multiplying the cycle count 
to the cycle period. 
 
Throughout this presentation, at each node a delay is associated. This delay is 
represented by the same data type as the data type used to represent dates and is a 
function of several parameters. The actual node delay is obtained by giving values to 
these parameters. The delay depends on parameters like: operation performed by the 
node, data types involved, chosen implementation, etc. Furthermore, a delay can be 
represented by a pair of numbers corresponding to the worst and best case delays. 
Having delays represented by intervals results in dates represented as intervals too. 
Computing these dates takes into account the processing delays. How these dates are 
actually computed is the topic of a subsequent paragraph, what is important to underline 
is that this date mechanism permits us to pass from logical to physical time. This 
passage is necessary in order to evaluate whether a particular implementation respects 
the synchrony hypothesis. 
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4.2 Non-functional interpretations 
 
The temporal interpretation of a SIGNAL specification is just a special case of a general 
non-functional interpretation. Let us briefly discuss some aspects of such non-functional 
interpretations. The non-functional interpretations are SIGNAL processes and as such 
they can be decomposed into a control and a data part. The control computations are 
identical to those in the initial processes from which the interpretations are derived. 
What changes are the data computations since they extract the information related to 
the particular interpretation. 
For a SIGNAL process P we know that P = CP | DP, with CP  the control part of the 
process P and DP its data part. Similarly an interpretation of P, denoted by TR(P), 
decomposes into a control and a data part: 
 

TR(P) = CTR(P) | DTR(P) 
 
Since the interpretation of a complex process can be defined as the recursive 
composition of the interpretations of the constituent processes for TR(P) we have: 
 

TR(P) = TR(CP) | TR(DP) 
 
with: 

TR(CP) = CTR(CP) | DTR(CP)  and TR(DP) = CTR(DP) | DTR(DP) 
 
For the control part we have: 

CTR(P) = CP 

 

The process of obtaining an interpretation TR(P) of a process P is graphically depicted 
in Figure 1. The data part (DP) of the process P computes output values (OD) from input 
values (I). The computations are conditioned by activation events (H) computed in the 
control part (CP). To compute the activation conditions H, CP uses Boolean input signals 
(Ib) and intermediate Boolean signals B computed by DP. Finally, certain outputs are 
output events (HO) computed by CP. The control parts of the initial process and its 
interpretation are identical, but the data computations differ. The data computations in 
TR(P) extract the information of interest, implicit in the initial specification P. 
 

 
Figure 1. The generic interpretation of process P 
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The SIGNAL kernel operators are the simplest processes that can be composed to build 
more complex ones. Similarly, the interpretation of a process can be viewed as the 
composition of the interpretations of the primitive processes making up the initial 
process. 
Each interpretation defines a renaming scheme for the entities contained in the initial 
specification. These specification entities consist of signals and processes (primitive 
and higher-level). For each specific interpretation a set of renaming conventions has to 
be defined. Signal renaming consists of adding a prefix to the signal names, i.e. “pref_”. 
The renamed signals have also a type depending on the particular interpretation. 
Process renaming consists of adding a prefix to the process name, i.e. “pref_”, to build 
the name of the kernel interpretation process that corresponds to the kernel process in 
the initial program. 
The interpretations of the kernel processes perform the appropriate computations 
relating to a particular interpretation. These compute the value of the renamed output 
from the values of the renamed inputs. The computations may be functions of the 
interpretation parameter values passed to the interpretation process. The interpretations 
of the kernel processes are organized in a collection which is the interpretation library 
pref_LIB. This library for each interpreted process is augmented with the interpretations 
of external function calls and other separately compiled processes, used in the initial 
process. 

 
For instance, the interpretation of the addition monochronous operator C := A + B is: 
 

pref_C := pref_ADD {interpretation parameters} (pref_A, pref_B) 
 

The participating signal A, B, C can be traced in the resulting interpretation as pref_A, 
pref_B, pref_C respectively. Similarly the addition operator to the pref_ADD process 
that computes the value for pref_C from the values of pref_A, pref_B. The interpretation 
parameters are optional and depend on the particular interpretation. 
 
Another example of kernel operator illustrates the addition of control inputs to the 
resulting interpretation process in order to compute the activation events. 
C :=  A when B yields: 
 

pref_C := pref_WHEN {interpretation parameters} (pref_A, pref_B, B) 
 

As it can be seen the Boolean signal B is part of the interpretation interface since the 
interpretation results depend on its value. 
 

4.3 Temporal interpretation renaming conventions 
 
In the previous paragraph it was shown how a generic interpretation can be obtained for 
SIGNAL processes of arbitrary complexity. To obtain the temporal interpretation, two 
things need to be defined: 
• A set of renaming conventions of SIGNAL specification entities. Specification entities 

are: signals, kernel processes, higher order processes and functions.  
• The interpretation computations for each SIGNAL kernel process. 
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The interpretation processes have their interfaces derived from the initial processes. 
These interfaces consist of signals used to define activation events inside the process 
bodies and renamed signals participating in the interpretation computations. The 
interface derivation for the temporal interpretation T(P) of process P is shown in Figure 
2. Process P can be viewed as the composition of its control part (CP) and its data part 
(DP). Similarly, the temporal interpretation process can be decomposed in a control 
(CT(P)) and a data part (DT(P)). CT(P) should be identical to CP. 

 

 

Figure 2. The temporal interpretation process interface 
 
The interface of T(P) is derived as follows: 
• The input signals T(I) are obtained by renaming the input signals I of P. Renaming 

consists in prefixing the names of signals in I by “date_” of data type appropriate to 
express time measurements. This can be integer if time is measured in full clock 
cycles or floating point if it is measured in seconds. 

• Ib are obtained by extracting from I those signals contributing in the definition of 
activation events belonging to H. Ib consist of signals of Boolean or event types. 

• B are signals of Boolean type computed by DP. Since the computations of DP 
disappear in DT(P), they have to become inputs of T(P). 

• The output signals T(O) are obtained by renaming the output signals O of P. 
Renaming follows the same conventions as for T(I). 
 

Finally, the process name of T(P) is obtained by prefixing the name of P with “T_”. The 
above interface derivation and renaming schemes apply to any process P of arbitrary 
complexity, and consequently to the SIGNAL kernel processes. 
 

5 The date computation model 
 
What a SIGNAL program defines is how the availability (presence/absence) and values 
of the inputs influences the availability and values of the outputs. Having assigned at 
each input an availability date then we can exactly calculate the output availability dates 
if we account for all those things that affect the program execution flow and the various 
operation delays. 
To present the date computation model, in Figure 3 the basic translation rules that when 
applied to a SIGNAL process yield its temporal interpretation, are given. These rules 
are: 
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• Substitute each signal by its corresponding date 
• Substitute each operator by an appropriate SIGNAL process 
• Provide parameter values for the parameters determining the exact operation delay 
In this example for an addition operation C := A + B the date of the addition result 
(date_C) is a function of the addition argument dates (date_A, date_B). The delay of the 
addition operator is taken into account inside the “T_ADD” process which models a 
desired implementation by means of a set of parameters (add_pars). 

 

 

Figure 3. Simplified translation rules for temporal interpretation 
 
The temporal interpretation process parameters reflect information that is either found in 
the HCDG or is provided by the user (it is the topic of a subsequent section). For 
instance floating point addition might be costlier than integer addition, in this case the 
addition type becomes a parameter. For now it is sufficient to know that this information 
can be extracted and subsequently used in order to obtain an operation delay. 
 
It is clear that reasoning about the temporal behavior of a program is a complex task 
that necessitates finding solutions to different sub-problems. In order to better present 
our approach to temporal property extraction we proceed in a step-by-step fashion 
going from the simpler towards the more complex case. We start by making a set of 
simplifying assumptions that correspond to an ideal execution. At each step we remove 
one by one the simplifying assumptions by introducing a new aspect so that in the end 
we treat a realistic execution scheme that covers all the details concerning the problems 
of temporal interpretation generation and temporal property extraction. 

5.1 The ideal parallel case 

 
In this case an ideal execution platform is considered. The basic assumptions are: an 
unlimited number of resources (processors and communication links); zero 
communication delays; constant and deterministic operation delays. Under these 
assumptions at every instant of program execution all the potential functional parallelism 
can be exploited. For an ideal parallel execution we assume zero communication delays 
and finally to make things even simpler we also assume constant operation delays. This 
last assumption allows us to neglect any implementation details pertaining to specific 
components that the operation executes and the possible variations of its execution, 
and concentrate on the presentation of the basic ideas. For this case we examine two 
types of programs starting with pure data ones where the SIGNAL HCDG can be 
considered as a dataflow graph, on which the basic principles of date calculation are 
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presented. Examining next the case of programs that also contain control-flow we 
extend the model for the more general case of HCDG’s. Finally, we present how results 
can be obtained by using the temporal interpretation and how these results can be 
exploited always staying within the SIGNAL context. 

5.1.1 Pure dataflow 
 
In a pure data program there is no control so its HCDG can be viewed like a 
synchronous dataflow graph. In this case the data dependencies remain unchanged in 
every iteration of the system represented by the graph. 

 

 

Figure 4. Date computations for pure data programs 
 
Every node corresponds to an operation and has a set of incoming edges representing 
the operation arguments and a set of outgoing edges representing the use of the 
operation result in other operations. An example is shown in Figure 4  where the graph 
on the left corresponds to the program shown in the shaded box. Input/Output and 
intermediate signals are shown in rectangles. Ovals correspond to operation nodes. On 
the right of Figure 4 the graph corresponding to the temporal interpretation of the 
program, is given. This graph is produced by applying the translation rules. The graph of 
the corresponding temporal interpretation has exactly the same structure but the edges 
now represent dates and the nodes the computation of the result date as a function of 
the argument dates. 
 
For each node, we give the ∆op which is the delay of the operation op in the initial graph. 
The date computation of Top consists in finding the maximum of incoming dates and 
adding to it the delay ∆op corresponding to the operation in the original graph. This is 
graphically depicted in Figure 5. In this way starting with the system input dates and by 
traversing the graph from inputs to outputs, we obtain the system output dates. 
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Figure 5. Date computations in the interpretation of a monochronous operation 

node 
 

Obtaining Results 
 
Even though this execution scenario seems to be very unrealistic its results can give the 
designer an upper limit of system capabilities. Intuitively, any possible implementation 
will have a lower performance and thus knowing this upper limit may prompt for 
algorithmic optimizations at the functional specification level. 

An information that can be obtained is the optimal latency of the system which is the 
time it takes to produce the outputs once the inputs are available. This latency is optimal 
in the sense that the execution corresponds to an ideal execution scheme. By setting 
the input dates to zero we obtain each output date. This date corresponds to the time it 
takes to execute the path in the graph that leads from the inputs to this output. The 
maximum of the output dates corresponds to the critical (longest delay) path in the 
graph. 

 

 

Figure 6. Finding the optimal latency of a system 
 
In Figure 6 the necessary configuration in order to obtain the optimal latency, is shown. 
In this example for the output C the optimal latency is given by: 
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latency_C = max ((date_C - date_A), (date_C - date_B)) 
 

if date_A = date_B = 0 then: 
 

latency_C = max (date_C, date_C) = date_C 
 

5.1.2 Accounting for the control-flow 

 
Staying always in the ideal parallel case we consider now programs that contain control 
and thus the execution paths from inputs to outputs may differ, over time, depending on 
the control conditions involved. Control branching in a SIGNAL program is introduced by 
means of the two control expressions shown in Figure 7 which are part of the SIGNAL 
language kernel. 

 

 

Figure 7. SIGNAL kernel constructs influencing the control execution flow 
 
The first one is the sub-sampling and is represented in SIGNAL as: 

y := x when c 

y, x are of any valid type and c is a Boolean. The semantics of “when” can be 
informally defined as: 
 

y gets the value of x if x is present and c is present with value true. 
 

The second is referred to as priority multiplexing and is represented in SIGNAL as: 
y := x1 default x2 

Informally: 
 
y gets the value of x1 if it is present or of x2 if x2 is present and x1 is absent. If both x1 

and x2 are absent y is absent as well. 
 

In assigning a value to y, x1 is considered having higher priority over x2 meaning that in 
the case that both are present y gets its value from x1. 
 
The temporal interpretations of these processes are shown in Figure 8. For “y := x 
when c” its temporal interpretation is: 
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date_y gets the maximum value of date_x and date_c if date_x, date_c are 
present and c is present true. To it the delay assigned to the when operator is added. 

 

For “y := x1 default x2”  its temporal interpretation is: 
 
date_y gets the value of date_x1 if it is present or date_x2 if it is present and 

date_x1 is absent. To it the delay assigned to the default operator is added. If both 
date_x1 and date_x2 are absent date_y is also absent. 

 

 

Figure 8. Temporal interpretations of the kernel control processes 
 

An example of temporal interpretation of control data programs is shown in Figure 9. 
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Figure 9. Finding longest paths in the SIGNAL graph 

 

The preservation of Boolean inputs in the initial program contributing in the definition of 
control conditions (events) has to be considered. In the example, Boolean inputs c1 and 
c2. In the generic interpretation scheme it was shown that such Booleans have to 
become inputs in the interpretation process so that the activation events in the temporal 
interpretation process can be computed. In the example of Figure 9 c1 is a Boolean 
input in the initial program and cc1&c2 is internally computed by “c1 and c2”. 

 
In addition, many control branches depend on Boolean signals that are either internally 
computed by the evaluation of relational (equality/inequality) operations on signal data 
values, or represent Boolean state variables. Since in the temporal interpretation 
process no such computations contained in the original program take place (only 
Boolean control and date computations take place), these clocks cannot be internally 
computed by the temporal interpretation process. In order for date calculations to 
effectively consider the influences of conditional behavior, we have to provide the 
Booleans that define such clocks as extra inputs to the temporal interpretation program. 
In the example of Figure 10, c1 is a Boolean input defining a control condition and so it 
has to be provided as extra input to the temporal interpretation process. In addition the 
arithmetic relation “x1 > 0” is also a control condition that results in the extra Boolean 
input c>. The true instants of a Boolean c2 define a clock; in order to update the dates 
correctly c2 has to be provided as an input to the temporal interpretation to compute 
node dates only as often as the corresponding computations occur in the initial program 
and under the same conditions. 
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Figure 10. Date computations in control/data programs 

 

Thus, a process P that contains conditional behavior is interpreted to a temporal 
interpretation process T(P) with a number of extra Boolean inputs represented as a 
vector denoted by CVP (Condition Vector of P): CVP = { ci | ci ∈ {true, false, ⊥}} with  ⊥ 
denoting absence. 

 
Obtaining Results 

 
Since the elements in the SIGNAL HCDG are dynamic in nature, it is easy to account 
for only the active paths in the graph during successive system iterations and even 
more, exclude the processing paths that can never exist (false paths). Such paths 
contain dependencies whose clocks are mutually exclusive. This information is 
discovered during clock calculus. These advantages of the HCDG in respect to 
traditional graphs are illustrated in the example given in Figure 9. In this example thick 
lines correspond to program data and thin ones to control data that affects the execution 
flow. It is easy to see that P2 and Q1 are mutually exclusive so the path containing both 
should not be considered in time consumption counting. Thanks to clock calculus the 
relationships between the various clocks in a program become explicit during 
compilation and thus at each logical instant only the active paths may be considered in 
the date calculations. 
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Figure 11. Temporal behavior simulation 

 

 
In order to simulate the temporal response of a system in respect to defined operation 
delays, we generate its temporal interpretation which is the main element of such a 
simulator. The temporal simulator’s SIGNAL specification is shown in Figure 11. At each 
iteration the output dates depend on the input dates and the control configuration 
represented by a valuation of the condition vector [c1,...cq]. More specifically each output 
date depends on a subset of input dates and on a control configuration sub-vector. For 
a simulation we have to provide test vectors [c1,...cq] which are the clock defining 
Booleans. In a straightforward approach we can provide a set of vectors that covers all 
the possible combinations for the control flow. Such an approach has two major 
drawbacks. The first is the exponential growth on the number of test vectors. The 
second consists on the inclusion of infeasible control configurations by ignoring the 
inclusion/exclusion relationships of the clocks defined by these Booleans. In this cases 
clock calculus can be used to provide information on the inclusion/exclusion 
relationships between the Booleans and thus lower the number of test vectors, while 
excluding infeasible control configurations. Another possibility is to gather Boolean 
vectors during the functional simulation of the original program and use this smaller set 
of test vectors. 

 
Considering clock equivalence/inclusion/exclusiveness relationships may significantly 
reduce the number of control configurations for an exhaustive temporal simulation of 
processes containing conditional behavior. 

 

5.2 Modeling of sequential execution 

 
Having considered the case of unconstrained parallel execution, the model can be 
augmented to account for sequential execution as well. Since the graph corresponding 
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to a program is a partial order, to achieve sequential execution we have to enforce it 
with additional dependencies between potentially parallel nodes (operations). The main 
preoccupation is to preserve the same model for date calculations as before. In Figure 
12 an example of operation scheduling is given. For this simple case there are no 
dependencies between operations P2 and P3 in the graph Figure 12a, meaning that 
there are two possibilities for sequential execution: P1, P2, P3, P4 or P1, P3, P2, P4, that is 
either P2 before P3 or vice versa, as shown in Figure 12b. 

 

 

Figure 12. Operation scheduling for sequential execution 
 
A first step in the operation scheduling is to add a dependency between P2 and P3. This 
dependency should be conditional in order to be active only at the instants that both 
operations can be executed at the same time. The clock of this extra dependency is the 
intersection of the clocks of the two operations P2 and P3 (Hcommon): 
 

Hcommon = H(P2) ∩ H(P3) 
 
This way when both operations may execute simultaneously this clock is present thus 
the dependency of P2 to P3 is effective meaning that P2 will execute before P3. This is 
graphically depicted in Figure 12c where a control dependency (shown in grey) 
conditioned by Hcommon is added. Its direction depends on the execution order statically 
decided by a scheduler. In this way the scheduling transformation can be effectively 
represented in the HCDG representing the system. 
 
The scheduled HCDG, denoted by HCDGS, can now be used for the temporal 
interpretation that will also account for the scheduling decisions that influence the 
execution latencies of individual parts or whole systems. The date computations will 
take into account the scheduling dependencies in the same way data dependencies. 
For instance in the temporal interpretation of an operation node the operation delay will 
be added the maximum of the incoming dates that represent data, control and 
scheduling dependencies, to produce the date of the node’s result. 
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5.2.1 Modeling dynamic scheduling 
 
In order to make our scheduling scheme more flexible we may add an inverse 
conditional dependency from P3 to P2. When a scheduling dependency is effective, in 
one direction, the inverse dependency should be ineffective. To enable such a scheme 
to work we define a Boolean signal s. The clock of s is: 
 

H(s) = H(P2) ∩ H(P3) = Hcommon 
 
When s is true the dependency in one direction is effective and when it is false the 
dependency in the inverse direction is effective. This is shown in Figure 12c where the 
scheduling dependencies are labelled by [s] in one direction (P2 to P3) and by [¬s] in 
the inverse direction (P3 to P2). In this way we can manipulate the orientation of the 
scheduling edges by choosing the appropriate values for the scheduling Boolean 
signals. 
In the presence of scheduling dependencies, the date computation model remains the 
same by assuming that the scheduling dependency carries the date value of its source 
node. If for example we assume that the clocks of Pi’s, in Figure 12, are equal and that 
the scheduling Boolean s is true, the production date of P4 is calculated as follows: 

date_P4  = max (date_P2, date_P3) + ∆P4 
 = max ((date_P1 + ∆P2), (max (date_P1, date_P2) + ∆P3) +∆P4 
 = max ((date_P1 + ∆P2), (max (date_P1, (date_P1 + ∆P2)) + ∆P3) +∆P4 
 = date_P1 + ∆P2 + ∆P3 + ∆P4 

which corresponds to the chosen sequential execution path. The introduction of 
conditional scheduling dependencies permits the modeling of both static and dynamic 
scheduling decisions. Static scheduling corresponds to the addition of scheduling 
dependencies without an associated scheduling Boolean. 

5.2.2 Example: dynamic scheduling based on input availability 
 

To demonstrate how a dynamic scheduling policy can be modeled in respect to the date 
computation model, a simple example, shown in Figure 13, will be used. In this example 
the system functionality is partitioned into two separate concurrent tasks modeled by 
SIGNAL processes P1 and P2. Assuming that the two tasks are assigned for execution 
on the same processing element, an external scheduler (process S in Figure 13a) will 
decide the task execution order depending on the task input availability by providing the 
appropriate true/false value for the scheduling Boolean s1. For instance, at the logical 
instants that the two tasks can simultaneously execute, if the inputs of P1 are available 
before those of P2 then P1 will execute before P2 and vice versa. Depending on the 
chosen execution order the task output dates will vary. In terms of input dates this 
means that the task with smaller input dates will execute first. Both ordering possibilities 
are modeled by the scheduling dependencies between P1 and P2 conditioned by 
Boolean conditions [s1] and [not s1] respectively. Consequently the true/false value of s1 
depends on the dates of the task inputs. The value of s1 for the temporal interpretation 
is given by the following equation computed by process ST in Figure 13b that models 
the scheduling policy: 

  
s1 := (date_inP1 when hcommon) ≤ (date_inP2 when hcommon) 
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where: hcommon := H(P1) when H(P2) represents the logical instants at which both P1 and 
P2 can execute simultaneously. The ordering dependency is effective only at these 
logical instants. 

 

 

Figure 13. Calculation of scheduling conditions to model ASAP on input 
availability 

5.2.3 Obtaining results in the presence of scheduling 
 
When scheduling information (static or dynamic) is incorporated in the system’s 
specification by means of the extra ordering dependencies, the temporal interpretation 
has a set of extra Boolean inputs (s1, ..., sp) consisting of the Boolean variables 
conditioning the direction of the dynamic scheduling dependencies. To obtain results we 
use the simulation configuration of Figure 14, which is essentially the same as the one 
in Figure 11 so the points made in that case apply in this one too.  
In this scheme the temporal interpretation is slightly different since now we also have to 
provide the scheduling Booleans si as inputs. These Boolean inputs can obtain their 
values by means of a SIGNAL process (Sched) that models the scheduling policy by 
means of the involved signal dates. These dates can be input, output or intermediate 
signal dates and have to be provided to “Sched”. A final word concerns the capability of 
the conditional scheduling dependency scheme to model static scheduling policies as 
well. This can be achieved by providing at each logical instant the same values for the 
scheduling Booleans (s1, ..., sp). 

5.2.4 Minimizing the scheduling modeling complexity 
 
Considering dynamic scheduling at a fine granularity (operations) is of little practical 
value. Instead existing code scheduling (for software implementations) and high-level 
synthesis scheduling techniques can be considered mature and adequate enough to 
provide efficient solutions. Nevertheless, fine grain scheduling at the operation level 
influences the performance at the system-level and thus the need to be able to include 
such information in our internal design representation. Assuming that an adequate 
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interface to the scheduling mechanism exists, fine grain scheduling can be represented 
by adding extra conditional dependencies of fixed direction between HCDG operation 
nodes. These dependencies will be taken into account by the proposed date 
computation model. 

 

 

Figure 14. Temporal behavior simulator for sequential execution 
 
Dynamic scheduling needs to be considered at the task level, when a complex system 
can be viewed as a collection of co-operating tasks. The advantage of considering the 
addition of conditional dependencies whose direction is controlled by scheduling 
Boolean signals, at the task level, is that the number of these Boolean signals is kept 
relatively small. This is graphically depicted in Figure 15. At each logical instant every 
present node of task T1 precedes every present node of task T2 at the true instants of s1 
and the inverse at the false instants. For each task its activation clock is defined as the 
union of the clocks of the nodes belonging to the task. In the example the clocks of T1, 
T2 are: 

 
H(T1) = ∪i h1i  and H(T2) = ∪j h2j 

 
respectively, where h1i and h2j are the clocks of the nodes of T1 and T2 respectively. 
Considering each task as HCDG nodes dynamic scheduling dependencies are added at 
this level with the scheduling Booleans having as clock the intersection of the task 
clocks. In the example: 

  
H(s1) = H(T1) ∩ H(T2)  
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Figure 15. Scheduling dependencies on a coarser granularity level 

 

The methodology of task partitioning as SIGNAL processes and dynamic task 
scheduling representation has been elaborated in the SACRES project [GL99]. Code 
distribution is viewed as the partitioning of an initial synchronous SIGNAL specification 
into a set of individual co- operating processes and their assignment for execution onto 
a set of interconnected processing elements. 
The first step in the process is the decomposition of the initial specification P, into a set 
of communicating tasks (threads) P1 - Pn. This is achieved by partitioning the initial 
HCDG into a set of sub-graphs. Each sub-graph can be considered as an HCDG node 
in the sense that it has an interface given by the incoming and outgoing data/control 
dependencies, and it is labelled by a clock that corresponds to its activation condition. 
Whenever this clock is present some activity will occur inside the task node. At this 
stage it is guaranteed by construction that: 
 

P = P1 | P2 | ... | Pn 
 

Next comes the assignment of tasks onto processing elements that corresponds into 
grouping together task processes assigned to the same processing element. This can 
be represented by: 
 

P = P1 | P2 | ... | Pn = PP1 | ... | PPk 
 

where k is the number of processing elements. 
For instance could be PP1 = P1 | P4 | P7 . 
 
The next step is to represent the communications between the various tasks inside 
each processor and between each partition assigned to each processor. At this level 
intra- and inter- processor communications can be modeled, by means of read/write 
(send/receive) nodes inserted at the interface points of each task (partition) node. 
These nodes model the transfer of control/data information across task (partition) 
boundaries and are labelled by clocks indicating when the communications are to take 
place.  
Depending on the chosen communication schemes and the eventual physical 
implementation the communication nodes will obtain the appropriate implementation. A 
point of interest is that clock information can be used in order to find the best suited 
communication clocks that will minimize the communication frequency and possibly 
allow the sharing of communication links consequently minimizing the bandwidth 
requirements and the resource contention. 
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Finally, scheduling has to be performed inside each task (fine grain) and among tasks 
sharing the same processor (coarse grain). These tasks have to be scheduled either 
statically or dynamically. Similarly communications sharing the same link have to be 
scheduled as well. Scheduling can also be modeled by a scheduler process that 
observes both the task data/control dependencies and the synchronization constraints 
for consuming/producing values. In this methodology the implementation will be 
deadlock-free by scheduling in such a way that no cycles are induced on the initially 
acyclic graph representing the system.  
 

6 Temporal interpretation of the HCDG 
 
In this section the temporal interpretation of the most important SIGNAL kernel 
processes as represented internally by an HCDG, will be described. These temporal 
interpretation have also an internal HCDG representation. 
In the HCDG representation of a SIGNAL process the following types of nodes can be 
found: i/o nodes, operation nodes (monochronous), down-sampling nodes, multiplexing 
nodes, memory nodes ($, cell). Each type of node has a temporal interpretation that 
produces the result date for a node as a function of the node input dates and the delay 
associated with the node. 

6.1 I/O nodes 
 
Input nodes are nodes that get input values from the external environment and make 
them available to the system. Similarly, output nodes make values internally computed 
in the system available to the external environment. Interfacing, to the external 
environment, may incur processing delays depending on the implementation. 
Consequently, our model should be able to account for them. Assume that an input 
(read) node has an associated delay which may be a function of a certain number of 
parameters, denoted by: ∆RD(read_pars). 

 
In Figure 16 for an input node (?a) shown on the left, its temporal interpretation 
(date_?a) is shown on the right. The input value a may be physically available before 
the system is ready to observe it. When the system is ready is indicated by the event ha 
which is the clock of a. Following the renaming conventions previously defined the 
temporal interpretation of the input node “?a” is: 

 
T(?a)  ☞  date_?a := T_RD{read_pars}(date_ha, date_a, ha) 

 
The signal process T_RD computes the node availability date (date_?a) and expands to 
the following expression: 

 
date_?a := max ((date_ha when ha), date_a) + ∆RD(read_pars) 

 

The SIGNAL expression (date_ha when ha) gives the date of the occurrence of event ha 
or in other words the date that the Boolean variable associated to clock ha evaluates to 
true. The above expression simply states that: 
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the input date (date_?a) is equal to the sum of the delay it takes to get its value 
(∆RD) and the maximum of the date the input value is physically available 
(date_a) and the date at which the system can observe it (date_ha when ha). 

 

 

Figure 16. Temporal interpretation of HCDG input nodes 
 
Similarly for output (write) nodes (e.g. !o) following the renaming conventions previously 
defined their temporal interpretation is: 
 

T(!o)  ☞  date_!o := T_WR{write_pars}(date_ho, date_o, ho) 
 
The signal process T_WR computes the node availability date (date_!o) and expands to 
the following expression: 
 

date_!o := max((date_ho when ho), date_o) + ∆WR(write_pars) 
 

The SIGNAL expression (date_ho when ho) gives the date of the occurrence of event ho 
or in other words the date at which the Boolean variable associated with clock ho 
evaluates to true. The above expression simply states that: 
 

the output date (date_!o) is equal to the sum of the delay it takes to make its 
value available to the environment (∆WR) and the maximum of the date the output 
value is internally computed (date_o) and the date at which the system can make 
it available to the environment (date_ho when ho). 

6.2 Operation nodes 
 
Operation nodes in the HCDG correspond to the monochronous operators of arithmetic 
(+, -, *, /), Boolean (and, or, not), and relational type (<, <=, >, >=, =, /=). They have an 
inbound control dependency from their clock signifying that the result can be computed 
when the clock is present (or in other words when the Boolean variable associated with 
the clock evaluates to true). The node and its inbound data dependencies are labelled 
by the node’s clock. 

 

In Figure 17 the HCDG of an operation node is shown on the left. Its temporal 
interpretation following the defined renaming conventions is shown on the right. In 
SIGNAL the temporal interpretation can be represented by: 
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T(c)  ☞  date_c := T_OP{op_pars}(date_a, date_b, date_hc, hc) 

 
The signal process T_OP computes the availability date (date_c) for the value of node c 
and expands to the following expression: 

 
date_c := max ((date_a when hc), (date_b when hc), (date_hc when hc)) + ∆OP(op_pars) 

 

 

Figure 17. Temporal interpretation of HCDG operation nodes 
 
The SIGNAL expression (date_hc when hc) gives the date of the occurrence of event hc 
or in other words the date at which the Boolean variable associated with clock ha 
evaluates to true. The above expression simply states that: 

 
the node result date (date_c) is equal to the sum of the delay it takes to perform 
the operation that computes its value (∆OP) and the maximum of the dates the 
operation argument values are available (date_a when hc), (date_b when hc) and 
the date at which the system can perform the operation (date_hc when hc). 

6.3 Down-sampling nodes 
 

Down-sampling nodes in the HCDG correspond to the down-sampling when SIGNAL 
operator. They have an inbound control dependency from their clock signifying that the 
result can be computed when the clock is present (or in other words when the Boolean 
variable associated with the clock evaluates to true). The node and its inbound data 
dependencies are labelled by the node’s clock. 
In Figure 18 the HCDG of a down-sampling node is shown on the left. Its temporal 
interpretation following the defined renaming conventions is shown on the right. In 
SIGNAL the temporal interpretation can be represented by: 

 
T(c)  ☞  date_c := T_WHEN{when_pars}(date_a, date_hc, hc) 

 

The signal process T_WHEN computes the availability date (date_c) for the value of 
node c and expands to the following expression: 
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date_c := max ((date_a when hc), (date_hc when hc)) + ∆WHEN(when_pars) 
 

The SIGNAL expression (date_hc when hc) gives the date of the occurrence of event hc 
or in other words the date at which the Boolean variable associated with clock ha 
evaluates to true. The above expression simply states that: 
 

the node result date (date_c) is equal to the sum of the delay it takes to perform 
the down-sampling of the input value (∆WHEN) and the maximum of the date at 
which the input value is available (date_a when hc) and the date at which the 
system can perform the down-sampling operation (date_hc when hc). 

 

 

Figure 18. Temporal interpretation of HCDG down-sampling nodes 

6.4 Multiplexing nodes 
 
Multiplexing nodes in the HCDG correspond to the default SIGNAL operator. They have 
an inbound control dependency from their clock signifying that the result can be 
computed when the clock is present (or in other words when the Boolean variable 
associated with the clock evaluates to true). The inbound data dependencies are 
labeled by mutually exclusive clocks. The node has control dependencies from these 
clocks as well. In Figure 19 the HCDG of a multiplexing node is shown on the left. 
 
Its temporal interpretation following the defined renaming conventions is shown on the 
right of Figure  . In SIGNAL the temporal interpretation can be represented by: 
 

T(c)  ☞  date_c := T_DEFAULT{default_pars}(date_a, date_b, date_hc, h1, h2, hc) 
 

The signal process “T_DEFAULT” computes the availability date (date_c) for the value 
of node c and expands to the following expression: 
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date_c := max ((date_hc when hc), ((date_a when h1) default (date_b when h2))) + 
+ ∆DEFAULT(default_pars) 

 

The SIGNAL expression (date_hc when hc) gives the date of the occurrence of event hc 
or in other words the date at which the Boolean variable associated with clock hc 
evaluates to true. The SIGNAL expression ((date_a when h1) default (date_b when h2)) 
gives the date of the availability of whichever value (a or b) defines the value of c. 
The above expression simply states that: 

 
the node result date (date_c) is equal to the sum of the delay it takes to perform 
the multiplexing of the input values (∆DEFAULT) and the maximum of the date at 
which the input value is available ((date_a when h1) default (date_b when h2)) 
and the date at which the system can perform the multiplexing operation (date_hc 
when hc). 

 

 

Figure 19. Temporal interpretation of HCDG multiplexing nodes 

6.5 Memory nodes 
 
Two types of memory nodes can be distinguished. The first type corresponds to 
memory nodes that behave as synchronous registers in the sense that their new value 
is available at the next logical instant at which the node is active (their clock is present). 
These nodes are represented by the SIGNAL expression: 

 
za := (a $1) when ha | ha ^= a ^= za 

 
In the left of Figure 20 the HCDG graphical representation of the above expression is 
given. The memory node is represented by the polygonal node. The fact that a, za are 
synchronous is represented by the control dependencies they have from their clock (ha). 

 
 

The second type corresponds to memory nodes that behave as transparent latches, in 
the sense that whenever the node is active and a new value is computed, at that logical 
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instant, this value becomes available at that instant; otherwise the value of the node at 
the previous logical instant is used. These nodes are represented by the SIGNAL 
expression: 

  
c := (a when h1) cell hc | hc ^= c 

 
h1 is the clock indicating the availability of a new value for c and h1 is included in hc. This 
type of memory node, even though it can be derived by using a multiplexing node 
combined with a register memory node, is so frequently used in practice that it is 
represented as particular HCDG node. Its graphical representation in the HCDG is 
given in the left of Figure 21. 

 

 

Figure 20. Temporal interpretation of HCDG memory nodes of register behavior 
 
Memory nodes have two delays associated with them. The first corresponds in reading 
the stored value (∆rd_mem) and the second in storing a value (∆wr_mem). 
 
In SIGNAL the temporal interpretation of the first type of delay nodes can be 
represented by: 
 

T(c)  ☞  date_za := T_DELAY{delay_pars}(date_a, date_ha, ha) 
 

The HCDG representation of the temporal interpretation is given in the right part of 
Figure 20. The signal process “T_DELAY” computes the availability date (date_za) for 
the value of node za and expands to the following expression: 
 

date_za := max ((date_ha when ha), ((date_a $1) + ∆wr_mem(delay_pars))) + 
∆rd_mem(delay_pars) 

 
The SIGNAL expression (date_ha when ha) gives the date of the occurrence of event ha 
or in other words the date at which the Boolean variable associated with clock ha 
evaluates to true. The SIGNAL expression ((date_a $1) + ∆wr_mem(delay_pars))) gives 
the date at which the value of a computed in the previous logical instant is effectively 
stored in the memory corresponding to za. The above expression simply states that: 
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the memorized value date (date_za) is equal to the sum of the delay it takes to 
read the value from memory (∆rd_mem) and the maximum of the date at which the 
value is actually stored ((date_a $1) + ∆wr_mem(delay_pars))) and the date at 
which the system is ready to read the memorized value (date_ha when ha). 

 

In SIGNAL the temporal interpretation of the second type of delay nodes is represented 
by: 

 
T(c)  ☞  date_c := T_CELL{cell_pars}(date_a, date_h1, date_hc, h1, hc) 

 
The HCDG representation of the temporal interpretation is given in the right part of 
Figure 21. The signal process “T_CELL” computes the availability date (date_c) for the 
value of node c and expands to the following expression: 

 
date_c := max ((date_hc when hc), (date_h1 when h1) default (max ((date_h1 when 

h1), ((date_c $1) + ∆wr_mem(delay_pars))) + ∆rd_mem(delay_pars))) + 
∆DEFAULT(default_pars) 

 
What the above expression actually means can be easily derived by considering the 
explanations of the temporal interpretation of multiplexing and register memory nodes. 

 
Figure 21. Temporal interpretation of HCDG memory nodes of transparent 

latch behavior 

 

7 Summary 
 

A generic interpretation model is used to define the temporal interpretation of a SIGNAL 
specification mapped to an implementation. In this interpretation from a SIGNAL 
process modeling the functional behavior of a system, we can obtain another SIGNAL 
process modeling the consumption of time by the specified functionality. If in the initial 
specification implementation refinements (i.e. partitioning-scheduling, component 
choice, etc.) are included then the temporal interpretation may account for them as well. 

 
The date computation model was presented in detail in a step-by-step fashion, 
considering initially an ideal execution platform and moving progressively to more 
realistic execution contexts. The influence of the control-flow introduced by signal down-
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sampling or multiplexing can be easily accounted for. The same goes for partitioning 
and scheduling. Partitioning is modeled by decomposing the initial process into sub-
processes, one for each partition, and introducing interfacing operations for the 
communications across partitions. Scheduling, is modeled by extra dependencies. 
These extra dependencies are taken into account by the date computation model and 
thus computed dates effectively account for the impact of scheduling on the system’s 
performance.  

 
Finally, the choice of specific components, can be accounted for via a set of parameters 
used to get the appropriate delay for operations/macro-operations/tasks, depending on 
the granularity level. These delays are used in the date computations and thus the date 
computation model effectively accounts for the choice of the components making up the 
implementation architecture. 
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