
SIGNAL V4 – INRIA version: Reference Manual
(revised working version)

Loïc BESNARD 1 Thierry GAUTIER2 � Paul LE GUERNIC3

April 1, 2020

1CNRS, Univ. Rennes, INRIA, IRISA, France — e-mail: Loic.Besnard@irisa.fr
2INRIA, Univ. Rennes, CNRS, IRISA, France — e-mail: Thierry.Gautier@inria.fr
3INRIA, Univ. Rennes, CNRS, IRISA, France





Abstract

SIGNAL is a synchronized data flow language designed for programming real-time systems. A SIGNAL

program defines both data and control processing, from a system of equations, the variables of the system

are signals. These equations can be organized as sub-systems (or processes). A signal is a sequence

of values which has a clock associated with; this clock specifies the instants at which the values are

available.

This reference manual defines the syntax and the semantics of the INRIA version of the SIGNAL V4

language. The original official definition of the SIGNAL V4 language was published in French in june

1994. It is available at the following address:

ftp://ftp.irisa.fr/local/signal/publis/research_reports/PI832-94:v4_manual.ps.gz

It was defined together with François DUPONT, from TNI, then Geensoft and Dassault Systèmes1.

Some of the evolutions described in this document have been defined too in cooperation with François

DUPONT. However, the SIGNAL version implemented by TNI in the tools Sildex and RT-Builder is

slightly different in some aspects from the version described here.

The definition of the SIGNAL version described in this manual is subject to evolutions. It is (partly)

implemented in the INRIA POLYCHRONY environment. Consult the following site:

http://polychrony.inria.fr

1Dassault Systèmes. Technopôle Brest-Iroise, 120 rue René Descartes, F-29280 Plouzané, France.

ftp://ftp.irisa.fr/local/signal/publis/research_reports/PI832-94:v4_manual.ps.gz
http://polychrony.inria.fr


2

Main evolutions of this document

From version dated March 1, 2010 to the present one:

• addition of new classes of process models: procedure, which is a special case of action (cf.

section XI–1.3, p. 186), and automaton (cf. section XI–1.6, p. 187), and addition of some

precisions in the definition of functions and nodes;

• addition of guarded processes (cf. section VII–6, p. 140);

• modified description of the tick of a process (cf. section VII–5, p. 138);

• modified definition of the choice process (cf. section VII–7, p. 141);

• addition of a new syntax for clock extraction from a condition (cf. section VI–5, p. 120);

• a distinction is made between external and virtual objects: types (cf. section V–7, p. 86),

constants (cf. section V–8, p. 88), process models (cf. section XI–1, p. 183); virtual objects

may be redefined in a given context (cf. section XII–1, p. 207);

• modified definitions of the after and from counters (cf. section VI–4.5, p. 118).

• addition of some pragmas (cf. section XI–7, p. 198).

From version dated March 7, 2008 to version dated March 1, 2010:

• addition of an assertion process, applying on constraints (cf. section VII–8, p. 145); asser-

tions on a Boolean signal, that were previously described in intrinsic processes, are moved in

this new section and assert becomes a reserved word;

• addition of some pragmas (cf. section XI–7, p. 198).

From version dated June 19, 2006 to version dated March 7, 2008:

• explicit declaration of shared variables for signals defined using partial definitions (cf. sec-

tion V–10, p. 90);

• addition and renaming of some pragmas (cf. section XI–7, p. 198).

From version dated April 8, 2005 to version dated June 19, 2006:

• possibility to have directives in model types (cf. section XI–8, p. 204);



3

• addition of the intrinsic process min_clock (cf. section XIII–1, p. 211);

• addition of intrinsic processes for affine clock relations (cf. section XIII–2, p. 211).

From version dated March 31, 2004 to version dated April 8, 2005:

• more detailed description, with examples, of the intrinsic process assert.

From version dated December 18, 2002 to version dated March 31, 2004:

• precisions related to spatial processing (cf. chapter IX, p. 157) and addition of the predefined

function indices (cf. section IX–10, p. 166).





Table of contents

A INTRODUCTION 13

I Introduction 15
I–1 Main features of the language . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

I–1.1 Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

I–1.2 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

I–1.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

I–1.4 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

I–2 Model of sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

I–3 Static semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

I–3.1 Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

I–3.2 Explicit definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

I–4 Subject of the reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

I–5 Form of the presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

II Lexical units 21
II–1 Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

II–1.1 Sets of characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

II–1.2 Encodings of characters . . . . . . . . . . . . . . . . . . . . . . . . . . 24

II–2 Vocabulary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

II–2.1 Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

II–2.2 Boolean constant values . . . . . . . . . . . . . . . . . . . . . . . . . . 25

II–2.3 Integer constant values . . . . . . . . . . . . . . . . . . . . . . . . . . 26

II–2.4 Real constant values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

II–2.5 Character constant values . . . . . . . . . . . . . . . . . . . . . . . . . 26

II–2.6 String constant value . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

II–2.7 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

II–3 Reserved words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

B THE KERNEL LANGUAGE 29

III Semantic model of traces 31
III–1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

III–2 Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

III–3 Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

III–3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

III–3.2 Partial observation of a trace . . . . . . . . . . . . . . . . . . . . . . . 34

III–3.3 Prefix order on traces . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



6 TABLE OF CONTENTS

III–3.4 Product of traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

III–3.5 Reduced trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

III–4 Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

III–4.1 Equivalence of traces . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

III–4.2 Partial flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

III–4.3 Flow-equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

III–5 Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

III–5.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

III–5.2 Partial observation of a process . . . . . . . . . . . . . . . . . . . . . . 39

III–5.3 Composition of processes . . . . . . . . . . . . . . . . . . . . . . . . . 39

III–5.4 Order on processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

III–6 Semantics of basic SIGNAL terms . . . . . . . . . . . . . . . . . . . . . . . . . . 41

III–6.1 Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

III–6.2 Monochronous processes . . . . . . . . . . . . . . . . . . . . . . . . . 41

2-a Static monochronous processes . . . . . . . . . . . . . . . . . . 42

2-b Dynamic monochronous processes: the delay . . . . . . . . . . . 42

III–6.3 Polychronous processes . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3-a Sub-signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3-b Merging of signals . . . . . . . . . . . . . . . . . . . . . . . . . 43

III–6.4 Composition of processes . . . . . . . . . . . . . . . . . . . . . . . . . 43

III–6.5 Restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

III–7 Composite signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

III–7.1 Tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

III–7.2 Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

III–8 Classes of processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

III–8.1 Iterations of functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

III–8.2 Endochronous processes . . . . . . . . . . . . . . . . . . . . . . . . . 52

III–8.3 Deterministic processes . . . . . . . . . . . . . . . . . . . . . . . . . . 52

III–8.4 Reactive processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

III–9 Composition properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

III–9.1 Asynchronous composition of processes . . . . . . . . . . . . . . . . . 54

III–9.2 Flow-invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

III–9.3 Endo-isochrony . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

III–10 Clock system and implementation relation . . . . . . . . . . . . . . . . . . . . . 55

III–11 Transformation of programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

IV Calculus of synchronizations and dependences 57
IV–1 Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

IV–1.1 Clock homomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

1-a Monochronous definitions . . . . . . . . . . . . . . . . . . . . . 58

1-b Polychronous definitions . . . . . . . . . . . . . . . . . . . . . . 58

1-c Hiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

1-d Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

IV–1.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

IV–1.3 Clock calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3-a Monochronous definitions . . . . . . . . . . . . . . . . . . . . . 59

3-b Polychronous definitions . . . . . . . . . . . . . . . . . . . . . . 59

3-c Hiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



TABLE OF CONTENTS 7

3-d Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3-e Static and dynamic clock calculus . . . . . . . . . . . . . . . . . 60

IV–2 Context clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

IV–3 Dependences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

IV–3.1 Formal definition of dependences . . . . . . . . . . . . . . . . . . . . . 62

IV–3.2 Implicit dependences . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2-a Monochronous definitions . . . . . . . . . . . . . . . . . . . . . 63

2-b Polychronous definitions . . . . . . . . . . . . . . . . . . . . . . 63

IV–3.3 Micro automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3-a Definition of micro automata . . . . . . . . . . . . . . . . . . . . 64

3-b Construction of basic micro automata . . . . . . . . . . . . . . . 65

C THE SIGNALS 69

V Domains of values of the signals 71
V–1 Scalar types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

V–1.1 Synchronization types . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

V–1.2 Integer types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

V–1.3 Real types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

V–1.4 Complex types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

V–1.5 Character type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

V–1.6 String type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

V–2 External types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

V–3 Enumerated types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

V–4 Array types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

V–5 Tuple types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

V–6 Structure of the set of types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

V–6.1 Set of types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

V–6.2 Order on types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

V–6.3 Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3-a Conversions between comparable types . . . . . . . . . . . . . . 83

3-b Conversions toward the domain “Synchronization-type” . . . . . 84

3-c Conversions toward the domain “Integer-type” . . . . . . . . . . 84

3-d Conversions toward the domain “Real-type” . . . . . . . . . . . . 85

3-e Conversions toward the domain “Complex-type” . . . . . . . . . 85

3-f Conversions toward the types character and string . . . . . . . . 85

3-g Conversions of arrays . . . . . . . . . . . . . . . . . . . . . . . . 86

3-h Conversions of tuples . . . . . . . . . . . . . . . . . . . . . . . . 86

V–7 Denotation of types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

V–8 Declarations of constant identifiers . . . . . . . . . . . . . . . . . . . . . . . . . 88

V–9 Declarations of sequence identifiers . . . . . . . . . . . . . . . . . . . . . . . . . 89

V–10 Declarations of shared variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

V–11 Declarations of state variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



8 TABLE OF CONTENTS

VI Expressions on signals 93
VI–1 Systems of equations on signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

VI–1.1 Elementary equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

1-a Equation of definition of a signal . . . . . . . . . . . . . . . . . . 94

1-b Equation of multiple definition of signals . . . . . . . . . . . . . 95

1-c Equation of partial definition of a signal . . . . . . . . . . . . . . 96

1-d Equation of partial definition of a state variable . . . . . . . . . . 97

1-e Equation of partial multiple definition . . . . . . . . . . . . . . . 98

VI–1.2 Invocation of a model . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

2-a Macro-expansion of a model . . . . . . . . . . . . . . . . . . . . 100

2-b Positional macro-expansion of a model . . . . . . . . . . . . . . 101

2-c Call of a model . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

2-d Expressions of type conversion . . . . . . . . . . . . . . . . . . . 102

VI–1.3 Nesting of expressions on signals . . . . . . . . . . . . . . . . . . . . . 104

VI–2 Elementary expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

VI–2.1 Constant expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

VI–2.2 Occurrence of signal or tuple identifier . . . . . . . . . . . . . . . . . . 108

VI–2.3 Occurrence of state variable . . . . . . . . . . . . . . . . . . . . . . . . 108

VI–3 Dynamic expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

VI–3.1 Initialization expression . . . . . . . . . . . . . . . . . . . . . . . . . . 110

VI–3.2 Simple delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

VI–3.3 Sliding window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

VI–3.4 Generalized delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

VI–4 Polychronous expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

VI–4.1 Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

VI–4.2 Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

VI–4.3 Memorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

VI–4.4 Variable clock signal . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

VI–4.5 Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

VI–4.6 Other properties of polychronous expressions . . . . . . . . . . . . . . 119

VI–5 Constraints and expressions on clocks . . . . . . . . . . . . . . . . . . . . . . . . 120

VI–5.1 Expressions on clock signals . . . . . . . . . . . . . . . . . . . . . . . 120

1-a Clock of a signal . . . . . . . . . . . . . . . . . . . . . . . . . . 120

1-b Clock extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 121

1-c Empty clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

VI–5.2 Operators of clock lattice . . . . . . . . . . . . . . . . . . . . . . . . . 122

VI–5.3 Relations on clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

VI–6 Identity equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

VI–7 Boolean synchronous expressions . . . . . . . . . . . . . . . . . . . . . . . . . . 125

VI–7.1 Expressions on Booleans . . . . . . . . . . . . . . . . . . . . . . . . . 126

1-a Negation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

1-b Operators of Boolean lattice . . . . . . . . . . . . . . . . . . . . 126

VI–7.2 Boolean relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

VI–8 Synchronous expressions on numeric signals . . . . . . . . . . . . . . . . . . . . 129

VI–8.1 Binary expressions on numeric signals . . . . . . . . . . . . . . . . . . 130

VI–8.2 Unary operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

VI–9 Synchronous condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132



TABLE OF CONTENTS 9

VII Expressions on processes 135
VII–1 Elementary processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

VII–2 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

VII–3 Hiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

VII–4 Confining with local declarations . . . . . . . . . . . . . . . . . . . . . . . . . . 137

VII–5 Labelled processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

VII–6 Guarded processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

VII–7 Choice processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

VII–8 Assertion processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

VII–8.1 Assertions of clock relations . . . . . . . . . . . . . . . . . . . . . . . 146

VII–8.2 Assertions of identity equations . . . . . . . . . . . . . . . . . . . . . . 147

VII–8.3 Assertion on Boolean signal . . . . . . . . . . . . . . . . . . . . . . . 148

D THE COMPOSITE SIGNALS 151

VIII Tuples of signals 153
VIII–1 Constant expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

VIII–2 Enumeration of tuple elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

VIII–3 Denotation of field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

VIII–4 Destructuration of tuple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

VIII–5 Equation of definition of tuple component . . . . . . . . . . . . . . . . . . . . . 155

IX Spatial processing 157
IX–1 Dimensions of arrays and bounded values . . . . . . . . . . . . . . . . . . . . . . 158

IX–2 Constant expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

IX–3 Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

IX–4 Concatenation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

IX–5 Repetition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

IX–6 Definition of index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

IX–7 Array element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

IX–7.1 Access without recovery . . . . . . . . . . . . . . . . . . . . . . . . . 162

IX–7.2 Access with recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

IX–8 Extraction of sub-array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

IX–9 Array restructuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

IX–10 Generalized indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

IX–11 Extended syntax of equations of definition . . . . . . . . . . . . . . . . . . . . . 167

IX–12 Cartesian product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

IX–13 Iterations of processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

IX–14 Sequential definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

IX–15 Sequential enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

IX–16 Operators on matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

IX–16.1 Transposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

IX–16.2 Matrix products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

2-a Product of matrices . . . . . . . . . . . . . . . . . . . . . . . . . 177

2-b Matrix–vector product . . . . . . . . . . . . . . . . . . . . . . . 177

2-c Vector–matrix product . . . . . . . . . . . . . . . . . . . . . . . 178

2-d Scalar product . . . . . . . . . . . . . . . . . . . . . . . . . . . 178



10 TABLE OF CONTENTS

X Extensions of the operators 179
X–1 Rules of extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

X–2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

E THE MODULARITY 181

XI Models of processes 183
XI–1 Classes of process models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

XI–1.1 Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

XI–1.2 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

XI–1.3 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

XI–1.4 Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

XI–1.5 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

XI–1.6 Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

XI–2 Local declarations of a process model . . . . . . . . . . . . . . . . . . . . . . . . 191

XI–3 Declarations of labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

XI–4 References to signals with extended visibility . . . . . . . . . . . . . . . . . . . . 192

XI–5 Interface of a model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

XI–6 Graph of a model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

XI–6.1 Specification of properties . . . . . . . . . . . . . . . . . . . . . . . . 196

XI–6.2 Dependences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

XI–7 Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

XI–8 Models as types and parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

XII Modules 207
XII–1 Declaration and use of modules . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

XIII Intrinsic processes 211
XIII–1 Minimal clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

XIII–2 Affine transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

XIII–3 “Left true” process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

XIII–4 Mathematical functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

XIII–5 Complex functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

XIII–6 Input-output functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

F ANNEX 217

XIV Grammar of the SIGNAL language 219
XIV–1 Lexical units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

XIV–1.1 Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

XIV–1.2 Vocabulary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

XIV–2 Domains of values of the signals . . . . . . . . . . . . . . . . . . . . . . . . . . 223

XIV–2.1 Scalar types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

XIV–2.2 External types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

XIV–2.3 Enumerated types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

XIV–2.4 Array types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

XIV–2.5 Tuple types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225



TABLE OF CONTENTS 11

XIV–2.6 Denotation of types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

XIV–2.7 Declarations of constant identifiers . . . . . . . . . . . . . . . . . . . . 226

XIV–2.8 Declarations of sequence identifiers . . . . . . . . . . . . . . . . . . . 226

XIV–2.9 Declarations of shared variables . . . . . . . . . . . . . . . . . . . . . 227

XIV–2.10Declarations of state variables . . . . . . . . . . . . . . . . . . . . . . 227

XIV–3 Expressions on signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

XIV–3.1 Systems of equations on signals . . . . . . . . . . . . . . . . . . . . . 227

XIV–3.2 Elementary expressions . . . . . . . . . . . . . . . . . . . . . . . . . . 229

XIV–3.3 Dynamic expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

XIV–3.4 Polychronous expressions . . . . . . . . . . . . . . . . . . . . . . . . . 231

XIV–3.5 Constraints and expressions on clocks . . . . . . . . . . . . . . . . . . 232

XIV–3.6 Constraints on signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

XIV–3.7 Boolean synchronous expressions . . . . . . . . . . . . . . . . . . . . 234

XIV–3.8 Synchronous expressions on numeric signals . . . . . . . . . . . . . . . 234

XIV–3.9 Synchronous condition . . . . . . . . . . . . . . . . . . . . . . . . . . 235

XIV–4 Expressions on processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

XIV–4.1 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

XIV–4.2 Hiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

XIV–4.3 Confining with local declarations . . . . . . . . . . . . . . . . . . . . . 236

XIV–4.4 Labelled processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

XIV–4.5 Guarded processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

XIV–4.6 Choice processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

XIV–4.7 Assertion processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

XIV–5 Tuples of signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

XIV–5.1 Enumeration of tuple elements . . . . . . . . . . . . . . . . . . . . . . 238

XIV–5.2 Denotation of field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

XIV–5.3 Equation of definition of tuple component . . . . . . . . . . . . . . . . 239

XIV–6 Spatial processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

XIV–6.1 Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

XIV–6.2 Concatenation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

XIV–6.3 Repetition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

XIV–6.4 Definition of index . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

XIV–6.5 Array element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

XIV–6.6 Extraction of sub-array . . . . . . . . . . . . . . . . . . . . . . . . . . 241

XIV–6.7 Array restructuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

XIV–6.8 Extended syntax of equations of definition . . . . . . . . . . . . . . . . 242

XIV–6.9 Cartesian product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

XIV–6.10Iterations of processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

XIV–6.11Sequential definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

XIV–6.12Sequential enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . 243

XIV–6.13Operators on matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

XIV–7 Models of processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

XIV–7.1 Classes of process models . . . . . . . . . . . . . . . . . . . . . . . . . 244

XIV–7.2 Local declarations of a process model . . . . . . . . . . . . . . . . . . 245

XIV–7.3 Declarations of labels . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

XIV–7.4 References to signals with extended visibility . . . . . . . . . . . . . . 246

XIV–7.5 Interface of a model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

XIV–7.6 Graph of a model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247



12 TABLE OF CONTENTS

XIV–7.7 Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

XIV–7.8 Models as types and parameters . . . . . . . . . . . . . . . . . . . . . 248

XIV–8 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

XIV–8.1 Declaration and use of modules . . . . . . . . . . . . . . . . . . . . . . 249

List of figures 251

List of tables 253

Index 255



Part A

INTRODUCTION





Chapter I

Introduction

The SIGNAL language has been defined at INRIA/IRISA with the collaboration and support from the

CNET (now France Télécom R&D and then Orange Labs). This reference manual defines the syntax

and semantics of the INRIA version of the language, which is an evolution of the V4 version. The

V4 version resulted from a synthesis of experiments made by IRISA and by the TNI company. An

environment of the SIGNAL language can be built in a style and in a way it is not the objective of this

manual to define. However, such an environment will have to provide functions for reading and writing

programs in the form specified in this manual; the translation scheme will give the semantics of the texts

built in this environment.

I–1 Main features of the language
A program expressed in the SIGNAL language defines some data and control processing from a system

of equations, the variables of which are identifiers of signals. These equations can be organized in sub-

systems (or processes). A model of process is a sub-system which may have several using contexts; for

that purpose, a model is designated by an identifier. It can be provided with parameters specifying data

types, initialization values, array sizes, etc. In addition, sets of declarations can be organized in modules.

I–1.1 Signals

A signal is a sequence of values, with which a clock is associated.

1. All the values of a signal belong to a same sub-domain of a domain of values, designated by their

common type. This type can be:

• predefined (the Booleans, sub-domains of the Integers, sub-domains of the Reals, sub-domains

of the Complex. . . ),

• defined in the program (Arrays, Tuples),

• or referenced in the program but known only by the functions that handle it (Externals).

2. The clock of a signal allows to define, relatively to a totally ordered set containing at least as much

elements as the sequence of values of this signal, the subset of instants at which the signal has a

value. A pure signal, the value of which belongs to the singleton event , can be associated with

each signal. This pure signal is present exactly at the presence instants of the signal; the event

type is a sub-domain of the Booleans. By extension, this pure signal will be called clock. A pure

signal is its own clock. In a process, the clock of a signal is the representative of the equivalence



16 INTRODUCTION

class of the signals with which this signal is synchronous (synchronous signals have their values at

the same instants).

3. These values are expressed in equations of definition and in constraints.

I–1.2 Events
A valuation associates, at a logical instant of the program (transition of the automaton), a value with a

variable.

An event is a set of simultaneous valuations defining a transition of the automaton. In an event, a

variable may have no associated value: it will be said that the corresponding signal is absent and its

“value” will be written ⊥. An event contains at least one valuation.

Determining the presence of a signal (i.e., a valuation) in an event results from the solving of a system

of equations in F3, the field of integers modulo 3.

The value associated with a variable in an event results from the evaluation of its expression of

definition (thus it should not be implicit: circular definitions of non Boolean signals are not allowed).

I–1.3 Models
A model associates with an identifier a system of equations with local variables, sub-models and external

variables (free variables). The parameters of a model are constants (size of arrays, initial values of

signals, etc.).

A model may be defined outside the program; in that case, it is visible only through its interface.

Calling a model defined in a program is equivalent to replacing this call by the associated system of

equations (macro-substitution).

Invoking a model defined outside the program can produce side effects on the context in which the

program is executed; these effects can be directly or indirectly perceived by the program and they can

affect the set of instants or the set of values of one or more interface signals. Such a model will be said

non functional (for example a random “fonction” is such a non functional model).

I–1.4 Modules
The notion of module allows to describe an application in a modular way. In particular, it allows the

definition and use of libraries written in SIGNAL or external ones, and constitutes an access interface to

external objects.

I–2 Model of sequences
A program expressed in the SIGNAL language establishes a relation between the sequences that constitute

its external signals. The set of programs of the SIGNAL language is a subset of the space of subsets of

sequences (part B, chapter III).

I–3 Static semantics
The relations on sequences presented in the formal model describe a set of programs among them are

only considered as legal programs those for which the ordering of each set of instants is in accordance



I–4. SUBJECT OF THE REFERENCE 17

with the ordering induced by the dependencies (causality principle), and which do not contain implicit

definitions of values of non Boolean signals.

I–3.1 Causality
A real-time program has to respect the causality principle: according to this principle, the value of an

event at some instant t cannot depend on the value of a future event. The respect of this principle is

obtained in SIGNAL by the implicit handling of time: the user has a set of terms that allow him/her to

make reference to passed or current values of a signal, not to future ones.

I–3.2 Explicit definitions
The synchronous hypothesis on which is based the definition of the SIGNAL language allows to develop

a calculus on the time considered as a pre-order in a discrete set.

I–4 Subject of the reference
This manual defines the syntax, the semantics, and formal resolutions applied by a compiler to a program

expressed in the SIGNAL language. The SIGNAL language has four classes of syntactic structures:

1. The structures of the kernel language for which a formal definition is given in the model of

sequences. The kernel language contains a minimal set of operators on sequences of signals of type

event and boolean on which the temporal structure of the program is calculated; it contains also a

mechanism allowing to designate signals of external types and non interpreted functions applying

to these signals. Removing anyone of these structures would strictly reduce the expressiveness of

the language.

2. The structures of the minimal language that can be subdivided in three sub-classes:

(a) the non Boolean types and the associated operators, which allow to write a program com-

pletely in the SIGNAL language; the open vocation of the SIGNAL language is neverthe-
less clearly asserted: it is possible to use external functions/processes, defined in another

language, or even realized by some hardware component; this is even advised when specific

properties exist, that are not handled by the formal calculi made possible in the SIGNAL

language;

(b) the syntactic structures providing to the language an extensibility necessary for its special-

ization for a particular application domain, and for its opening toward other environments or

languages;

(c) the operators and constructors of general use providing a programming style that favours the

development of associated methodologies and tools.

3. The standard (or intrinsic) process models which form a library common to all the compilers of

the SIGNAL language;

4. The specific process models which constitute specific extensions to the standard library.

This manual describes the structures of the kernel language and of the minimal language. It also

defines a set of standard intrinsic processes. Finally, it also contains the description of non-standardized

information (in the form of “directives”), used in the version of the language available in the INRIA

POLYCHRONY environment.



18 INTRODUCTION

I–5 Form of the presentation
Three classes of terms are distinguished for the description of the syntax of the language:

• the vocabulary of the lexical level: each one of the terminals designates an enumerated set of

indivisible sequences of characters;

• the lexical structures: the Terminals of the syntactic level are defined, at a lexical level, by rules

in a grammar the vocabulary of which is the union of the terminals sets; no implicit character

(separators, for instance) is authorized in the terms constructed following these rules;

• the syntactic structures: the NON-TERMINALS are defined, at a syntactic level, by rules in a

grammar the vocabulary of which is composed of the Terminals; any number of separators can be

inserted between two Terminals.

Every unit of the language is introduced and then described, individually or by category, with the

help of all or part of the following items. Generally, a generic term representing the unit is given:

EXPRESSION(E1 , E2, . . . )

where E1, E2, . . . are formal arguments of the generic term. This representative is used to define the

general properties of the unit in the rubrics that describe them.

The grammar gives the context-free syntax of the considered structure in one of the following forms:

1. Context-free syntax

STRUCTURE ::=

DERIVATION1

| DERIVATION2

| . . .

Terminal ::=

DERIVATION1

| DERIVATION2

| . . .

terminal ::=

SET1

| SET2

| . . .

DERIVATION1, DERIVATION2 are rewritings of the variable STRUCTURE (respectively, of the

variable Terminal). SET1, SET2 are rewritings of the variable terminal; they are Derivations
reduced to one single element (cf. below).

Each DERIVATION is a sequence of elements, each of them can be:

• a set of characters, written in this typography (lexical level only),

• a terminal symbol (of the syntactic grammar) composed of letters, in this typography, for

which only the lower case form is explicited in the grammar;

• a terminal symbol (composed of other acceptable characters), in this typography,

• a Terminal, in this typography,

• a syntactic STRUCTURE, in this typography (syntactic level only),



I–5. FORM OF THE PRESENTATION 19

• a non empty sequence of elements in their respective typography, with or without comment
in this typography, respectively in the following forms:

– element { symbol element }∗

– { element }+

• an optional element, denoted [ element ],

• a difference of sets, denoted { element1 \ element2 }, allowing to derive the texts of element1

that are not texts of element2.

The syntactic structures may appear either in the plural, or in the singular, following the con-

text. They may be completed by a contextual information, in this typography. For example, in

S-EXPR-ARITHMETIC, “-ARITHMETIC ” is only a contextual information for the syntactic

structure S-EXPR. Finally, several derivations may be placed on a same line.

2. Profile
This item describes the sets of input and output signals of the expression. This description is done

with the notations ? (E) that designates the list of input signals (or ports) of E, and ! (E) that

designates the list of output signals (or ports) of E. The notation ? {a1, . . . , an} (respectively,

! {a1, . . . , an}) designates explicitly the set of input ports (respectively, output ports) a1, . . . , an.

Finally, the set operations A ∩B, A ∪B and A−B (the latter to designate the set of elements of

A that are not in B).

3. Types
This item describes the properties of the types of the arguments using equations on the types of

value of the signals. The notation τ (E) is used to designate the type (domain of value) of the

expression E. Given a process model (cf. part E, chapter XI, p. 183 et seq.) with name P , the

notations τ (?P ) and τ (!P ) are used to designate respectively the type of the tuple formed by the

list of the inputs declared in the interface of the model, and the type of the tuple formed by the list

of the outputs declared in this interface (cf. part E, section XI–5, p. 193 et seq.).

(a) EQUATION

4. Semantics
When the term cannot be redefined in the SIGNAL language, its semantics is given in the space of

equations on sequences.

5. Definition in SIGNAL

TERM(E1, E2, . . . )

is a generic term of the SIGNAL language, to which is equal, by definition, the representative of

the current unit.

6. Clocks
This unit describes the synchronization properties of the arguments (values of Booleans and clocks)

with a list of equations in the space of synchronization. The notation ω(E) is used to designate

the clock of the expression E and the notation ~ to designate the clock of the constant expressions,

or more generally, the clock of the context. An equation has generally the following form:

(a) ω(E1) = ω(E2)



20 INTRODUCTION

7. Graph
This item defines the conditional dependencies between the arguments with a list of triples:

(a) E1
E3−−→ E2

The signal E1 precedes the signal E2 at the clock which is the product of the clock of E1, the clock

of E2 and the clock representing the instants at which the Boolean signal E3 has the value true:

at this clock, E2 cannot be produced before E1.

8. Properties
This item gives a list of properties of the construction (for example, associativity, distributivity,

etc.).

(a) PROPERTY

9. Examples

(a) One or more Examples in the SIGNAL language illustrate the use of the unit.



Chapter II

Lexical units

The text of a program of the SIGNAL language is composed of words of the vocabulary built on a set of

characters.

II–1 Characters
The characters used in the SIGNAL language are described in this section (Character). They can be

designated by an encoding which is usable only in the comments, the character or string constants, and

the directives, as precised in the syntax.

1. Context-free syntax

Character ::= character | CharacterCode

II–1.1 Sets of characters
The set of characters (denoted character) used in the SIGNAL language contains the following subsets:

1. Context-free syntax

character ::= name-char | mark | delimitor | separator | other-character

(i) The set name-char of characters used to build identifiers:

(a) Context-free syntax

name-char ::= letter-char | numeral-char | _

letter-char ::=

upper-case-letter-char | lower-case-letter-char | other-letter-char

upper-case-letter-char ::=

A | B | C | D | E | F | G | H | I

| J | K | L | M | N | O | P | Q | R

| S | T | U | V | W | X | Y | Z



22 LEXICAL UNITS

lower-case-letter-char ::=

a | b | c | d | e | f | g | h | i

| j | k | l | m | n | o | p | q | r

| s | t | u | v | w | x | y | z

other-letter-char ::=

À | Á | Â | Ã | Ä | Å | Æ | Ç | È

| É | Ê | Ë | Ì | Í | Î | Ï | Ð | Ñ

| Ò | Ó | Ô | Õ | Ö | Ø | Ù | Ú | Û

| Ü | Ý | Þ | ß | à | á | â | ã | ä

| å | æ | ç | è | é | ê | ë | ì | í

| î | ï | ð | ñ | ò | ó | ô | õ | ö

| ø | ù | ú | û | ü | ý | þ | ÿ

numeral-char ::=

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Excepted for the reserved words of the language (keywords), the upper case and lower case forms

of a same letter (letter-char) are distinguished. The reserved words should appear totally in lower

case or totally in upper case.

(ii) The set mark composed of the distinctive characters of the lexical units, and the set of characters

used in operator symbols:

(a) Context-free syntax



II–1. CHARACTERS 23

mark ::= . separating character in real constants

and distinctive character of matrix products

| ’ start and end of character constants

| " start and end of strings

| % start and end of comments

| : character used in the definition symbol

| = equality sign

| < inferior sign

| > superior sign and end of the dependency arrow

| + positive and additive sign

| − negative and subtractive sign, and dash of the dependency arrow

| ∗ product sign

| / division sign, mark of difference, and sign of confining

| @ construction of complex

| $ delay sign

| ̂ clock sign

| # exclusion sign

| | composition symbol

(iii) The delimitors are terminals of the syntactic level built with other characters than letters and nu-

merals:

(a) Context-free syntax

delimitor ::= ( | ) parenthesizing, tuple delimitors

| { | } parameter delimitors, dependencies parenthesizing

| [ | ] array delimitors

| ? input delimitor

| ! output delimitor

| , separation of units

| ; end of units

(iv) The separators given here in their ASCII hexadecimal code (the space character and the long-
separators are distinguished) :

(a) Context-free syntax

separator ::= \x20 space

| long-separator

long-separator ::= \x9 horizontal tabulation

| \xA new line

| \xC new page

| \xD carriage return



24 LEXICAL UNITS

(v) The other printable characters, usable in the comments, the directives and the denotations of con-

stants. This subset, other-character, is not defined by the manual.

II–1.2 Encodings of characters
All the characters (printable or not) can be designated by an encoded form (CharacterCode) in the

comments, the character constants, the string constants and the directives. The authorized codes are

those of the norm ANSI of the language C (possibly extended with codes for other characters), plus

the escape character \% used in the comments. An encoded character is either a special character

(escape-code), or a character encoded in octal form (OctalCode), or a character encoded in hexadecimal

form (HexadecimalCode). The numeric codes (OctalCode and HexadecimalCode) contain at most the

number of digits necessary for the encoding of 256 characters; the manual does not define the use of

unused codes.

1. Context-free syntax

CharacterCode ::= OctalCode | HexadecimalCode
| escape-code

OctalCode ::= \ octal-char [ octal-char [ octal-char ] ]

octal-char ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

HexadecimalCode ::= \x hexadecimal-char [ hexadecimal-char ]

hexadecimal-char ::= numeral-char
| A | B | C | D | E | F

| a | b | c | d | e | f

escape-code ::= \a audible signal

| \b backspace

| \f form feed

| \n newline

| \r carriage return

| \t horizontal tab

| \v vertical tab

| \\ backslash

| \" double quote

| \’ single quote

| \? question mark

| \% percent



II–2. VOCABULARY 25

II–2 Vocabulary
A text of the SIGNAL language is a sequence of elements of the Terminal vocabulary (cf. section I–5,

p. 18) of the SIGNAL language. Between these elements, separators can appear in any number (possibly

zero). A Terminal of the SIGNAL language is the longest sequence of contiguous terminals and a

terminal is the longest sequence of contiguous characters that can be formed by a left to right analysis

respecting the rules described in this chapter. A terminal can contain a distinctive mark; the next mark is

not a character (it is used as escape mark):

1. Context-free syntax

prefix-mark ::= \ start of CharacterCode

II–2.1 Names

A name allows to designate a directive, a signal (or a group of signals), a parameter, a constant, a type, a

model or a module, in a context composed of a set of declarations. Two occurrences of a same name in

distinct contexts can designate distinct objects.

A Name is a lexical unit formed by characters among the set composed of letter-chars plus the

character _ plus numeral-chars; a Name cannot start with a numeral-char. A Name cannot be a

reserved word. All the characters of a Name are significant.

1. Context-free syntax

Name ::= begin-name-char [ { name-char }+ ]

begin-name-char ::= { name-char \ numeral-char }

2. Examples

(a) a and A are distinct Names.

(b) X_25, The_password_12Xs3 are Names.

In this document we will sometimes designate a Name from a particular category X by Name-X.

II–2.2 Boolean constant values
A Boolean constant value is represented by true or false which are reserved words (hence they can

also appear under their upper case forms, TRUE and FALSE ).

1. Context-free syntax

Boolean-cst ::= true | false



26 LEXICAL UNITS

II–2.3 Integer constant values
An Integer-cst is a positive or zero integer in decimal representation composed of a sequence of numer-

als.

1. Context-free syntax

Integer-cst ::= { numeral-char }+

II–2.4 Real constant values

A Real-cst denotes the approximate value of a real number. There are two sets of reals: the simple

precision reals and the double precision ones that contain the former. The Real-csts are words of the

lexical level so they cannot contain separators.

1. Context-free syntax

Real-cst ::= Simple-precision-real-cst
| Double-precision-real-cst

Simple-precision-real-cst ::=

Integer-cst Simple-precision-exponent
| Integer-cst . Integer-cst [ Simple-precision-exponent ]

(a Simple-precision-real-cst may have an exponent)

Double-precision-real-cst ::=

Integer-cst Double-precision-exponent
| Integer-cst . Integer-cst Double-precision-exponent

(a Double-precision-real-cst must have an exponent)

Simple-precision-exponent ::= e Relative-cst | E Relative-cst

Double-precision-exponent ::= d Relative-cst | D Relative-cst

Relative-cst ::= Integer-cst
| + Integer-cst

| − Integer-cst

2. Examples

(a) The notations contained in the following tables are simple precision representations respec-

tively equivalent to the unit value and to the centesimal part of the unit.

1e0 1e+0 10e-1

1.0 0.1e1 0.1e+1 10.0e-1

1e-2

0.01 0.001e1 0.001e+1 1.0e-2

II–2.5 Character constant values

A Character-cst is formed of a character or a code of character surrounded by two occurrences of the

character ’ .



II–3. RESERVED WORDS 27

1. Context-free syntax

Character-cst ::= ’ Character-cstCharacter ’

Character-cstCharacter ::= { Character \ character-spec-char }

character-spec-char ::= ’
| long-separator

II–2.6 String constant value
A String-cst value is composed of a list of sequences of characters surrounded by two occurrences of

the character " (list of substrings).

1. Context-free syntax

String-cst ::= { " [ { String-cstCharacter }+ ] " }+

String-cstCharacter ::= { Character \ string-spec-char }

string-spec-char ::= "
| long-separator

II–2.7 Comments
A comment may appear between any two lexical units and may replace a separator. It is composed of a

seuqence of characters surrounded by two occurrences of the character % .

1. Context-free syntax

Comment ::= % [ { CommentCharacter }+ ] %

CommentCharacter ::= { Character \ comment-spec-char }

comment-spec-char ::= %

II–3 Reserved words
A reserved word must be either totally in lower case or totally in upper case. In this manual, only the

lower case form (in general) appears explicitly in the grammar rules. It can be replaced, for each reserved

word, by the corresponding upper case form.

The reserved words used by the SIGNAL language are the following ones:

1. Context-free syntax



28 LEXICAL UNITS

signalkw ::= action | after | and | array | assert

| boolean | bundle

| case | cell | char | complex | constant | count

| dcomplex | default | defaultvalue | deterministic | dreal

| else | end | enum | event | external

| false | from | function

| if | in | init | integer | iterate

| label | long

| module | modulo

| next | node | not

| of | on | operator | or

| pragmas | private | process

| real | ref

| safe | shared | short | spec | statevar | step | string | struct

| then | to | tr | true | type

| unsafe | use

| var

| when | where | window | with

| xor

Note: operator is currently hidden in the syntax of the language (cf. part C, section XI–7, p. 198 et

seq.).



Part B

THE KERNEL LANGUAGE





Chapter III

Semantic model of traces

III–1 Syntax
We consider:

• A = {a, a1, . . . , an, b, . . . }
a denumerable set of typed variables (or ports);

• F = {f , f1, . . . , g, . . . }
a finite set of symbols of typed functions;

• T = {event, boolean, . . . , t, . . . }
a finite set of basic types (sets of values);

• TT =
⋃

n∈IIN
[0..n] → T T

the set of array types,

• SS =
⋃

B∈A

B → T T

the set of tuple types,

• T T = T ∪ TT ∪ SS
the set of types.

• the symbols default, when, $.

We define the following sets of terms, defining the basic syntax of the SIGNAL language:

• GD = {t a}
the set of declarations (association of a type with a variable);

• GSS = {an+1 :=: f (a1, . . . , an)}
the set of static synchronous generators (elementary processes), among them the set of generators

on arrays and tuples are distinguished;

• GDS = {a2 :=: a1 $ init a0}
where a0 is a constant with same domain as a1, the set of dynamic synchronous generators (ele-

mentary processes);



32 SEMANTIC MODEL OF TRACES

• GE = {a3 :=: a1 when a2} the set of extraction generators (elementary processes);

• GM = {a3 :=: a1 default a2}
the set of merge generators (elementary processes);

• recursively the set PROC of syntactic processes as the least set containing:

– G = GD ∪ GSS ∪ GDS ∪ GE ∪ GM
the set of generators,

– PC = {P1 | P2 where P1 and P2 belong to PROC}
(composition process),

– PR = {P1 / a (denoted also P1 where a) where P1 belongs to PROC and a
belongs to A}
(restriction process).

III–2 Configurations
Let IID be the set of values that can be taken by the variables, a configuration is an occurrence of the

simultaneous valuation of distinct variables (synchronous commmunication). The values respect the

properties resulting from the interpretation of the terms which are used. In IID, the set of Boolean values,

IIB={true, false}, is distinguished.

For a variable ai ∈ A, and a subset Aj of variables in A, we consider:

IIDai the domain of values (Booleans, integers, reals. . . ) that may be taken by ai.

IIDAj
=

⋃

ai ∈ Aj

IIDai

IIDA = IID

The symbol ⊥ (⊥ 6∈ IID) is introduced to designate the absence of valuation of a variable. Then we

denote:

IID⊥ = IID ∪ {⊥}

IID⊥
Ai

= IIDAi
∪ {⊥}

Considering A1 a non empty subset of A, we call configuration on A1 any application

e : A1 → IID⊥
A1

• e(a) = ⊥ indicates that a has no value for the configuration e.

• e(a) = v indicates, for v ∈ IIDa, that a takes the value v for the configuration e.

• e(A1) = {x/a ∈ A1, e(a) = x}

The set of configurations on A1 (A1 → IID⊥
A1

) is denoted E∗
A1

.

By convention, 1e is the single configuration defined on the empty set of ports ∅ (it is called unit

configuration).

The absent configuration on A1 (A1 → {⊥}) is denoted ⊥e(A1).



III–3. TRACES 33

The set

E∗
⊆A1

=
⋃

Ai⊆A1

E∗
Ai

is the set of all configurations on the subsets of A1.

It is defined a special configuration on A, denoted ♯, which is called blocking configuration (or

impossible configuration).

The following notations are used:

EA1
= E∗

A1
∪ {♯}

E⊆A1
= E∗

⊆A1
∪ {♯}

Partial observation of a configuration

Let A1 ⊆ A and A2 ⊆ A two subsets of A and e ∈ EA1
some configuration on A1.

The restriction of e on A2, or partial observation of e on A2, is denoted e|A2
:

e|A2
∈ EA1∩A2

It is defined as follows:

• ((A1 ∩A2 6= ∅)
∧

(e 6= ♯)) ⇒ ( (∀a ∈ A1 ∩A2) ( (e|A2
)(a) = e(a) ) )

• ((A1 ∩A2 6= ∅)
∧

(e = ♯)) ⇒ (e|A2
= ♯)

• (A1 ∩A2 = ∅) ⇒ (e|A2
= e|∅ = 1e)

Product of configurations

Let e1 ∈ EA1
and e2 ∈ EA2

two configurations.

Their product is denoted e1·e2:

e = e1·e2 ∈ EA1∪A2

It is defined as follows:

• (e = ♯) ⇔ (((e1 = ♯)
∨

(e2 = ♯))
∨

(e1|A1∩A2
6= e2|A1∩A2

))

• (e 6= ♯) ⇒ ((e|A1
= e1)

∧
(e|A2

= e2))

Corollary 1 (E⊆A1
,·,1e) is a commutative monoid.

The product operator · is idempotent and ♯ is an absorbent (nilpotent) element.

III–3 Traces
A trace is a sequence of configurations (sequence of observations) without the blocking configuration.

For any subset A1 of A, we consider the following definition of the set TA1
of traces on A1.



34 SEMANTIC MODEL OF TRACES

III–3.1 Definition
T ∗
A1

is the set of non empty sequences of configurations on A1, composed of:

• finite sequences: they are the set of applications IIN<k → E∗
A1

where IIN<k represents the set of

finite initial segments of IIN (set of natural integers, including 0),

• infinite sequences: they are the set of applications IIN → E∗
A1

.

The set

T ∗
⊆A1

=
⋃

Ai⊆A1

T ∗
Ai

is the set of all non empty sequences of configurations on the subsets of A1.

The empty sequence of configurations is denoted 0T .

A trace on A1 is either a sequence of T ∗
A1

or the empty sequence. The set of traces on A1 is:

TA1
= T ∗

A1
∪ {0T }

The set of traces on subsets of A1 is:

T⊆A1
= T ∗

⊆A1
∪ {0T }

The set of traces defined on A, denoted T, is the union of the sets TA1
for all subsets A1 of A.

The single infinite sequence defined on T ∗
∅ is denoted 1T and is called unit trace. It is equal to the

infinite repetition (1e)ω of the unit configuration 1e.

The absent trace on A1 (IIN → {⊥e(A1)}: the infinite sequence formed by the infinite repetition of

⊥e(A1)) is denoted ⊥A1
.

Notations

The smallest set of variables of A on which a given trace T is defined (definition domain of the

configurations composing T ) is referred to as var(T ). By convention, var(0T ) = A.

For a trace T and t an integer, we will note frequently Tt the configuration T (t) of T at the instant t,
and we will note sometimes at the value of a variable a for this configuration.

III–3.2 Partial observation of a trace
Let A1 ⊆ A and A2 ⊆ A two subsets of A and T ∈ TA1

some trace on A1.

The restriction of T on A2, or partial observation of T on A2, is denoted T‖A2
.

If A1 ∩A2 6= ∅, T‖A2
is the trace T2 such that:

{
dom(T2) = dom(T )
∀t ∈ dom(T ) T2(t) = T (t)|A2

If A1 ∩A2 = ∅, T‖A2
= T‖∅ = 1T .

If A2 6= ∅, 0T ‖A2
= 0T .



III–3. TRACES 35

III–3.3 Prefix order on traces
The following relation is defined on traces:

T1 ∠ T2 if and only if:

{
dom(T1) ⊆ dom(T2)
(∀t) ( (t ∈ dom(T1)) ⇒ (T1(t) = T2(t)) )

It is said that T1 is a prefix of T2.

Corollary 2

• ∠ is an order relation on T, 0T is the minimum for this order.

• The set of prefixes of a trace is a chain.

• Any subset of prefixes of a trace has an upper bound.

The notation T≤t represents the prefix of a trace T such that t ∈ dom(T≤t) and t+ 1 6∈ dom(T≤t).

III–3.4 Product of traces

The product T = T1·T2 of two traces T1 and T2 defined respectively on A1 and A2 is the greatest trace

for the order relation ∠ such that:

(T‖A1
∠ T1)

∧
(T‖A2

∠ T2)

(it is defined on A1 ∪A2 and is obtained by termwise products of respective events).

Corollary 3 (T⊆A1
,·,1T ) is a commutative monoid.

The product operator · is idempotent and 0T is an absorbent (nilpotent) element.

III–3.5 Reduced trace
A trace T1 is said to be a sub-trace of a non empty trace T2 if and only if there exists an infinite sequence

f1, strictly increasing (i.e., injective and increasing) on IIN (such a sequence is called expansion function

on T1), such that:

T2 ◦ f1|dom(T1) = T1

(the notation f|X designates the restriction of a given function f on the domain X).

Remarks

• 0T is a sub-trace of any trace;

• any prefix T1 of T2 is a sub-trace of T2.

Corollary 4 The sub-trace relation is a preorder (reflexive and transitive).

The sub-trace relation is not antisymmetric, as shown by the following sequences: (αβ)ω and (βα)ω

(with f1(n) = n+ 1).



36 SEMANTIC MODEL OF TRACES

Definition A trace T1 is said to be a reduced trace of a non empty trace T2 if and only if T1 is a

sub-trace of T2 and:

• (dom(T1) is finite) ⇒ (dom(T2) is finite)

• for any expansion function f1 on T1 such that T2 ◦ f1|dom(T1) = T1, then:

(∀t ∈ (dom(T2)) \ f1(dom(T1))) ( T2(t) =⊥e(A2) )

Proposition The relation “is a reduced trace of” is an order relation.

“T1 is a reduced trace of T2” is denoted:

T1 ⊆↓ T2

Proof of antisymmetry: T1 ⊆↓ T2 and T2 ⊆↓ T1

dom(T2) = dom(T1)
If dom(T1) is finite then the single possible expansion function on T1 is the identity.

For any trace T , T is a prefix of T1 if and only if it is a prefix of T2 is proved by recurrence on the

length of T .

Then the existence of an upper bound to any subset of prefixes of a trace proves the equality. ✷

For a given expansion function f and a trace T1, there exists a least trace (for the prefix order ∠), T2,

such that T1 ⊆↓ T2.

We denote by ↑ the function that, to an expansion function f and a trace T , associates this least trace

f ↑ T (example on figure B–III.1).

Then we have, by definition:

T ⊆↓ f ↑ T

T

e1

e1

f1 ↑ T

e2

e2

e3 e4

e3 ⊥⊥⊥⊥⊥

⊥

Figure B–III.1: f1 ↑ T with f1(0) = 0, f1(1) = 3, f1(2) = 4, f1(3) = 5. . .

Property:

f2 ↑ (f1 ↑ T ) = (f2 ◦ f1) ↑ T

For any f , we have also f ↑ 0T = 0T .

By convention: f ↑ 1T = 1T .



III–4. FLOWS 37

III–4 Flows
Definition A flow is a trace which is minimal for the relation ⊆↓.

Comment: A flow F on A1 is a trace that does not contain the absent configuration on A1 between

two configurations which have valued variables.

Corollary 5

• (F is a flow and F1 ∠ F ) ⇒ (F1 is a flow);

• 0T is a flow;

• 1T is a flow;

• if F is a finite flow on A1, then (F ⊥e(A1)
ω
) is a flow;

• ⊥A1
is a flow.

III–4.1 Equivalence of traces
Definition Two traces T1 and T2 are said to be equivalent modulo ⊥ (this is denoted: T1 ≡↓ T2) if

and only if there exists some trace T such that T ⊆↓ T1 and T ⊆↓ T2.

This relation is indeed an equivalence relation.

Property For any trace T , the equivalence class of T modulo ⊥ is a lattice.

Proof

• By definition, every pair T1, T2 in an equivalence class has a lower bound.

• Every pair T1, T2 in an equivalence class has an upper bound:

Let f1, f2 such that:

T1 ◦ f1 = min(T1, T2)

T2 ◦ f2 = min(T1, T2)

The upper bound is the trace

max(T1, T2) = f ′
1 ↑ T1 = f ′

2 ↑ T2

with f ′
1, f ′

2 defined as follows:

∀t, if ∃s, f1(s) = t then f ′
1(s) = max(t, f2(s)),

if s 6∈ f1(dom(min(T1, T2))) then if s = 0 then f ′
1(s) = 0 else f ′

1(s) = f ′
1(s− 1) + 1

(f ′
2 is defined symmetrically).

Then

(f ′
1 ◦ f1) ↑ min(T1, T2) = (f ′

2 ◦ f2) ↑ min(T1, T2) = max(T1, T2)

✷



38 SEMANTIC MODEL OF TRACES

Each equivalence class has a flow as lower bound. For a trace T , this flow is denoted T↓.

Notation The set of flows on A1 is denoted SA1
.

III–4.2 Partial flow
Let A1 ⊆ A and A2 ⊆ A two subsets of A and F ∈ SA1

some flow on A1.

The projection of F on A2, denoted ΠA2(F ), is defined by:

ΠA2(F ) = (F‖A2
)↓

The following equalities hold:

• ∀F, Π∅(F ) = 1T

• ΠA2(0T ) = 0T

• ΠA2(⊥A1
) =⊥A1∩A2

III–4.3 Flow-equivalence
Equivalence modulo ⊥ is an equivalence relation that preserves the simultaneousness of valuations within

a configuration and the ordering of configurations within a trace: traces which are equivalent modulo ⊥
possess the same synchronization relations.

A weaker relation is introduced, which is called flow-equivalence. It allows to compare traces with

respect to the sequences of values that variables hold.

Definition A trace T ′ defined on A1 is a relaxation of a trace T defined on the same set of variables

A1 if and only if for all a ∈ A1, T
‖{a} ⊆↓ T

′
‖{a}. This is denoted: T ⊑ T ′.

Corollary The relaxation relation ⊑ is an order relation.

Definition Two traces T1 and T2 are said to be flow-equivalent (this is denoted: T1 ≈ T2) if and only

if there exists some trace T such that T ⊑ T1 and T ⊑ T2.

The class of flow-equivalence of a trace T is a semi-lattice. It admits a lower bound which is a flow,

written T≈.

III–5 Processes

III–5.1 Definition
A process on A1 ⊆ A is a set of flows on A1 which are non comparable by the prefix relation.



III–5. PROCESSES 39

Example Let us represent a flow by the sequence of its events, where an event is represented by the

variables which are valued for it (successive events are separated by the sign “;”).

Consider the following flows defined on variables a, b:
F1 : a; ab; b
F2 : a; ab; ab
F3 : a; ab; b; b

The flows F1 and F2 (respectively, F2 and F3) can belong to a same process. However, F1 and F3

cannot belong to a same process since they are comparable.

The set of processes on A1 is denoted PA1
. It is a subset of P(SA1

), the set of subsets of SA1
.

The set

P⊆A1
=

⋃

Ai⊆A1

PAi

is the set of processes on the subsets of A1.

The process 1P = {1T }, defined on the empty set of ports ∅, and with the unit trace as single

element, is called unit process.

The process on A1 defined by the empty set of flows is denoted 0P(A1).

Notation

The notation var(P ) is used to designate the smallest set of variables of A on which the process P is

defined.

III–5.2 Partial observation of a process

Let A1 ⊆ A and A2 ⊆ A two subsets of A and P a process on A1.

The projection of P on A2, denoted ΠA2(P ), is defined by:

ΠA2(P ) = {ΠA2(F ) / F ∈ P and ΠA2(F ) is maximal for ∠}

III–5.3 Composition of processes
Let P1 and P2 two processes defined respectively on A1 and A2.

The composition (or synchronous composition) of P1 and P2, denoted P1|P2, is a process on A1∪A2

defined by:

P1|P2 = {F ∈ SA1∪A2
/ ( (∃F1 ∈ P1) ( ΠA1(F ) ∠ F1 ) )∧

( (∃F2 ∈ P2) ( ΠA2(F ) ∠ F2 ) )∧
(F is maximal for ∠)}

Corollary 6 (P⊆A1
,|,1P ) is a commutative monoid.

The composition operator | is idempotent and 0P(A1) is an absorbent (nilpotent) element.



40 SEMANTIC MODEL OF TRACES

III–5.4 Order on processes
The following relation is defined on processes:

P1 ∠ P2 if and only if:

(∀F1 ∈ P1) ( (∃F2 ∈ P2) ( F1 ∠ F2 ) )

This relation is an order relation.

Proof of antisymmetry:

(P1 ∠ P2) ⇒ ( (∀F1 ∈ P1) ( (∃F2 ∈ P2) ( F1 ∠ F2 ) ) )
(P2 ∠ P1) ⇒ ( (∃F3 ∈ P1) ( F2 ∠ F3 ) )
Then F1 = F3 since flows in a process are not comparable by ∠.

Then F1 = F2. Thus P1 = P2. ✷

Corollary 7

• ΠA2(0P(A1)) = 0P(A1 ∩A2)

• Πvar(P )(P ) = P

• ΠA1∩A2(P ) = (ΠA1 ◦ ΠA2)(P )

• ΠA1∪A2(P ) ∠ ΠA1(P )|ΠA2(P )

• Πvar(P1)
(P1|P2) ∠ P1

• Π is monotonic: (P1 ∠ P2) ⇒ (ΠB(P1) ∠ ΠB(P2))

• | is monotonic: (P1 ∠ P2) ⇒ (Q|P1 ∠ Q|P2)

• ΠB(P1|P2) ∠ ΠB(P1)|ΠB(P2)

Proposition Let P1 and P2 two processes defined respectively on A1 and A2.

(P1 = ΠA1(P1|P2)) ⇔ (ΠA1∩A2(P1) ∠ ΠA1∩A2(P2))

Sketch of the proof:
Since ΠA1(P1|P2) ∠ P1 it is sufficient to prove that

(P1 ∠ ΠA1(P1|P2)) ⇔ (ΠA1∩A2(P1) ∠ ΠA1∩A2(P2))

⇒) Assume that P1 ∠ ΠA1(P1|P2).
Let F ∈ ΠA1∩A2(P1)
(∃F1 ∈ P1) ( F = ΠA1∩A2(F1) )
Since F1 ∈ P1, by hypothesis, (∃F ′ ∈ ΠA1(P1|P2)) ( F1 ∠ F ′ )
Thus (∃F ′′ ∈ P1|P2) ( F1 ∠ ΠA1(F

′′) )
By definition of the composition, (∃F ′′

2 ∈ P2) ( ΠA2(F
′′) ∠ F ′′

2 )
Let F ′′′

2 = ΠA1∩A2(F
′′
2 )

Then F ∠ F ′′′
2



III–6. SEMANTICS OF BASIC SIGNAL TERMS 41

⇐) Assume that ΠA1∩A2(P1) ∠ ΠA1∩A2(P2).
If F1 ∈ P1, then (∃F2 ∈ ΠA1∩A2(P2)) ( ΠA1∩A2(F1) ∠ F2 )
Thus (∃F ′

2 ∈ P2) ( ΠA1∩A2(F1) ∠ ΠA1∩A2(F
′
2) )

Thus (∃F ∈ P1|P2) ( F1 ∠ ΠA1(F ) ) ✷

Consequences

• if A1 ∩A2 = ∅: P1 = ΠA1(P1|P2) and P2 = ΠA2(P1|P2)

• if A1 ⊆ A2: (P1 = ΠA1(P1|P2)) ⇔ (P1 ∠ ΠA1(P2))

• if A2 ⊆ A1: (P1 = P1|P2) ⇔ (ΠA2(P1) ∠ P2)

• if A1 = A2: (P1 = P1|P2) ⇔ (P1 ∠ P2)

As an application, if P2 represents a safety property defined on the same set of variables as P1, P1

satisfies the property P2, which means that any flow of P1 is a flow of P2 (P2 is less constrained than

P1), if and only if P1 = P1|P2.

Note that there is the same result when P2 is defined on a subset of the variables of P1.

More generally, if A2 ⊆ A1, P1 = P1|P2 means that P2 is an abstraction of P1.

III–6 Semantics of basic SIGNAL terms
The semantics of each primitive operator is defined by a set of flows: a SIGNAL process on A1 ⊆ A is a

non empty set of flows on A1 (i.e., a subset of SA1
) defined, from primitive operators and composition,

by constraints (relations) on the flows.

In the following, we denote generically P : PA1
a process on A1, to define the semantics of the

corresponding term. In addition, we denote var(x1, . . . , xn) the set of the xi variables (i = 1, . . . , n)

which are distinct.

III–6.1 Declarations
Let µ designate a type whose domain of values is τ (µ).

The term

µ X

defines a process P :P{X} representing all the possible sequences of values of the signal X.

P =∆ { T ∈ S{X} /

(∀t) ( (Tt(X) 6= ⊥) ⇒ (Tt(X) ∈ τ (µ)) ) }

III–6.2 Monochronous processes
A process P defined on A1 is said monochronous if, at each instant t for which one of the signals

is present (respectively, absent), all of them are also present (respectively, absent). Flows defining

monochronous processes are called also monochronous flows.

(∀T ∈ P ) ( (∀t) ( ( (∃X ∈ A1) ( Tt(X) = ⊥ ) ) ⇒ ( (∀Y ∈ A1) ( Tt(Y ) = ⊥ ) ) ) )



42 SEMANTIC MODEL OF TRACES

2-a Static monochronous processes

Let F be an operator. Under some interpretation I for which the interpretation of F is denoted [|F |]I , the

term

Xn+1 :=: F(X1,. . .,Xn)

defines a process P : Pvar(X1, . . . , Xn, Xn+1) by some relation between the sequence of values of the

signal Xn+1 and the sequence obtained by the pointwise extension of the application of F, under this

interpretation, to the sequence of tuples of values of the signals X1,. . . ,Xn (note that the sign “:=:”

makes explicit the fact that this term represents a non oriented equation).

P =∆ { T ∈ Svar(X1, . . . , Xn, Xn+1) /

T is monochronous and

(∀t) ( (Tt(Xn+1) 6= ⊥) ⇒ (Tt(Xn+1) = [|F |]I(Tt(X1), . . . , Tt(Xn))) ) }

2-b Dynamic monochronous processes: the delay

The term

X2 :=: X1 $ init V0

defines a process P : Pvar(X1, X2) by the relation constraining the equality of the sequence of values

of the signal X2 and the sequence of values of the signal X1, delayed by 1; V0 is the initial value of X2.

P =∆ { T ∈ Svar(X1, X2) /

T is monochronous

and (∀t > 0) ( (Tt(X2) 6= ⊥) ⇒ (Tt(X2) = Tt−1(X1)) )
and (T0(X1) 6= ⊥) ⇒ (T0(X2) = V0) }

III–6.3 Polychronous processes
A process defined on A1 is said polychronous if it contains a flow T for which there exists some instant t
in which one of the signals is present while another one is not. By extension, a term is said polychronous

if it allows to define polychronous processes.

3-a Sub-signals

The term

X3 :=: X1 when X2

defines a process P : Pvar(X1, X2, X3) by the relation constraining the equality of the sequence of

values of the signal X3 and the sequence of occurrences of value of the signal X1 when the Boolean signal

X2 carries the value true .

P =∆ { T ∈ Svar(X1, X2, X3) / (∀t) (

((Tt(X2) = true) ⇒ (Tt(X3) = Tt(X1)))∧
((Tt(X2) 6= true) ⇒ (Tt(X3) = ⊥)) ) }



III–7. COMPOSITE SIGNALS 43

3-b Merging of signals

The term

X3 :=: X1 default X2

defines a process P : Pvar(X1, X2, X3) by the relation constraining the equality of the sequence of

values of the signal X3 and the sequence formed by the occurrences of value of the signal X1 or by default

the occurrences of value of the signal X2.

P =∆ { T ∈ Svar(X1, X2, X3) / (∀t) (

((Tt(X1) 6= ⊥) ⇒ (Tt(X3) = Tt(X1)))∧
((Tt(X1) = ⊥) ⇒ (Tt(X3) = Tt(X2))) ) }

III–6.4 Composition of processes
The term

P1 | P2

where P1 and P2 define respectively processes P1 and P2 on the sets of variables A1 and A2, defines a

process P : PA1∪A2
by the greatest relation constraining their common signals to respect the constraints

imposed respectively by P1 and P2 (see an example in the figure B–III.2, p. 44).

P =∆ P1|P2

III–6.5 Restriction
The term

P1 / a

(or P1 where a)

where P1 defines a process P1 on the set of variables A1, defines a process P : PA1\{a} by the

projection of P1 on the subset of ports of P1 which are different from a.

P =∆ ΠA1 \ {a}
(P1)

III–7 Composite signals
The types of the SIGNAL language contain elementary types such as Booleans, integers, etc., but also

structured types allowing to declare composite objects. Structured types are tuple types and array types.



44 SEMANTIC MODEL OF TRACES

...

...

...

...a1

a2

v1

w1

v2

w2

v3 v4 v5

w3

a2

a3 x1

w1

x2

w2

x3

w3

x4

a1

a2

a3

v2v1

w1

x2x1

w2

v3

x3

v4 v5

w3

x4

a1

a2

a3

v3 v4

x3

⊥

⊥

⊥ ⊥

⊥

⊥

⊥

⊥

⊥ ⊥

⊥

⊥

⊥

⊥ ⊥

⊥

⊥ ⊥

⊥

P1

P2

P1|P2

P1|P2

Figure B–III.2: Two flows of the composition of P1 and P2

III–7.1 Tuples
Construction of tuple

If E1, . . . , Em designate m signals of respective types µ1, . . . , µm, the term

(E1,. . . ,Em)

defines a tuple of signals, of type (µ1 × . . .× µm) (where × designates the product of domains), such

that

(∀t) ( (E1, . . . , Em)t = (E1t, . . . , Emt) )

Tuple types



III–7. COMPOSITE SIGNALS 45

Let m types µ1, . . . , µm, m names of variables A1, . . . , Am, and a process of synchronization C.

The term

bundle (µ1 A1; . . . ; µm Am;) spec C

defines a tuple type (with named fields A1, . . . , Am) as the set of functions:

Ξ : {A1, . . . , Am} →
m⋃

i=1

τ (µi) such that Ξ(Ai) ∈ τ (µi).

It is reminded that the notation τ (µi) designates the domain of values (type) associated with µi.

When C is the process of synchronization that defines all the fields of the tuple (recursively) as being

synchronous, the corresponding type is then denoted by the term:

struct (µ1 A1; . . . ; µm Am;)

It can be considered, generically, that a tuple type, represented by a tuple with named or unnamed

fields (cf. part C, section V–5, p. 78 et seq.), can be viewed as a product of domains

(µ1 × . . .× µm)
where µk is the type of the kth element of the tuple.

Declaration of a tuple variable (with named fields)

The association of a tuple type with synchronization C , with a variable, denoted by the term

bundle (µ1 A1; . . . ; µm Am;) spec C X

defines a polychronous tuple of signals, such that

(∀t) (

( (∀i) ( (Xt(Ai) 6= ⊥) ⇒ (Xt(Ai) ∈ τ (µi)) ) )∧
(the relation defined by the process denoted by C is verified) )

Remark:

Such a declaration is a SIGNAL process with as interface, µ1 A1, . . . , µm Am in input, and the empty set

in output.

For the particular case of a monochronous tuple, the association denoted by the term

struct (µ1 A1; . . . ; µm Am;) X

defines a monochronous tuple signal, such that

(∀t) ( (Xt 6= ⊥) ⇒ ( (∀i) ( Xt(Ai) ∈ τ (µi) ) ) )

Access to an element

When X designates a polychronous tuple the type of which is defined as the set of functions

Ξ : {A1, . . . , Am} →
m⋃

i=1

µi such that Ξ(Ai) ∈ µi,

the term

Y :=: X.Ai



46 SEMANTIC MODEL OF TRACES

defines a process allowing to access to a component of the tuple:

(∀t) ( Yt = Xt(Ai) )

Particular case: when X designates a monochronous tuple, the term

Y :=: X.Ai

defies a monochronous process allowing to access to a component of the tuple:

(∀t) ( (Xt 6= ⊥) ⇒ (Yt = Xt(Ai)) )

Pointwise extension

The operators defined on values of elementary types may be extended canonically (pointwise exten-

sion) to tuples.

Let us consider some operator F defined with the following signature:

µ1 × . . . × µN → µN+1

(note that operators may be polymorphic on some of their operands, so that a given µk may stand here

for some set of types).

We will denote

(X_a1k,. . . ,X_amk)

the elements of a tuple Xk with m elements.

If at least one of the Xk is a tuple the elements of which are correspondingly possible arguments of

the operator F, more precisely, if

(∃ m) ( ( (∀ k) ( (τ (Xk) = (
.
µk1 × . . .×

.
µkm))

∨
(τ (Xk) =

..
µk) ) )

∧
(

(∃ k) ( τ (Xk) = (
.
µk1 × . . .×

.
µkm) ) ) )

(where
.
µk1 , . . . ,

.
µkm and

..
µk represent some particular instances of type µk),

the term

XN+1 :=: F(X1,. . .,XN)

under some interpretation I , specifies a process which defines the tuple with m elements XN+1 by a

pointwise application of F:

(∀t) ( (∀i, 1 ≤ i ≤ m) ( X_aiN+1t = [|F |]I(v1_ait, . . . , vn_ait) )
where

((τ (Xk) = (
.
µk1 × . . .×

.
µkm)) ⇒ (vk_ait = X_aikt))

∧
(

((τ (Xk) 6= (
.
µk1 × . . .×

.
µkm))

∧
(τ (Xk) =

..
µk)) ⇒ (vk_ait = Xkt)) )

This defines recursively new signatures of the operators, so that the pointwise extension can be

applied recursively.

III–7.2 Arrays

IID being the set of values that can be carried by a variable, we introduce a distinguished value, denoted

nil, such that, semantically, nil 6∈ IID and nil 6= ⊥. This value is in particular the value of a non defined

element of an array. In the language, a value equal to nil may be any (non determined) value of the

correct type.



III–7. COMPOSITE SIGNALS 47

Array types

Let m integers n1, . . . , nm (ni ∈ IIN), and a type ν.

The term

[n1, . . . , nm] ν

defines an array type as the set of functions:

([0..n1 − 1] × . . . × [0..nm − 1]) → τ (ν),

where [0..ni − 1] denotes the set of integers included between 0 and ni−1, and τ (ν) denotes the domain

of values of type ν.

The curryfied and non curryfied forms of the functions defining an array type are considered as

equivalent.

Thus, when the type ν is itself an array type, defined by the set of functions

([0..nm+1 − 1] × . . .× [0..nm+p − 1]) → τ (µ),

the type denoted by [n1, . . . , nm] ν is defined by the set of functions

([0..n1 − 1] × . . . × [0..nm+p − 1]) → τ (µ).

Declaration of an array variable

The association of an array type with a variable, denoted by the term

[n1, . . . , nm] ν X

defines an array signal such that

(∀t) (
(Xt 6= ⊥)

⇒ ( (∀k, 1 ≤ k ≤ m) ( (∀ik, 0 ≤ ik ≤ nk − 1) ( Xt(i1, . . . , im) ∈ τ (ν) ) ) ) )

For X an array of type ([0..n1 − 1] × . . .× [0..nm − 1]) → ν,

the set of tuples of types [0..n1 − 1] × . . .× [0..np − 1] where 1 ≤ p ≤ m is designated by Dom(X).

Complete arrays and partial arrays

An array of type ([0..n1 − 1] × . . .× [0..nm − 1]) → ν is said complete if the function

([0..n1 − 1] × . . . × [0..nm − 1]) → ν
that defines it is total.

If this function is partial, the array is said partial.

In this case, it is defined by the total function

([0..n1 − 1] × . . . × [0..nm − 1]) → ν ∪ {nil}
that extends this partial function by associating nil with the non defined elements.

When the array defined by one of the following operators may be partial, the function described

by this semantics is necessarily a restriction of the function that defines the array. The corresponding

extension is such that any element non defined by the semantics is equal to nil.



48 SEMANTIC MODEL OF TRACES

Array element

When X designates an array the type of which is defined as the set of functions

([0..n1 − 1] × . . . × [0..nm − 1]) → ν,

and I1, . . . , Im are signals of type integer,

the term

Y :=: X[I1,. . . ,Im]

defines a monochronous process allowing to access to an element of the array X:

(∀t) (
(Xt 6= ⊥)

⇒ (( (∀Ikt) ( 0 ≤ Ikt ≤ nk − 1 ) )
∧

(Yt = Xt(I1t, . . . , Imt))) )

This operator is generalized below (see “extraction of sub-array”).

Static enumeration of array

The term

X :=: [E1,. . . ,En]

defines a monochronous process enumerating the elements of an array:

(∀t) ( (Xt 6= ⊥) ⇒ ( (∀i = 1, . . . , n) ( Xt(i) = Eit ) ) )

Iterative enumeration of array

The term

K :=: N recur f from V0

(where N, maximum number of iterations, denotes a positive integer, which has a stricly positive upper

bound, upper_bound(N); V0 denotes a value (or a tuple of values) of type µ; and f is a function from µ
into µ),

defines a process enumerating elements of a vector of µ of size upper_bound(N):

(∀t) (
(Kt 6= ⊥)

⇒ ( (∀i) ( ((0 ≤ i < Nt − 1)
∧

((Kt(0) = V0t)
∧

(Kt(i+ 1) = [|f |]I(Kt(i)))))∨
((Nt ≤ i < upper_bound(N))

∧
(Kt(i) = nil)) ) ) )

The equation Kt(i) = nil expresses the fact that the corresponding value exists (since all the ele-

ments of an array have the same clock), but it is not determined. In the language, this can be represented

by: Kt(i) = Kt(i).

This form is not provided as such in the concrete syntax of the language.

A particular form is 0..N − 1 which represents the term N recur f from 0 where f

designates the function on integers such that f(x) = x+ 1.



III–7. COMPOSITE SIGNALS 49

Pointwise extension

The operators defined on values of elementary types may be extended canonically (pointwise exten-

sion) to arrays.

Let us consider some operator F defined with the following signature:

µ1 × . . . × µN → µN+1

(note that operators may be polymorphic on some of their operands, so that a given µk may stand here

for some set of types).

If at least one of the TXk has one dimension more than the corresponding argument in the definition

of the operator F, more precisely, if

(∃ m) ( ( (∀ k) ( (τ (TXk) = [0..m− 1] →
.
µk)

∨
(τ (TXk) =

..
µk) ) )

∧
(

(∃ k) ( τ (TXk) = [0..m− 1] →
.
µk ) ) )

(where
.
µk and

..
µk represent some particular instances of type µk),

the term

TXN+1 :=: F(TX1,. . .,TXN)

under some interpretation I , defines a monochronous process which defines the array TXN+1 by a point-

wise application of F:

(∀t) (
(TXN+1t 6= ⊥)

⇒ ( (∀i, 0 ≤ i ≤ m− 1) ( TXN+1t(i) = [|F |]I(v1t(i), . . . , vnt(i)) )
where

((τ (TXk) = [0..m− 1] →
.
µk) ⇒ (vkt(i) = TXkt(i)))

∧
(

((τ (TXk) 6= [0..m− 1] →
.
µk)

∧
(τ (TXk) =

..
µk)) ⇒ (vkt(i) = TXkt))) )

This defines recursively new signatures of the operators, so that the pointwise extension can be

applied recursively.

Cartesian product

With I and J arrays of respective types

τ (I) = [0..m− 1] → µ and τ (J) = [0..n− 1] → ν,

the term

(II,JJ) :=:≪I,J≫

defines a monochronous tuple of signals, (II, JJ), with II and JJ of respective types

τ (II) = [0..m ∗ n− 1] → µ and τ (JJ) = [0..m ∗ n− 1] → ν,

such that:

(∀t) (
(It 6= ⊥)

⇒ ( (∀k, 0 ≤ k ≤ m− 1) ( (∀p, 0 ≤ p ≤ n− 1) (
(IIt(k ∗ n+ p) = It(k))

∧
(JJt(k ∗ n+ p) = Jt(p)) ) ) ) )

More generally, if I is a tuple (with unnamed fields) of type

τ (I) = [0..m− 1] → µ1 × . . .× [0..m− 1] → µp



50 SEMANTIC MODEL OF TRACES

and J is an array of type

τ (J) = [0..n− 1] → ν,

the term

(II1,. . . ,IIp,JJ) :=:≪I,J≫

defines a monochronous tuple of signals, (II1, . . . , IIp, JJ), with, if II designates the tuple (II1, . . . , IIp),
II and JJ of respective types

τ (II) = [0..m ∗ n− 1] → µ1 × . . .× [0..m ∗ n− 1] → µp,

τ (JJ) = [0..m ∗ n− 1] → ν,

and:

(∀t) (
(It 6= ⊥)

⇒ ( (∀k, 0 ≤ k ≤ m− 1) ( (∀p, 0 ≤ p ≤ n− 1) (
(IIt(k ∗ n+ p) = It(k))

∧
(JJt(k ∗ n+ p) = Jt(p)) ) ) ) )

The cartesian product is used in particular to define jointly indexes used for multi-dimensional itera-

tions of processes.

Remark: ≪I1,. . . ,Im≫ = ≪I1,≪I2,. . . ,Im≫≫

Partial definition of array

The term

Y :=: (I1, . . . , In) : X

where I1, . . . , In are integers or arrays of integers:

τ (I1) = . . . = τ (In) = ([0..b1] × . . .× [0..bp]) → ν
with ν an integer type, and the basic integer values of the Ii are positive or zero,

τ (X) = ([0..c1] × . . .× [0..cp]) → µ with c1 ≥ b1, . . . , cp ≥ bp,

and τ (Y) = ([0..a1] × . . .× [0..an]) → µ ∪ {nil} with for 1 ≤ i ≤ n, ai = max
K∈Dom(Ii)

Ii(K)

defines a monochronous process which specifies, in the general case, a partially defined array:

(∀t) (
(Xt 6= ⊥)

⇒ (
((p = 0)

∧
(

(Yt(I1t, . . . , Int) = Xt)
∧

(
(∀J ∈ Dom(Y)) ( (J 6= (I1t, . . . , Int)) ⇒ (Yt(J) = nil) ) )))∨
((p ≥ 1)

∧
(

( (∀(j1, . . . , jn) ∈ IINn) (
K = {(k1, . . . , kp) ∈ IINp / ∀i, 1 ≤ i ≤ n, Iit(k1, . . . , kp) = ji} ) ) ⇒ (
((K = ∅) ⇒ (Yt(j1, . . . , jn) = nil))

∧
(

(K 6= ∅) ⇒ ((Kmax = max
k∈K

k) ⇒ (Yt(j1, . . . , jn) = Xt(Kmax)))))))) )

where the Kmax are obtained by the maximal elements in the sets K , using the lexicographic order on

IINp.



III–7. COMPOSITE SIGNALS 51

Extraction of sub-array

The definition of the operator of access to an element of array given above is generalized in the

following way to define the extraction of sub-array.

The term

X :=: Y[I1,. . . ,In]

where I1, . . . , In are integers or arrays of integers:

τ (I1) = . . . = τ (In) = ([0..b1] × . . .× [0..bp]) → ν
with ν an integer type, and the basic integer values of the Ii are positive or zero,

τ (Y) = ([0..a1] × . . .× [0..an]) → µ
and τ (X) = ([0..b1] × . . .× [0..bp]) → µ ∪ {nil}

defines a monochronous process which, in the general case, extracts some sub-array from Y:

(∀t) (
(Yt 6= ⊥)

⇒ (
((((I1t, . . . , Int) ∈ Dom(Y)) ⇒ (Xt = Yt(I1t, . . . , Int)))

∧
(

((I1t, . . . , Int) 6∈ Dom(Y)) ⇒ (Xt = nil)))∨
( (∀(j1, . . . , jp) ∈ IINp,∀k, 1 ≤ k ≤ p, 0 ≤ jk ≤ bk) ( (

((I1t(j1, . . . , jp), . . . , Int(j1, . . . , jp)) ∈ Dom(Y)) ⇒ (
Xt(j1, . . . , jp) = Yt(I1t(j1, . . . , jp), . . . , Int(j1, . . . , jp))))

∧
(

((I1t(j1, . . . , jp), . . . , Int(j1, . . . , jp)) 6∈ Dom(Y)) ⇒ (
Xt(j1, . . . , jp) = nil)) ) )) )

Sequential definition

The term

T :=: T1 next T2

where:

τ (T1) = ([0..c1] × . . .× [0..cp]) → µ1 ∪ {nil},

τ (T2) = ([0..b1] × . . . × [0..bp]) → µ2 ∪ {nil} with c1 ≥ b1, . . . , cp ≥ bp,

and τ (T) = ([0..c1] × . . .× [0..cp]) → (µ1 ⊔ µ2) ∪ {nil}

defines a monochronous process which specifies, in the general case, a sequential definition of an ar-

ray:

(∀t) (
(Tt 6= ⊥)

⇒ ( (∀(j1, . . . , jp) ∈ IINp,∀k, 1 ≤ k ≤ p, 0 ≤ jk ≤ ck) ( (
(((j1, . . . , jp) ∈ Dom(T2))

∧
(T2t(j1, . . . , jp) 6= nil)) ⇒ (

Tt(j1, . . . , jp) = T2t(j1, . . . , jp)))
∧

(
(((j1, . . . , jp) 6∈ Dom(T2))

∨
(T2t(j1, . . . , jp) = nil)) ⇒ (

Tt(j1, . . . , jp) = T1t(j1, . . . , jp))) ) ) )



52 SEMANTIC MODEL OF TRACES

III–8 Classes of processes
The following classes of processes are usefully distinguished.

III–8.1 Iterations of functions
Let P a process defined on A1. P is an iteration of function on A2 ⊆ A1 if and only if:

(∀F1, F2 ∈ P ) ( (∀t1, t2) ( (F1‖A2
(t1) = F2‖A2

(t2)) ⇒ (F1(t1) = F2(t2)) ) )

Remark: An iteration of function does not need memory.

III–8.2 Endochronous processes
Let P a process defined on A1. P is endochronous on A2 ⊆ A1, where A2 is considered as a totally

ordered set {a1, . . . , an}, if and only if the function

Φ : P → Π{a1}
(P )× . . .×Π{an}

(P )

such that

Φ(F ) = (Π{a1}
(F ), . . . ,Π{an}

(F ))

is injective (and thus bijective, since it is necessarily surjective).

Informally, a process is endochronous on a set of variables if any flow of this process is entirely

determined by the sequences of values carried by these variables, independently of their relative presence

and absence.

In other words, a process is endochronous on a set of variables if given an external (asynchronous)

stimulation of these variables, it is capable of reconstructing a unique synchronous behavior (up to ⊥-

equivalence). Then, it can be implemented as a process which is mostly insensitive to internal and

external propagation delays. This implementation and its context have only to agree on activation starts

and on the availability of data.

Property A process P defined on A1 is endochronous on A2 ⊆ A1 if and only if:

(∀F,F ′ ∈ P ) ( ((ΠA2(F ))≈ = (ΠA2(F
′))≈) ⇔ (F ≡↓ F

′) )

If a subset A2 ⊆ A1 is considered as the set of inputs for P , we say that P is endochronous if it is

endochronous on its inputs.

III–8.3 Deterministic processes
A process is deterministic on a set of variables if any flow of this process is entirely determined by its

restriction to this set of variables.

Let P a process defined on A1. P is deterministic on A2 ⊆ A1 if and only if the function

Φ : P → ΠA2(P )
such that

Φ(F ) = ΠA2(F )

is injective (and thus bijective, since it is necessarily surjective).

In other words, a process is deterministic on a set of variables if any two flows of this process have

the same behaviors when they have the same projection on this set of variables.



III–8. CLASSES OF PROCESSES 53

Property A process P defined on A1 is deterministic on A2 ⊆ A1 if and only if:

(∀F,F ′ ∈ P ) ( ((ΠA2(F )) ≡↓ (ΠA2(F
′))) ⇒ (F ≡↓ F

′) )

Remarks and examples:

• For any elementary process P of the SIGNAL language of the form x :=: E(y1, . . . , yn), if

x ∈ {y1, . . . , yn}, then P is deterministic on {y1, . . . , yn}.

• For any elementary process P of the SIGNAL language of the form x :=: E(y1, . . . , yn), if

x 6∈ {y1, . . . , yn}, then P is deterministic on {y1, . . . , yn}.

• X :=: Y default X

is not deterministic on {Y}.

• The determinism on Ai is not stable by composition and restriction.

Properties:

If a process P is an iteration of function on A1, then it is deterministic on A1.

If a process P is endochronous on A1, then it is deterministic on A1.

III–8.4 Reactive processes
Reactivity of a process with respect to some set of variables may be defined as the ability of the process

to react to each configuration of these variables in all states.

Let P a process defined on A1. P is reactive on A2 ⊆ A1 if and only if for each flow F ∈ P , for

each t ∈ dom(F ), for each event e on A2, there exists a flow F ′ ∈ P such that:

(F ′
≤t−1 = F≤t−1)

∧
(F ′(t)|A2

= e).

P is strictly reactive on A2 ⊆ A1 if and only if for each flow F ∈ P , for each t ∈ dom(F ), for each

event e on A2 different from the absent event ⊥e(A2), there exists a flow F ′ ∈ P such that:

(F ′
≤t−1 = F≤t−1)

∧
(F ′(t)|A2

= e).

A process which is reactive on a non empty set A2 is obviously strictly reactive on A2.

Examples:

• Z :=: X default Y

is strictly reactive on {X, Y}.

• Z :=: X and Y

is neither strictly reactive, nor reactive on {X, Y}.



54 SEMANTIC MODEL OF TRACES

III–9 Composition properties

III–9.1 Asynchronous composition of processes
The partial order of relaxation is used to define the semantics of the asynchronous composition of pro-

cesses: roughly, the asynchronous composition of two processes P1 and P2 is defined by the flows the

projection of which on common variables of P1 and P2 are relaxations of the projections on these com-

mon variables of flows of P1 and of flows of P2.

Definition Let P1 and P2 two processes defined respectively on A1 and A2.

The parallel composition (or asynchronous composition of P1 and P2, denoted P1‖P2, is a process

on A1 ∪A2 defined by:

P1‖P2 = {F ∈ SA1∪A2
/ ( (∃F1 ∈ SA1

,∃F ′
1 ∈ P1) ( (F1 ∠ F ′

1)∧
(ΠA1∩A2(F1) ⊑ ΠA1∩A2(F ))∧
(ΠA1\A2

(F1) ≡↓ ΠA1\A2
(F )) ) )∧

( (∃F2 ∈ SA2
,∃F ′

2 ∈ P2) ( (F2 ∠ F ′
2)∧

(ΠA1∩A2(F2) ⊑ ΠA1∩A2(F ))∧
(ΠA2\A1

(F2) ≡↓ ΠA2\A1
(F )) ) )∧

(F is maximal for ∠)}

III–9.2 Flow-invariance
Flow-invariance, based on flow-equivalence, is a property that relates synchronous and asynchronous

compositions of processes. It consists of ensuring that an asynchronous “implementation” P1‖P2 of a

synchronous specification P1|P2 preserves the sequences of values for all flows.

Definition Let P1 and P2 two processes defined respectively on A1 and A2.

The composition of P1 and P2 is said flow-invariant on I ⊆ A1 ∪A2 if and only if:

(∀F ∈ P1|P2) ( (∀F ′ ∈ P1‖P2) ( ((ΠI(F ))≈ = (ΠI(F
′))≈) ⇒ (F ≈ F ′) ) )

It means that a synchronous design made of a flow-invariant composition of processes is robust to

their distribution.

III–9.3 Endo-isochrony

A special case of practical interest is the one of endochronous processes.

Definition Let P1 and P2 two processes defined respectively on A1 and A2. They are said endo-

isochronous if and only if P1, P2 and ΠA1∩A2(P1)|ΠA1∩A2(P2) are endochronous.

Property If P1 and P2 are endo-isochronous, then their composition is flow-invariant on its set of

variables.



III–10. CLOCK SYSTEM AND IMPLEMENTATION RELATION 55

III–10 Clock system and implementation relation
The refinement of a system specification consists in transforming its abstract behaviors into more con-

crete ones that make intermediate computational steps explicit. Conversely, the abstraction of a behavior

consists in discarding some intermediate calculations. Thus it is useful to have an implementation rela-

tion between processes, that takes into account a notion of time refinement.

Sampler system

Let T a trace on A1. A sampler system for T is a function s : A1 → A1 such that s is acyclic, and

for all a ∈ A1, s(a) is a Boolean and

(∀t) ( (Tt(s(a)) = true) ⇒ (Tt(a) 6= ⊥) )

A function s is a sampler system for a process P if and only if it is a sampler system for every flow

of P .

Clock system

Let T a trace on A1. A clock system for T is a sampler system such that for all a ∈ A1,

(∀t) ( (Tt(s(a)) = true) ⇔ (Tt(a) 6= ⊥) )

A function s is a clock system for a process P if and only if it is a clock system for every flow of P .

Sampling

Let T a trace on A1 and s a sampler system for T . The sampling of T by s is the trace T ′ = Ss(T )
defined on A1 such that for all a ∈ A1, (∀t) ( T ′

t(a) = S∗(Tt(a)) ) where S∗ is recursively defined

as follows:

if s is not defined on a, then S∗(Tt(a)) = Tt(a),
if s is defined on a, then

S∗(Tt(a)) = Tt(a) if S∗(Tt(s(a))) = true,
S∗(Tt(a)) = ⊥ if S∗(Tt(s(a))) 6= true.

Let P a process defined on A1. The sampling of P by a sampler system s for P is the process P ′,

denoted P ′ = Σs(P ), defined as the set of flows which are equivalent to samplings of flows of P :

P ′ = {T ′
↓ ∈ SA1

/ (T ∈ P )
∧

(T ′ = Ss(T ))}

Well-clocked implementation

Let P a process on A1 and Q a process on A2 such that there exists a one-to-one correspondence σ
such that σ(A1) ⊆ A2, and let s a clock system on Q.

Q is a well-clocked implementation of P with respect to s (denoted Q �s P ) if and only if:

Πσ(A1)(Σs(Q)) = P.



56 SEMANTIC MODEL OF TRACES

III–11 Transformation of programs
A general principal of transformation of programs (which is applied for SIGNAL programs all along

the design of an application, for example for verification purpose, for implementation purpose, or to

calculate abstractions of behaviors) consists in the following generic rewritting scheme: homomorphisms

of programs are defined such that a program is contained in the composition of its transformations by

these homomorphisms. Typically, one of these transformations is an abstract interpretation of the initial

program.

Let A1 a set of variables. We consider:

• an interpretation homomorphism, f , which associates with each elementary process P defined on

A1 a process Qf = f(P ) on A2,

• an homomorphism r, which associates with each elementary process P defined on A1 a process

Qr = r(P ) on A′
1 ⊆ A1,

such that ΠA1∩A2(P ) ∠ ΠA1∩A2(Qf |Qr)
and thus P = ΠA1(P |(Qf |Qr)).

Then we define a transformation of programs (which is an homomorphism)

Tfr :PA1
→ PA′

1∪A2

such that

Tfr (P ) = left(T Tfr (P ))|right(T Tfr(P ))
with:

• left(< X,Y >) = X

• right(< X,Y >) = Y

• T Tfr (P ) = < f(P ), r(P ) > if P is an elementary process

• T Tfr (P1|P2) = < left(T Tfr(P1))|left(T Tfr(P2)), right(T Tfr (P1))|right(T Tfr (P2)) >

Then, P = ΠA1(P |Tfr (P )).



Chapter IV

Calculus of synchronizations and
dependences

IV–1 Clocks
As said before, the clock of a signal represents the presence instants of this signal, relatively to the other

ones. A system of clock relations is associated with any system of SIGNAL equations (SIGNAL process),

in order to represent specifically the synchronizations of the process.

For that purpose, an homomorphism, Clock , is defined on processes, which has the following prop-

erty:

Clock (P) | P = P

or equivalently: P ∠ Clock(P)
(by abuse of notation, we use the same notation for the syntactic and semantic homomorphisms).

Then, the system of clock relations is encoded as a system of polynomial equations on the field of

integers modulo 3.

IV–1.1 Clock homomorphism
Let us consider the following derived elementary processes, in order to make easier the expression of

clock equations:

• a2 :=: â1
is defined by a2 :=: a1 == a1
where == represents the equality operator defined on values of any type. The signal a2 is defined

at the same instants as the signal a1 and at each one of these instants, its value is the Boolean value

true (the type of a2 is the subtype called event of the Boolean type, which contains as single value

the value true). It is said that â1 represents the event clock of the signal a1.

• a1̂= a2
is defined by (a3 :=: â1 == â2) where a3
and is generalized to n variables (a1̂= . . . ̂= an). It expresses that the signals a1 and a2 (more

generally, a1, . . . , an) are present at the same instants (their clocks are equal).

The Clock homomorphism is defined as follows, depending on the types of the signals (the notation

τ (x) designates the type of x): Boolean equations are left unchanged in the homomorphism.



58 CALCULUS OF SYNCHRONIZATIONS AND DEPENDENCES

1-a Monochronous definitions

• Definitions by extension:

if τ (b) = τ (a1) = . . . = τ (an) = boolean :

b :=: f (a1, . . . , an) 7→ b :=: f (a1, . . . , an)

else:

b :=: f (a1, . . . , an) 7→ b̂= a1̂= . . . ̂= an

• Clock:

b :=: â 7→ b :=: â

• Delay:

if τ (b) = boolean :

b :=: a $ init v 7→ b :=: a $ init v

else:

b :=: a $ init v 7→ b̂= a

1-b Polychronous definitions

• Extraction:

if τ (b) = boolean :

b :=: a1 when a2 7→ b :=: a1 when a2

else:

b :=: a1 when a2 7→ b̂= â1 when a2

• Merging:

if τ (b) = boolean :

b :=: a1 default a2 7→ b :=: a1 default a2

else:

b :=: a1 default a2 7→ b̂= â1 default â2

1-c Hiding

Clock (P where a) = Clock (P ) where a

1-d Composition

Clock (P1 | P2) = Clock(P1) | Clock(P2)

IV–1.2 Verification

As a consequence, if R is a safety property satisfied by Clock(P ),
which is expressed by R | Clock (P ) = Clock (P ),
R is also satisfied by P since P = Clock(P ) | P .



IV–1. CLOCKS 59

IV–1.3 Clock calculus
Since the system of clock relations handles only values of Boolean signals, and presence/absence for the

other types of signals, there is a natural encoding of these values in the field Z/3Z of integers modulo 3

(or Galois field F3 with three elements):

F3 = [{−1, 0, 1},+, ∗]
with the usual meanings for operations and values (+ is the usual addition modulo 3, ∗ is the usual

multiplication).

We define the set of polynomials on F3 and a set of variables isomorphic to the variables of a SIGNAL

program. The association of the value 0 with a variable indicates the absence of value for the associated

signal in the corresponding instant. With each present Boolean signal, the value −1 (which is equal to 2

in Z/3Z) is associated if its current value is false , and the value +1 is associated if its current value is

true . Thus, the square of the value of the variable associated with a present Boolean signal is equal to 1;

for each non Boolean signal, we are interested only in the presence or absence of a value at the current

instant. So we associate with such a signal a squared variable.

The synchronization of a SIGNAL program is expressed by a system of equations in the set of poly-

nomials on F3 defined by the homomorphism described below.

3-a Monochronous definitions

• Definitions by extension:

b :=: f (a1, . . . , an) 7→ b2 = a21 = . . . = a2n
(some relation on the values of b, a1, . . . , an is obtained when f designates a Boolean operator).

• Clock:

b :=: â 7→ b = a2

• Delay:

b :=: a $ init v 7→ ξn+1 = (1− a2) ∗ ξn + a, ξ0 = v, b = a2 ∗ ξn

3-b Polychronous definitions

• Extraction:

b :=: a1 when a2 7→ b = a1 ∗ (−a2 − a22)

• Merging:

b :=: a1 default a2 7→ b = a1 + (1− a21) ∗ a2

3-c Hiding

Replaces, in the system, the hidden variable by an internal one.

3-d Composition

The system obtained for P1 | P2 is the union of the systems obtained for P1 and for P2.



60 CALCULUS OF SYNCHRONIZATIONS AND DEPENDENCES

3-e Static and dynamic clock calculus

Then the calculus of synchronizations (clock calculus) of a SIGNAL program is done by studying a

dynamic system such as: 



Xn+1 = P (Xn, Yn)
Q(Xn, Yn) = 0
Q0(X0) = 0

where X is a state vector in (Z/3Z)p and Y is a vector of events (abstract interpretations of signals) that

make the system evolve.

Such a dynamic system is a particular form of finite state transition system. Thus it is a model of

discrete event system on which it is possible to verify properties or to make control.

Studying such a system then consists in:

• studying its static part, i.e., the set of constraints

Q(Xn, Yn) = 0

• studying its dynamic part, i.e., the transition system

Xn+1 = P (Xn, Yn)
Q0(X0) = 0

and the set of its reachable states, etc.

IV–2 Context clock
The clock relations imposed by SIGNAL operators imply the existence of context clocks for the various

occurrences of the signal variables.

A particular case of this situation is for the occurrence of constants (representing constant sequences),

since such a context clock is the only way to assign a clock to the occurrence of a constant.

Occurrences of constants are allowed in SIGNAL expressions as a practical way to designate constant

signals, i.e., signals with a constant value. The occurrence of such a constant, v, in some expression,

stands for the occurrence of some hidden signal x, defined as x :=: x $ init v.

Each occurrence of a constant has a particular clock (which cannot be fixed explicitly since the

corresponding signal is hidden): this clock is defined by the context of utilization of the constant.

It is defined a utilization mode of the constants:

• allowing as much flexible use as possible

(we want to be able to write x + 5 but also x + (y default 5));

• allowing intuitive handling of their clocks (a constant is delivered at the clock necessary for the

coherence of a synchronous expression);

• free of interpretation for the synchronous operations and in particular, preserving possible proper-

ties of commutativity, associativity. . . of these operators;

• preserving the spirit, if not the letter, of the substitution principle;

• preserving the properties of the temporal operators:

– “associativity” of when,



IV–3. DEPENDENCES 61

– associativity of default,

– “right distributivity” of when on default.

These requirements lead to consider that the occurrence of a constant has a clock which is provided by

the context. This has the consequence that the substitution principle cannot apply in general.

The rules for the definition of the context clock are introduced informally below.

• For a definition

X :=: E

the context clock of E is the clock of X.

• For a monochronous expression, the context clock of each argument is the context clock of the

expression.

• For a delay

E1 $

the context clock of E1 is undefined, which means that the argument of a delay cannot be a constant

(note that it has also consequences on derived operators).

• For an extraction

E1 when C

having H as context clock, the context clock of C is H , that of E1 is the clock product of H and

of the clock at which C has the value true

(this can be used to assign explicitly a clock to a constant).

• For a merging of signals

E1 default E2

having H as context clock, the context clock of E1 and of E2 is H .

For example, 5 default x is equivalent to 5.

In the sequel, the clock of a constant outside some context will be denoted ~.

The rules for the calculation of the clock of a constant in a given context apply also for the signals

the clock of which is undefined. These signals are called non clocked signals. Such a signal is obtained,

for instance, by the operator var. Thus, the clock of var E outside some context is also denoted ~.

IV–3 Dependences
The equations on signals imply, at the execution, an evaluation order which is described by the depen-

dence graph.



62 CALCULUS OF SYNCHRONIZATIONS AND DEPENDENCES

Figure B–IV.1: Formal meaning of the dependence statement

IV–3.1 Formal definition of dependences
The following informal definition of dependences can be stated:

A signal x depends on a signal y “at” a Boolean condition c (noted y
c
−→ x) if, at each instant for which

c is present and true , the event setting a value to x cannot precede the event setting a value to y.

A formal definition in the form of an automaton is presented here. We give the formal meaning of the

statement

y
c
−→ x

in the figure B–IV.1. In the figure, the clock equations in states can be read as follows: y2(c + c2) = 0
means “absent(y) ∨ (absent(c) ∨ c = false)” (at the considered instant); y2 = 0 means “absent(y)”;

c+ c2 = 0 means “(absent(c) ∨ c = false)”. This figure describes a non deterministic automaton which

represents the legal schedulings of calculi in one instant as conform with statement y
c
−→ x.

• States of the automaton are made of dependence graphs and clock equations. Clock equations can

be represented as equations in F3.

• Transitions are labelled by signals (y, c, x), or by the empty word ε. A transition labelled by y
reads: “signal y occurs, with any legal value”. A transition labelled by c(1) (respectively, c(−1))



IV–3. DEPENDENCES 63

reads: “signal c occurs, with value true (respectively, false)”; the empty word ε represents the

occurrence of any signal but (y, c, x).

• In the automaton of the figure B–IV.1, all the states have an additional transition (not represented

in the figure), labelled by ε, toward the initial state (which is represented with a thick circle in the

figure).

The automaton describing all legal schedulings of calculi for a program in one instant is obtained

by a synchronous product of such basic automata, as described in section IV–3.3. Since these automata

describe instantaneous behaviors, they are called micro automata. The states of the transition system

describing the overall behavior of a program are the forced states (or initial states) of the micro automata.

IV–3.2 Implicit dependences
The equations defining a process may induce implicit dependences, such as described in the following.

Notations: For a Boolean c, we use the notation [c] to represent the clock at which c has the value

true , and [¬c] to represent the clock at which c has the value false .

In addition to the implicit dependences described below, the following implicit dependences apply

equally:

• for any signal x, x̂
x̂

−−→ x

• for any Boolean signal c, c
ĉ

−→ [c] and c
ĉ

−→ [¬c]

• any dependence y
c
−→ x implies implicitly a dependence [c]

[c]
−−→ x.

2-a Monochronous definitions

• Definitions by extension:

b :=: f (a1, . . . , an)

The following implicit dependences exist:

a1−→b, . . . , an−→b

• Clock:

b :=: â
b is identified with the clock of a, there is no implicit dependence.

• Delay:

b :=: a $ init v
There is no implicit dependence.

2-b Polychronous definitions

• Extraction:

b :=: a1 when a2
The following implicit dependence exists:

a1
b̂

−→ b



64 CALCULUS OF SYNCHRONIZATIONS AND DEPENDENCES

• Merging:

b :=: a1 default a2
The following implicit dependences exist:

a1
â1−−→ b

a2
â2 −̂ â1−−−−−−−→ b

where â2 −̂ â1 designates the clock representing the instants of a2 that are not instants of a1.

IV–3.3 Micro automata

3-a Definition of micro automata

The micro automaton associated with a program describes the legal schedulings of calculi in one instant.

Let A be a set of variables; As = A+ ∪A− is the set of variables of A labelled by + or −.

A word on A is any subset m of As such that

as ∈ m ⇒ as 6∈ m where + = − and − = +

A micro automaton on A is a tuple

< S,P(As), SI ,Γ ⊆ S × P(As)× S >

such that:

• SI ⊂ S: S is the set of states and SI is a set of initial states;

• if s1
m1
❀ s2 ∈ Γ (Γ is the set of transitions, m1 is the label of the transition), and s2

m2
❀ s3 ∈ Γ, and

. . . and sn
mn
❀ sn+1 ∈ Γ, then:

∀i 6= j,mi ∩mj = ∅

and m =
n⋃

i=1

mi is a word on A.

• if s1
∅
❀ s2 ∈ Γ then s2 ∈ SI

1

The micro automaton is called saturated micro automaton if, in addition,

s1
m1
❀ s2 ∈ Γ and s2

m2
❀ s3 ∈ Γ ⇒ s1

m1∪m2
❀ s3 ∈ Γ

Let AUT be a micro automaton, Sat(AUT ) is the saturated micro automaton which contains AUT .

Consider two micro automata defined respectively on A1 and A2 with A1 ∩ A2 = A. Two labels of

transitions, m1 on A1, and m2 on A2, are said to coincide on A if and only if:

(m1 ∩As) = (m2 ∩As)

Let AUT1 =< S1,P(As
1), S1I ,Γ1 > and AUT2 =< S2,P(As

2), S2I ,Γ2 > two micro automata.

Their (synchronous) product, denoted AUT = AUT1||AUT2, is the micro automaton on A1 ∪ A2,

defined by:

AUT = Sat(< S1 × S2,P(As
1 ∪As

2), S1I × S2I ,Γ >)

1
∅ is denoted ε in IV–3.1.



IV–3. DEPENDENCES 65

with Γ defined as follows:

(s1, s2)
m1
❀ (s′1, s2) ∈ Γ iff m1 ∩As

2 = ∅ and s1
m1
❀ s′1 ∈ Γ1

(s1, s2)
m2
❀ (s1, s

′
2) ∈ Γ iff m2 ∩As

1 = ∅ and s2
m2
❀ s′2 ∈ Γ2

(s1, s2)
m1∪ m2
❀ (s′1, s

′
2) ∈ Γ iff m1 and m2 coincide on A1 ∩A2

and s1
m1
❀ s′1 ∈ Γ1 and s2

m2
❀ s′2 ∈ Γ2

3-b Construction of basic micro automata

(i) Micro automaton associated with a system of equations

Let us consider a system of clock equations on a set of variables A:

Σ : R(A) = 0

having at least one solution (the system encodes clock equations of a program).

A partial valuation of Σ is any system of equations Σ′ : R′(A′) = 0 equivalent to R(A) = 0 in which

a non empty subset {a1, . . . , an} of variables of A have been replaced by values v1, . . . , vn ∈ {−1, 1}
such that Σ′ has at least one solution.

If σ denotes such a substitution, the following notations are used:

σ(ai) = vi denotes the value assigned to ai by σ
σ(R(A)) denotes the system R′(A′) obtained by the substitution.

Then we consider P(Σ) the set of R′(A′) such that there exists σ verifying

σ(R(A)) = R′(A′).
The micro automaton associated with Σ is the saturated micro automaton

< S,P(As), {s0},Γ >

such that:

• there exists a bijection φ : P(Σ) → S with φ(R) = s0

• for any partial valuation σ of R′(A′) ∈ P(R(A)),

φ(R′)
T
❀ φ(σ(R′)) ∈ Γ

if and only if:

a+ ∈ T iff σ(a) = 1 and

a− ∈ T iff σ(a) = −1

• for all Σ′ : R′(A′) = 0 such that

∀a, a ∈ A′ ⇒ a = 0 is a solution of Σ′

then

φ(R′)
∅
❀ s0 ∈ Γ



66 CALCULUS OF SYNCHRONIZATIONS AND DEPENDENCES

(ii) Micro automaton associated with a dependence

The micro automaton associated with

y
c
−→ x

is defined as follows.

We consider the following states of resolution E :

y
c
−→ x, y−→x, {y, x}, {c, x}, (y2(c+ c2) = 0), {y}, {x}, {c}, (c + c2 = 0), (y2 = 0)

The micro automaton associated with y
c
−→ x is the saturated micro automaton

Sat(< S,P({y, x, c}s), {s0},Γ >)

such that there exists a bijection φ : E → S with φ(y
c
→ x) = s0

and with Γ defined as follows:

φ(y
c
−→ x)

c+
❀ φ(y−→x) ∈ Γ

φ(y
c
−→ x)

c−
❀ φ({y, x}) ∈ Γ

φ(y
c
−→ x)

y±

❀ φ({c, x}) ∈ Γ

φ(y
c
−→ x)

x±

❀ φ(y2(c+ c2) = 0) ∈ Γ

φ(y
c
−→ x)

∅
❀ φ(y

c
−→ x) ∈ Γ

φ(y−→x)
y±

❀ φ({x}) ∈ Γ

φ(y−→x)
x±

❀ φ(y2 = 0) ∈ Γ

φ(y−→x)
∅
❀ φ(y

c
−→ x) ∈ Γ

In addition, Γ contains all other transitions coming from resolution such as described in (i).

The corresponding micro automaton is displayed in the figure B–IV.1, where c+ and c− are denoted

respectively c(1) and c(−1), and y± and x± are denoted y and x; moreover, the ∅ transitions have been

omitted in the figure.

(iii) Micro automaton associated with a memorization

The encoding presented in IV–3.1 considers not only the clocks, but also the values of the Boolean

flows: delayed Boolean flows are the state variables of the program.

The micro automaton associated with x :=: y $ init v where x and y are Boolean flows is the

saturated micro automaton obtained from the micro automaton depicted in the figure B–IV.2, p. 67. The

initial states of this micro automaton are the states represented with a thick circle in the figure.

(iv) Micro automaton associated with a process

The micro automaton associated with a process is the product of the saturated micro automata asso-

ciated with each definition involved in the process.



IV–3. DEPENDENCES 67

Figure B–IV.2: Micro automaton of x :=: y $ init v





Part C

THE SIGNALS





Chapter V

Domains of values of the signals

A signal is a sequence of values associated with a clock. These values have all the same type, which is

considered as the type of the sequence. The objective of this chapter is to present the notations used to

represent these types and the processings which are applied on them. An element of the set of types of

the SIGNAL language is denoted type.

Let E be a term of the SIGNAL language; we denote by τ (E) the type associated with the term E and,

when E is a constant expression, ϕ(E) the value of this expression, elaborated in the context in which E

appears.

The set of types of the SIGNAL language contains the scalar types, the external types, the array types

and the tuple types.

1. Context-free syntax

SIGNAL-TYPE ::= Scalar-type
| External-type
| ENUMERATED-TYPE
| ARRAY-TYPE
| TUPLE-TYPE

V–1 Scalar types
Scalar types are the following: synchronization types, integer types, real types, complex types, character

type, string type; the integer, real and complex types compose the set of numeric types; character and

string types compose the set of alphabetic types.

1. Context-free syntax

Scalar-type ::= Synchronization-type
| Numeric-type
| Alphabetic-type

Numeric-type ::= Integer-type
| Real-type
| Complex-type

Alphabetic-type ::= char

| string



72 DOMAINS OF VALUES OF THE SIGNALS

V–1.1 Synchronization types
The synchronization types are used to define the clocks of the signals. They are the type event (or pure

signal) and the type boolean .

Denotations of types

1. Context-free syntax

Synchronization-type ::= event

| boolean

2. Types

(a) τ (event) = event

(b) τ (boolean) = boolean

Denotations of values

• A signal of type event takes its values in a single-element set: there is no associated constant and

a parameter cannot be of that type.

• The constants of type boolean are the logical values denoted with the syntax of a Boolean-cst (cf.

part A, section II–2.2, p. 25).

• The default initial value of type boolean is the value false .

V–1.2 Integer types
Integer values can be in short representation (type short ), normal representation (type integer ), or long

representation (type long); a given implementation may not distinguish these types. In this document,

the notations max long , min long , max integer , min integer , max short and min short will be used

to designate respectively: the greatest representable integer (of type long ), the smallest representable in-

teger (of type long ), the greatest integer of type integer , the smallest integer of type integer , the greatest

integer of type short and the smallest integer of type short . These values depend of the implementation

and respect the following order:

min long ≤ min integer ≤ min short ≤ 0 < max short ≤ max integer ≤ max long

min integer < 0

Denotations of types

1. Context-free syntax

Integer-type ::= short

| integer

| long

2. Types

(a) τ (short) = short



V–1. SCALAR TYPES 73

(b) τ (integer) = integer

(c) τ (long) = long

Denotations of values

The positive values of an integer type are denoted following the syntax of an Integer-cst (cf. part A,

section II–2.3, p. 26). A negative value has not a direct representation: it is obtained using the operator

− applied to a positive value.

1. Types

(a) The type of an Integer-cst E is the smallest integer type that contains it.

2. Semantics

• An Integer-cst denotes an integer value represented in decimal base, contained between 0

and max long .

• An occurrence of an integer value of type short (respectively, integer and long) smaller

than min short (respectively, min integer and min long) or greater than max short (re-

spectively, max integer and max long) results, in the considered type, in a value depending

of the implementation.

• For an Integer-type, the default initial value is the value 0.

Bounded integers

Integers have a special role since they can be used to index arrays. In that case, we have to consider

bounded values.

In this document, for a given signal E, we will use sometimes the following notations:

• lower_bound(E) designates the lower bound of the values of E;

• upper_bound(E) designates the upper bound of the values of E.

These bounds are constant integers.

V–1.3 Real types

The real values can be in simple precision representation (type real ) or double precision representation

(type dreal ); a given implementation may not distinguish these types.

Denotations of types

1. Context-free syntax

Real-type ::= real

| dreal

2. Types

(a) τ (real) = real

(b) τ (dreal) = dreal



74 DOMAINS OF VALUES OF THE SIGNALS

Denotations of values E1.E2eE3 (simple precision) or E1.E2dE3 (double precision)

A value of real type is denoted following the syntax of a Real-cst (cf. part A, section II–2.4, p. 26).

A Real-cst denotes the approximate value of a real number.

1. Types

(a) A Simple-precision-real-cst is of type real .

(b) A Double-precision-real-cst is of type dreal .

2. Semantics

• The value ϕ(Ei), when Ei is omitted, is 0.

• If E2 has n digits, the value of the constant is the approximate value of (ϕ(E1) +ϕ(E2) ∗

10−n) ∗ 10ϕ(E3).

• For a Real-type, the default initial value is the value 0.0 or 0.0d0 following the type.

V–1.4 Complex types

The complex values have the common representation of their components (simple or double precision,

respectively types complex and dcomplex ); both types are distinguished in a given implementation if

and only if the type dreal is distinguished from the type real .

Denotations of types

1. Context-free syntax

Complex-type ::= complex

| dcomplex

2. Types

(a) τ (complex) = complex

(b) τ (dcomplex) = dcomplex

Denotations of values

A value of complex type is obtained for example in the following expression, the first element of

which is the real part and the second one the imaginary part (cf. section VI–8.1, p. 131).

1. Examples

(a) 1.0 @ (−1.0)

For a Complex-type, the default initial value is the pair of default real initial values.



V–2. EXTERNAL TYPES 75

V–1.5 Character type
The type character contains the set of the admitted characters in the language.

Denotation of type

1. Types

(a) τ (char) = character

Denotations of values
A value of type character is denoted by a Character-cst (cf. part A, section II–2.5, p. 26 et seq.).

The default initial value of type character is the character ’\000’.

V–1.6 String type
The type string allows to represent any sequence of admitted characters. The value of the maximal

authorized size for a string, maxStringLength, depends of the implementation.

Denotation of type

1. Types

(a) τ (string) = string

Denotations of values
A value of type string is denoted by a String-cst (cf. part A, section II–2.6, p. 27).

The default initial value of type string is the empty string "".

V–2 External types
External types make possible the use of signals the type of which is not a type of the language.

Denotation of type A

An external type is designated by a name.

1. Context-free syntax

External-type ::= Name-type

2. Types

(a) For an external type with name A, τ (A) = A
Two external types with distinct names are not comparable.

3. Examples

(a) pointer is an external type with name pointer.



76 DOMAINS OF VALUES OF THE SIGNALS

Denotations of values

An external constant can be denoted by a name; the value of an external constant can be defined by

the environment of the program (cf. part E, chapter XII, p. 207 et seq.).

For example the identifier nil can represent a constant of type pointer.

For any external type A, it is possible to define a constant that represents the default initial value of

type A (cf. section V–7, p. 86 et seq.).

The only operations the semantics of which is defined on external type signals are operations of

description of communication graphs (which are polymorphic operations).

V–3 Enumerated types
Enumerated types allow to represent finite domains of values represented by distinct names. These values

(the enumerated values) are the constants of the type to which they belong.

Denotation of types enum (a1, ..., am)

An enumerated type is defined by the list (considered as an ordered list) of its values (the enumerated

values) and by its name (cf. section V–7, p. 86 et seq.): type A = enum (a1, ..., am);
However, like for the other types, such a name does not necessarily exist. In that case, the name of the

type is empty.

The definition of an enumerated type declares its enumerated values.

1. Context-free syntax

ENUMERATED-TYPE ::=

enum ( Name-enum-value { , Name-enum-value }∗ )

2. Types

(a) The type of the enumerated type is:

τ (A = enum (a1, ..., am)) = A× {a1, . . . , am}
where {a1, . . . , am} represents the finite set of ordered values a1, . . . , am. It means that the

name of an enumerated type (the name that is given in the declaration of the type) is part

of that type. Depending on the implementation, it can be the case or not that synonyms (cf.

section V–7, p. 86 et seq.) are considered in the definition of the type.

If the enumerated type is not designated by a name, then its type is just the finite set of its

ordered values.

(b) The type of the enumerated values of an enumerated type is this enumerated type: τ (a1) =

. . . = τ (am) = τ (enum (a1, ..., am))
(c) Two enumerated types are considered to be equal if they have both the same name, and

the same set of enumerated values, in the same order. Two enumerated types that are not

designated by a name are considered to be equal if they have the same set of enumerated

values, in the same order.

3. Semantics
The enumerated values of an enumerated type are ordered (syntactic order of their declaration).

All the values of a given type are distinct; these values are distinguished by their name.



V–4. ARRAY TYPES 77

4. Examples

(a) type color = enum (yellow, orange); and type fruit = enum

(apple, orange); are two enumerated types, each one defining an enumerated

value named “orange”. Both enumerated values named “orange” are distinct values, with

different types. The next paragraph describes the way allowing to distinguish them.

Denotation of values

#ai or A#ai
where A is the name of the enumerated type.

Note: the symbol # does not appear in the definition of the type (and its enumerated values), but only for

the use of an enumerated value.

1. Context-free syntax

ENUM-CST ::=

# Name-enum-value

| Name-type # Name-enum-value

2. Semantics

• The notation #ai can be used to reference an enumerated value ai in a context in which there

is no possible ambiguity on the referenced value. If it is not the case, the notation A#ai has

to be used, where A designates the enumerated type.

• The default initial value of an enumerated type is the first value of its declaration.

3. Clocks An enumerated value ai (designated by #ai or A#ai) is a constant.

(a) ω(ai) = ~

4. Examples

(a) color#orange and fruit#orange designate two different enumerated values (of two

different types) with the same name.

With respect to the fact that there are possibly identical names for different enumerated values in

different enumerated types, the visibility of enumerated values is the same as that of the type in which

they are declared (cf. part E, section XI–2, p. 191 et seq.).

V–4 Array types
An array is a structure allowing to group together synchronous elements of a same type. The description

of such a structure and of the access to its elements uses constant expressions that have the general syntax

of signal expressions (S-EXPR).



78 DOMAINS OF VALUES OF THE SIGNALS

Denotation of types [n1, ..., nm]ν

An array type is defined by its dimensions and by the type of its elements.

1. Context-free syntax

ARRAY-TYPE ::=

[ S-EXPR { , S-EXPR }∗ ] SIGNAL-TYPE

2. Types

(a) The elaborated values of n1 (ϕ(n1)), . . . , nm (ϕ(nm)) are strictly positive integers.

(b) The type of the array is:

τ ([n1, ..., nm]ν) = ([0..ϕ(n1) − 1] × . . . × [0..ϕ(nm) − 1]) → τ (ν).

(c) When the type τ (ν) itself is an array type [nm+1, ..., nm+p]µ, then the type of the

array is:

τ ([n1, ..., nm]ν) = ([0..ϕ(n1) − 1] × . . . × [0..ϕ(nm+p) − 1]) → τ (µ).

3. Clocks The integers ni must be constant expressions.

(a) ω(ni) = ~

4. Properties

(a) The types [n1, n2]ν and [n1] [n2]ν are the same.

5. Examples

(a) [10,10] integer is a two dimensions integer array (the bounds of the array begin im-

plicitly at index 0 in each dimension).

(b) [n] pointer is a vector of values of external type pointer.

Denotations of values

A constant array is defined by a constant expression of array (cf. part D, section IX–2, p. 159); the

elements that compose a constant array are from the same domain.

For an ARRAY-TYPE, the default initial value is an array of which each element has the default

initial value of the type of the elements of the array.

V–5 Tuple types
The SIGNAL language allows to define structured types, called in a generic way tuple types. Two cate-

gories of tuple types, called also tuple types with named fields, can be associated with the objects of the

SIGNAL language in declarations:

• polychronous tuples (designated by the keyword bundle);

• monochronous tuples (designated by the keyword struct)



V–5. TUPLE TYPES 79

(remark: the objects declared of tuple type can also be called tuples).

An object declared of type polychronous tuple is in fact a gathering of objects (family of objects).

In this way, a polychronous tuple of signals is not a signal (for example, in the general case, it has no

clock); it cannot be used as the type of the elements of an array. At the opposite, an object declared of

type monochronous tuple can be a signal: it has a clock (delivered by the operator̂) and it can be used

as the type of the elements of an array.

A general rule is that operators on signals do not apply on polychronous tuples, but they are pointwise

extended on the fields of these tuples (cf. part D, chapter X, p. 179 et seq.).

The SIGNAL language allows also to manipulate gatherings (or tuples) of objects with no explicit

declaration of these gatherings. They define in fact tuples with unnamed fields, the type of which is a

product of types (cf. section V–6.2, paragraph “Order on tuples”, p. 82 et seq.). The operators defined on

signals are pointwise extended to tuples with unnamed fields (cf. part D, chapter X, p. 179 et seq.). By

extension, it will be possible to refer to the clock of a tuple of signals if all the signals of the tuple have

the same clock.

Denotation of types
struct (µ1 X1; ...; µm Xm;)

or

bundle (µ1 X1; ...; µm Xm;) spec C

A tuple type is defined by a list of typed and named fields; in addition, clock properties can be

specified on the fields of a tuple.

The description of such a type uses lists of declarations of sequence identifiers S-DECLARATION
(cf. section V–9, p. 89) for the designation of the fields, and properties SPECIFICATION-OF-
PROPERTIES (cf. part E, section XI–6, p. 195) to express the clock properties that must be respected by

the signals corresponding to the fields defined by the type. These properties should describe exclusively

clock properties on the fields of the tuple, excluding for instance graph properties. Note that constraints

on values can be specified under the form of constraints on clocks.

A tuple type can be multi-clock (polychronous) or mono-clock (monochronous). If it is multi-clock,

it is distinguished by the keyword bundle and it can contain specifications of clock properties applying

on its fields. If it is mono-clock, it is distinguished by the keyword struct and all its fields are implicitly

synchronous; in this case, it can be used as type of the elements of an array.

1. Context-free syntax

TUPLE-TYPE ::=

struct ( NAMED-FIELDS )

| bundle ( NAMED-FIELDS )
[ SPECIFICATION-OF-PROPERTIES ]

NAMED-FIELDS ::=

{ S-DECLARATION }+

2. Types

(a) From the point of view of the domains of associated values, the polychronous or

monochronous tuple types with named fields are designated in the same way in this doc-

ument. The domain is a non associative product (i.e., preserving the structuring) of typed

named fields.



80 DOMAINS OF VALUES OF THE SIGNALS

(b) τ (struct (µ1 X1; ...; µm Xm;))
= bundle({X1} → τ (µ1) × . . .× {Xm} → τ (µm))

(c) τ (bundle (µ1 X1; ...; µm Xm;) spec C)
= bundle({X1} → τ (µ1) × . . .× {Xm} → τ (µm))

(d) A type

bundle({X1} → τ (µ1) × . . .× {Xm} → τ (µm))
defines a set of functions

Ξ : {X1, . . . ,Xm} →
m⋃

i=1

τ (µi) such that Ξ(Xi) ∈ τ (µi).

3. Semantics
The tuple types with named fields (struct and bundle) allow to define structured types as non

associative grouping of typed named fields: (µ1 X1; ...; µm Xm;). The specifications

of properties spec C apply on the fields of the tuple. They establish constraints that must be

respected by the signals defined with such a type (space of synchronization of the values of the

domain).

4. Examples

(a) struct (integer X1, X2;)

is a tuple of two synchronous integers.

(b) bundle (integer A; boolean B;) spec (| A ̂# B |)
defines a union of types as a tuple the fields of which are mutually exclusive.

Denotations of values

A constant tuple is defined by a constant expression of tuple (cf. part D, section VIII–1, p. 153).

For a TUPLE-TYPE, the default initial value is recursively the tuple of initial values of its fields.

V–6 Structure of the set of types
A partial order is defined on the types such that there exists a “natural” plunging of a smaller set into

a greater one. The types are organized into domains corresponding to theoretical sets (non constrained

by the implementation). In this way, the domain of synchronization values (Synchronization-type)

contains the types event and boolean ; the domain of integers (Integer-type) contains the types short ,

integer , and long ; the domain of reals (Real-type) contains the types real and dreal ; the domain of

complex (Complex-type) contains the types complex and dcomplex .

V–6.1 Set of types
The set of types is composed of the types the expressions of which, in the SIGNAL language, described

in the following summary, are derived from the variable SIGNAL-TYPE:



V–6. STRUCTURE OF THE SET OF TYPES 81

SIGNAL-TYPE



Scalar-type



Synchronization-type{
event denotes the type event

boolean denotes the type boolean

Numeric-type



Integer-type



short denotes the type short

integer denotes the type integer

long denotes the type long

Real-type{
real denotes the type real

dreal denotes the type dreal

Complex-type{
complex denotes the type complex

dcomplex denotes the type dcomplex

Alphabetic-type{
char denotes the type character

string denotes the type string

External-type
Name-type

Generic form of the external types: name
ENUMERATED-TYPE

enum ( Name-enum-value { , Name-enum-value }∗ )
Generic form of the enumerated types: A× {a1, . . . , am}

ARRAY-TYPE
[ S-EXPR { , S-EXPR }∗ ] SIGNAL-TYPE
Generic form of the array types: ([0..n1 − 1] × . . . × [0..nm − 1]) → ν

TUPLE-TYPE



struct ( NAMED-FIELDS )

bundle ( NAMED-FIELDS ) [ SPECIFICATION-OF-PROPERTIES ]

Generic form of the tuple types with named fields:

bundle({X1} → µ1 × . . . × {Xm} → µm)

V–6.2 Order on types
Order on scalar and external types

The order on scalar and external types of the SIGNAL language is described in the figure C–V.1, p. 82.

A downward solid arrow (→) links a type with a type directly superior from the same domain (two

types of a same domain are comparable); the other arrows represent basic conversions, the semantics of

which is described below. The other conversions are obtained by composition of conversions. The partial

order is denoted ⊑.

The notion of “comparable types” is extended to arrays and tuples.



82 DOMAINS OF VALUES OF THE SIGNALS

event

short

integer

long

real

dreal

complex

dcomplex

boolean

char

string

EXTERNAL_TYPE

Figure C–V.1: Order and conversions on scalar and external types

Order on arrays

The order on scalar and external types is extended to arrays:

• ([0..m1 − 1] × . . .× [0..mk − 1]) → µ ⊑ ([0..n1 − 1] × . . .× [0..nl − 1]) → ν if and only if

∗ k = l

∗ ∀i 1 ≤ i ≤ k ⇒ mi = ni

∗ and µ ⊑ ν

Order on tuples

A product of types is a type, called tuple type with unnamed fields, which preserves the structuring.

There is no syntactic designation of such a type (it is not possible to declare some object of type tuple

with unnamed fields); however, it is possible to manipulate objects of type tuple with unnamed fields

(product of types). A tuple with unnamed fields with a single element is considered as isomorphic to this

element.

The product of types µ1, . . . , µn (in this order) is denoted (µ1 × . . .× µn).
The order on the types of signals is extended as follows on tuples:



V–6. STRUCTURE OF THE SET OF TYPES 83

• bundle({X1} → µ1 × . . .× {Xn} → µn)⊑ bundle({Y1} → ν1 × . . . × {Yp} → νp) if and only

if:

p = n
and (∀ i) ( Xi = Yi et µi ⊑ νi )

• (µ1 × . . .× µn) ⊑ bundle({Y1} → ν1 × . . . × {Yp} → νp) if and only if:

(µ1 × . . .× µn) ⊑ (ν1 × . . .× νp)

• (µ1 × . . .× µn) ⊑ (µ1 × (µ2 × . . .× µn))

• (µ1 × . . .× µn) ⊑ (ν1 × . . .× νp) if and only if:

((n = p)
∧

( (∀i) ( µi ⊑ νi ) ))
or

( (∃k, l) ( ((i < k) ⇒ (µi ⊑ νi))∧
(((µk × . . .× µk+l) ⊑ νk)∧
(((k + l = n)

∧
(k = p))

or (((k + l < n)
∧

(k < p))
∧

((µk+l+1 × . . .× µn) ⊑ (νk+1 × . . .× νp))))) ) )

Notation

The notation µ ⊔ ν is used to designate the upper bound of two comparable types µ and ν.

V–6.3 Conversions
A conversion is a function for which the image of an object of the type µ of the argument is an object

of the type ν required by the context of utilization. The conversion functions for the types defined in the

SIGNAL language have the name of the reserved designation of the expected type or in general the name

of the expected type. In this document, these functions are denoted as follows, in order to describe their

semantics:

Cµ
ν : µ → ν

Direct conversion functions are available in the language, even if their semantics is described in terms of

composition of conversions.

3-a Conversions between comparable types

Between two directly comparable types µ ⊑ ν, the two following conversions are defined:

1. the conversion Cµ
ν from a smaller type µ to a greater type ν lets the values unchanged;

2. the conversion Cν
µ : ν → µ which is the inverse of the previous one for the values of type µ.

The conversion functions are extended to any pair of comparable types:

• if ν1 ⊑ µ ⊑ ν2 then Cν1
ν2

= Cµ
ν2 ◦ C

ν1
µ ;

• Cµ
µ is the identity function.

Implicit conversions

The only implicit conversions are the conversions Cµ
ν for which µ ⊑ ν. Implicit conversions do not

need to be explicited in the language.



84 DOMAINS OF VALUES OF THE SIGNALS

3-b Conversions toward the domain “Synchronization-type”

The conversions Cµ
event are defined for each µ (except if µ is a polychronous tuple); Trivially, they

deliver the single value of type event .

the conversions Cµ
boolean depend of the implementation while respecting the following rules:

• The conversion Clong
boolean verifies:

– Clong
boolean (0) = false

– Clong
boolean (1) = true

• For a Scalar-type µ distinct from event

Cµ
boolean = Clong

boolean ◦ Cµ
long

3-c Conversions toward the domain “Integer-type”

The conversions Cµ
short depend of the implementation while respecting the following rules:

• Cinteger
short (v) = v if v is greater than min short and smaller than max short (non strictly in both

cases),

• Clong
short = Cinteger

short ◦ Clong
integer

• for a Scalar-type or ENUMERATED-TYPE µ
Cµ
short = Clong

short ◦ C
µ
long

The conversions Cµ
integer depend of the implementation while respecting the following rules:

• Clong
integer (v) = v if v is greater than min integer and smaller than max integer (non strictly in both

cases),

• for a Scalar-type µ which is not smaller than integer (for the order defined on the types), or for µ
an ENUMERATED-TYPE
Cµ
integer = Clong

integer ◦ C
µ
long

The conversions Cµ
long depend of the implementation while respecting the following rules:

• the conversion Cboolean
long is defined by the following rules:

– Cboolean
long (false) = 0

– Cboolean
long (true) = 1

• the value of Ccharacter
long (C) is the numerical value of the code of the character C,

• the value of Cdreal
long (v) is the integer part n of v if n is greater than min long and smaller than

max long (non strictly in both cases),

• for a Scalar-type µ which is not smaller than long (for the order defined on the types)

Cµ
long = Cdreal

long ◦ Cµ
dreal

• for an ENUMERATED-TYPE µ equal to A× {a1, . . . , am}, the conversion Cµ
long is defined by:

Cµ
long (a1) = 0, . . . , Cµ

long(am) = m− 1.



V–6. STRUCTURE OF THE SET OF TYPES 85

3-d Conversions toward the domain “Real-type”

For each Real-type, a given implementation distinguihes the safe numbers (in the same sense as in Ada),

which have an exact representation.

The conversions Cµ
real depend of the implementation while respecting the following rules:

• if v, of type dreal , is a safe number in the type real , Cdreal
real (v) = v

• the conversion preserves the order on the real numbers included between the smallest and the

greatest safe number in the type real ,

• for a Scalar-type µ
Cµ
real = Cdreal

real ◦ Cµ
dreal

The conversions Cµ
dreal depend on the implementation while respecting the following rules:

• the conversion preserves the order on the real numbers included between the smallest and the

greatest safe number in the type dreal ,

• Cdcomplex
dreal (re@im) = re

• Ccomplex
dreal = Cdcomplex

dreal ◦ Ccomplex
dcomplex

• if v, of type long , is a safe number in the type dreal , Clong
dreal (C) = v

• for a Scalar-type distinct of the previous ones,

Cµ
dreal = Clong

dreal ◦ C
µ
long

3-e Conversions toward the domain “Complex-type”

There are no conversions toward the domain Complex-type except those internal to that domain. How-

ever, a given implementation can provide such conversion functions. Note that the conversion of a real

re into a complex (respectively, of a dreal re into a dcomplex ) can be obtained by re@0.0.

The conversion Cdcomplex
complex depends on the implementation while respecting the following rule:

• Cdcomplex
complex (re@im) = {Cdreal

real (re), Cdreal
real (im)}

3-f Conversions toward the types character and string

The conversions Cµ
character depend on the implementation while respecting the following rules:

• the value of Clong
character (v) is the character (if it exists) whose decimal value of its code is equal to

v,

• for a Scalar-type µ Cµ
character = Clong

character ◦ C
µ
long

There is no conversion toward the type string .



86 DOMAINS OF VALUES OF THE SIGNALS

3-g Conversions of arrays

For any tuple of strictly positive integers n1, . . . , nm, and any conversion Cµ
ν ,

the conversion C
([0..n1 − 1] × . . .× [0..nm − 1]) → µ

([0..n1 − 1] × . . .× [0..nm − 1]) → ν
is defined by:

C
([0..n1 − 1] × . . .× [0..nm − 1]) → µ

([0..n1 − 1] × . . .× [0..nm − 1]) → ν
(T ) = Cµ

ν ◦ T

3-h Conversions of tuples

Conversions of tuples with unnamed fields

For any conversions Cµ1
ν1 , . . . , Cµn

νn ,

the conversion C
(µ1 × . . .× µn)
(ν1 × . . .× νn)

is defined by:

C
(µ1 × . . .× µn)
(ν1 × . . .× νn)

(x1, . . . , xn) = (Cµ1
ν1 (x1), . . . , C

µn
νn (xn))

Conversions of tuples with unnamed fields toward tuples with named fields

For any conversions Cµ1
ν1 , . . . , Cµn

νn and any tuple with named fields of type

bundle({X1} → ν1 × . . .× {Xm} → νm) that defines a function Ξ (cf. section V–5, p. 78 et seq.),

the conversion C
(µ1 × . . .× µn)
bundle({X1} → ν1 × . . .× {Xm} → νm) is defined by:

C
(µ1 × . . .× µn)
bundle({X1} → ν1 × . . .× {Xm} → νm) = Ξ ◦ C

(µ1 × . . .× µn)
(ν1 × . . .× νn)

V–7 Denotation of types
A type can be designated by an identifier, declared in a DECLARATION-OF-TYPES (it cannot be an

identifier of predefined type). In particular, such a type identifier can designate a generic type, which

can represent a type of the language, an external type, or a virtual type that can be “overridden” in its

compilation context.

Denotation of type A

1. Context-free syntax

SIGNAL-TYPE ::=

Name-type

2. Types

(a) The type designated by a Name-type A is the type associated with A in the declaration of the

type A.

Declarations of types
type A = µ; or

type A = external; or

type A;

1. Context-free syntax



V–7. DENOTATION OF TYPES 87

DECLARATION-OF-TYPES ::=

type DEFINITION-OF-TYPE { , DEFINITION-OF-TYPE }∗ ;

DEFINITION-OF-TYPE ::=

Name-type

| Name-type = DESCRIPTION-OF-TYPE

DESCRIPTION-OF-TYPE ::=

SIGNAL-TYPE
| EXTERNAL-NOTATION [ TYPE-INITIAL-VALUE ]

TYPE-INITIAL-VALUE ::=

init Name-constant

2. Types

(a) The declaration type A = µ; defines the type A as being equal to the type µ:

τ (A) = τ (µ)

(b) The declaration type A = external; specifies the type A as an externally defined type.

The actual definition of A is provided in the environment of the program.

It is possible to specify, in the declaration of an external type A, a constant name (which must

be the name of an external constant of type A—cf. section V–8, p. 88 et seq.), that allows to

designate the default initial value of that type.

A given compiler may consider that such a constant name appearing as default initial value

of an external type constitutes an implicit declaration of this external constant.

(c) If A is defined as an external type, then:

τ (A) = A

(d) Two external types with distinct names A and B are considered as different types.

(e) When it appears in the formal parameters of a model (cf. part E, section XI–5, p. 193 et

seq.), the declaration type A; defines a formal generic type whose actual value is provided

within the call of the model (cf. section VI–1.2, p. 99 et seq.).

Otherwise, the declaration type A; specifies A as a virtual type in the current context of

declaration. It means that A is a formal generic type, whose actual value is defined elsewhere

(A is “overridden”) in the context or is provided in a module (cf. part E, section XII–1, p. 207

et seq.). This actual value can be a type of the language or an external type.

3. Properties

(a) With the declarations type A = µ; and type B = µ;
then τ (A) = τ (B) = τ (µ).

Some implementations may not ensure this property.

4. Examples

(a) type T = [n] integer; declares the type T as vector of integers, of size n.



88 DOMAINS OF VALUES OF THE SIGNALS

V–8 Declarations of constant identifiers
constant µ X1 = E1, . . . , Yj , . . . , Xn = En;

A constant sequence is a sequence each element of which has the same value. Such a sequence can

be designated by an identifier.

1. Context-free syntax

DECLARATION-OF-CONSTANTS ::=

constant SIGNAL-TYPE

DEFINITION-OF-CONSTANT { , DEFINITION-OF-CONSTANT }∗ ;

DEFINITION-OF-CONSTANT ::=

Name-constant

| Name-constant = DESCRIPTION-OF-CONSTANT

DESCRIPTION-OF-CONSTANT ::=

S-EXPR
| EXTERNAL-NOTATION

2. Types

(a) (∀ i) ( τ (µ) = τ (Xi) )

(b) (∀ i) ( τ (Ei) ⊑ τ (Xi) )

(c) When the constant declaration refers to the external notation, (for example, Yj =

external;), it specifies Yj as an externally defined constant. It means that the value of Yj

should be provided in the environment of the program.

(d) When the constant declaration (for example for Yj) does not contain an expression, nor the

external notation, it specifies Yj as a virtual constant in the current context of declaration.

It means that the value of Yj is provided elsewhere (Yj is “overridden”) in the context or is

provided in a module (cf. part E, section XII–1, p. 207 et seq.).

3. Semantics

• Any expression defining a constant must be monochronous and functional (without side ef-

fect). With this reserve, the set of expressions admitted by a compiler contains the operators

and intrinsic functions and can contain a set of functions depending of a particular environ-

ment.

• The elaboration of the expression Ei, in the context CD of the declaration D, minus the

identifier Xi, provides a constant value (determined at compile time) ϕ(Ei) = v;

• the declaration D hides any higher declaration of Xi for the context CD and the included

contexts;

• in a context where D is visible, the elaboration of an occurrence of the identifier Xi provides

the value ϕ(Xi) = v.



V–9. DECLARATIONS OF SEQUENCE IDENTIFIERS 89

4. Clocks An occurrence of use of Xi (or Yj) is considered as an occurrence of the designated con-

stant.

(a) ω(Ei) = ~

(b) ω(Xi) = ~

(c) ω(Yj) = ~

5. Examples

(a) The declaration

constant real PI = 3.14;

defines the identifier PI of type real and with value ϕ(3.14).

(b) The declaration

constant [2,2] real UNIT = [[1.0,0.0],[0.0,1.0]];

defines the identifier UNIT as a unit real matrix.

(c) The declaration

constant RECTANGLE BASE;

where RECTANGLE is an identifier of external type, defines a constant of that type: BASE, the

value of which should be provided at code generation.

(d) The declaration

constant integer L = M + N;

is incorrect if M or N does not designate a constant or a parameter; if it is correct, it defines

the identifier L as being equal to the sum of the constants ϕ(M) and ϕ(N).

V–9 Declarations of sequence identifiers
µ ID1, ..., IDj init Vj, ..., IDn;

A sequence of values is provided with a type (the one of its elements); this type is associated with

an identifier in a declaration. In such a declaration, an identifier can designate a static parameter (formal

“signal”), a signal, or a tuple of signals. Initialization values can be associated with signals and tuples of

signals (IDj init Vj) in order to define their initial value(s) when these initial values are not defined

elsewhere.

1. Context-free syntax

S-DECLARATION ::=

SIGNAL-TYPE
DEFINITION-OF-SEQUENCE { , DEFINITION-OF-SEQUENCE }∗ ;

DEFINITION-OF-SEQUENCE ::=

Name-signal

| Name-signal init S-EXPR

2. Types

(a) The declared names must be mutually distinct. The same type τ (µ) is given to the identifiers

ID1, . . . , IDn in the context of the declaration.



90 DOMAINS OF VALUES OF THE SIGNALS

(b) For a signal expression (“assignment”, passage of static parameter or positional identifica-

tion) associating a value v with an identifier IDi declared with type µ, we must have τ (v)
⊑ µ.

(c) The rules applying to initial values are exactly those described in the section “Initialization

expression” (cf. section VI–3.1, p. 110).

3. Semantics

• µ ID1, ..., IDn; declares the sequences (signals or parameters) ID1, . . . , IDn. If

µ designates a polychronous tuple type then the identifiers ID1, . . . , IDn designate tuples

of signals (and not, strictly speaking, signals); the signals represented by these tuples are,

recursively, the fields of the tuples (the fields can be themselves tuples). For example, if

µ designates a tuple type with named fields bundle (µ1 X1; ...; µm Xm;) ...

then each tuple IDi gathers the signals (or, recursively, the tuples of signals) designated by

IDi.X1, . . . , IDi.Xm (cf. part D, section VIII–3, p. 154), which have respectively the

types µ1, . . . , µm.

• The semantics of an initialization expression specified in a declaration is exactly the same

as that described in the section “Initialization expression” (cf. section VI–3.1, p. 110). The

association of an initialization with a signal declaration specifies a default initialization for

the corresponding signal. It can be overloaded by the definition of that signal (in that case, it

is unnecessary or only partly necessary).

4. Clocks

(a) The relations on the clocks of initialization expressions are described in the section “Initial-

ization expression” (cf. section VI–3.1, p. 110).

5. Examples

(a) The declaration real X, Y; declares the signals X and Y of type real .

(b) The declaration [n] integer V; declares the vector of integers V, of size n.

V–10 Declarations of shared variables
shared µ ID1 init V1, ..., IDj, ..., IDn init Vn;

Shared variables are particular cases of signals or tuples of signals (cf. section V–9, p. 89 et seq.).

A shared variable is defined via partial definitions (cf. section VI–1.1, paragraph 1-c, p. 96 et seq.). A

shared variable cannot be declared as input or output of a model of process.

1. Context-free syntax

DECLARATION-OF-SHARED-VARIABLES ::=

shared SIGNAL-TYPE

DEFINITION-OF-SEQUENCE { , DEFINITION-OF-SEQUENCE }∗ ;



V–11. DECLARATIONS OF STATE VARIABLES 91

2. Types

(a) The declared names must be mutually distinct. The same type τ (µ) is given to the identifiers

ID1, . . . , IDn in the context of the declaration.

(b) For a signal expression (partial “assignment” associating a value v with an identifier IDi

declared with type µ, we must have τ (v) ⊑ µ.

(c) The rules applying to initial values are exactly those described in the section “Initialization

expression” (cf. section VI–3.1, p. 110).

3. Semantics

• shared µ ID1, ..., IDn; declares the shared variables ID1, . . . , IDn.

• The semantics of an initialization expression specified in a declaration is exactly the same as

that described in the section “Initialization expression” (cf. section VI–3.1, p. 110).

V–11 Declarations of state variables
statevar µ ID1 init V1, ..., IDj, ..., IDn init Vn;

A state variable is a typed sequence the elements of which are present as frequently as necessary (it is

available at a clock which is upper than the upper bound of the clocks of all the signals of the compilation

unit in which it is declared). A state variable is defined via partial definitions the clock of which are well

defined (cf. section VI–1.1, paragraph 1-d, p. 97 et seq.). It keeps its previous value until a new value

is defined. It should have an initial value associated with its declaration (if it has not, it takes as initial

value the default initial value of its type). A state variable can be used only in a context which defines a

context clock (the occurrence of a state variable is described in section VI–2.3, p. 108 et seq.). A state

variable cannot be declared as input or output of a model of process.

1. Context-free syntax

DECLARATION-OF-STATE-VARIABLES ::=

statevar SIGNAL-TYPE

DEFINITION-OF-SEQUENCE { , DEFINITION-OF-SEQUENCE }∗ ;

2. Types

(a) The declared names must be mutually distinct. The same type τ (µ) is given to the identifiers

ID1, . . . , IDn in the context of the declaration.

(b) For a signal expression (partial “assignment” associating a value v with an identifier IDi

declared with type µ, we must have τ (v) ⊑ µ.

(c) The rules applying to initial values are exactly those described in the section “Initialization

expression” (cf. section VI–3.1, p. 110).

3. Semantics

• statevar µ ID1, ..., IDn; declares the state variables ID1, . . . , IDn.



92 DOMAINS OF VALUES OF THE SIGNALS

• The semantics of an initialization expression specified in a declaration is exactly the same as

that described in the section “Initialization expression” (cf. section VI–3.1, p. 110).

Note: The INRIA POLYCHRONY environment allows in some cases that the type of a constant, a

sequence identifier, a shared variable or a state variable is not provided explicitly in their declaration (the

corresponding SIGNAL-TYPE is simply omitted). The corresponding type must be deduced from the

context of use of the object.



Chapter VI

Expressions on signals

The values associated with signals are determined by equations on signals; these equations are built by

composition of sub-systems of equations (named also processes) from elementary equations.

This chapter presents the expressions of definition of signals (S-EXPR). This presentation is pre-

ceded by an introduction to the expressions of composition of definitions (P-EXPR).

VI–1 Systems of equations on signals
Composition of definitions of signals

The equations of definition of signals can be composed by the operator | (cf. chapter VII, “Ex-

pressions on processes”, p. 135 et seq.). An expression on processes

E1 | E2

defines the signals (or, equivalently, has as outputs the signals) defined in each one of its sub-expressions,

and has as inputs the input signals of each one of these sub-expressions which are not outputs of the

other one. The value of an input signal of a sub-expression, which is defined in the other one, is the

value associated by this definition. As a signal cannot have a double complete definition, a given signal

identifier representing a totally defined signal cannot be output of two sub-expressions. However, it

is possible to have several partial definitions, in different sub-expressions, for shared variables (partial

definitions are syntactically distinguished).

An expression on processes can be parenthesized by (| on the left and by |) on the right (note

the presence of the symbol | ).

A given output of an expression on processes can be hidden through the operator / (cf. chapter VII,

“Expressions on processes”, p. 135 et seq.). An expression on processes

E1 / a1
has as outputs the outputs of E1 distinct from a1 and for inputs the inputs of E1.

The signals are defined by explicit elementary equations of DEFINITION-OF-SIGNALS, CON-
STRAINTs (cf. section VI–5.3, p. 123 et seq.), or by referring to systems of equations declared as

models of processes (INSTANCE-OF-PROCESS).

VI–1.1 Elementary equations
A definition of signals allows to define a signal or a set of signals with the syntax given below. A

definition of signals is an expression of processes.



94 EXPRESSIONS ON SIGNALS

1-a Equation of definition of a signal

X := E

1. Context-free syntax

ELEMENTARY-PROCESS ::=

DEFINITION-OF-SIGNALS

DEFINITION-OF-SIGNALS ::=

Name-signal := S-EXPR

2. Profile
An equation of definition of a signal has as output the defined signal and as inputs the inputs of the

expression E distinct of the output.

• ! (X := E) = {X}

• The inputs of E are the signal identifiers that have at least one occurrence in E.

? (X := E) = ? (E) − ! (X := E)

3. Types

(a) τ (E) ⊑ τ (X)

4. Semantics
The signal X is equal to the signal resulting from the evaluation of E. An occurrence of X in the

expression E builds a recursive definition.

5. Definition in SIGNAL
Though it is the most frequently form of equation used in the SIGNAL language, X := E
is not the basic form. The sign := expresses that the equation is oriented, while in the basic form

(cf. part B, chapter III, p. 31 et seq.) the sign :=: is used to express the fact that equations are

non oriented (cf. section VI–6, p. 125).

It is equal to the following process, where the dependences are made explicit:

( | X :=: E
| E −−> X
|)

6. Clocks A signal represented by an identifier and the signal that defines it are synchronous.

(a) ω(X) = ω(E)

7. Graph

(a) E−→X

8. Examples

(a) if x, y, z designate signals:

x := y + z defines the signal designated by x, equal to the sum of the signals designated

respectively by y and z; this expression has as inputs y and z and as output x.



VI–1. SYSTEMS OF EQUATIONS ON SIGNALS 95

1-b Equation of multiple definition of signals

(X1,. . . ,Xn) := E

1. Context-free syntax

DEFINITION-OF-SIGNALS ::=

( Name-signal { , Name-signal }∗ ) := S-EXPR

2. Profile
An equation of multiple definition of signals has the inputs and outputs defined by the following

rules.

• The identifiers of defined signals represent the outputs of the equation:

! ((X1,. . . ,Xn) := E) = {X1, . . . ,Xn}

• The inputs of the equation are the inputs of E which are not outputs of the equation:

? ((X1,. . . ,Xn) := E) = ? (E) − ! ((X1,. . . ,Xn) := E)

3. Types

(a) τ ((X1,. . . ,Xn)) = (τ (X1) × . . .× τ (Xn))

(b) τ (E) ⊑ (τ (X1) × . . .× τ (Xn))

4. Semantics

• X1, . . . , Xn designate signals or tuples of signals.

• E can be viewed as a tuple of n elements: let (E1,. . . ,En) this tuple.

• Each signal or tuple Xi is respectively equal to the signal or tuple Ei that corresponds to it

positionally as output of E.

5. Definition in SIGNAL
(X1,. . . ,Xn) := E
is equal to the following process:

( | X1 := E1
...

| Xn := En

|)

As a particular case, when the defined signal or tuple is unique, (X) := E is equivalent

to:

X := E
(the syntax without parentheses as described in 1-a can be used when X is a tuple).

6. Clocks A signal represented by an identifier and the signal Ei that defines it are synchronous. In

this case, there is:

(a) ω(Xi) = ω(Ei)



96 EXPRESSIONS ON SIGNALS

7. Graph

(a) Ei−→Xi

8. Examples

(a) if x, y, z, a designate signals and P a model with one formal parameter, one input and three

outputs:

(x,y,z) := P{n}(a+5) defines the signals designated by x, y and z, equal respectively

to the first, second and third output of the model P instantiated with the parameter n and

taking at+5 as input at each occurrence of a; this expression has as input a and as outputs x,

y and z;

(b) if w, v, b also designate signals:

(w,x,y,z,v):= (a,P{n}(a+5),b) defines the signals w, x, y, z and v, equal respectively

to the signal a, to the first, the second and the third output of the process P, and to the signal

b; this expression has as inputs a and b and as outputs w, x, y, z and v; it is equivalent to

the composition

(| (w,v) := (a,b) | (x,y,z) := P{n}(a+5) |);

(c) if x designates a tuple with named fields whose fields are respectively x1 and x2, and a, b

designate signals:

(a,b) := (x.x1,x.x2) defines the signals a and b equal respectively to the first and the

second component of the tuple x;

(d) if x designates a tuple with named fields and a, b designate signals:

x := (a,b) defines the tuple x the components of which are respectively equal to the

signals a and b.

1-c Equation of partial definition of a signal

Equations of partial definition of a signal are a way to avoid the syntactic single assignment rule, even

if semantically, this rule applies. Signals that are defined using partial definitions should be declared

as shared variables (cf. section V–10, p. 90 et seq.). Each one of the partial definitions of a given

signal contributes to the overall definition of this signal. These partial definitions can appear in different

syntactic contexts. All these partial definitions have to be mutually compatible. One default partial

definition can appear for a given signal: it allows to complete the definition of the signal by a default

value when the partial definitions do not apply. The overall definition of the signal is considered as

complete in a compilation unit.

Equations of partial definition are syntactically distinguished by the use of the special symbol

::= . The use of this symbol is mandatory to allow the presence of different syntactic definitions of

a given signal. The syntactic single assignment rule still applies when the assignment symbol :=
is used. In particular, it is not possible to have both complete definition and partial ones for a given signal.

X ::= E
X ::= defaultvalueE

1. Context-free syntax



VI–1. SYSTEMS OF EQUATIONS ON SIGNALS 97

DEFINITION-OF-SIGNALS ::=

Name-signal ::= S-EXPR

| Name-signal ::= defaultvalue S-EXPR

2. Profile
An equation of partial definition of a signal has as output the partially defined signal and as inputs

the inputs of the expression E distinct of the output.

• ! (X ::= E) = {X}

• ? (X ::= E) = ? (E) − ! (X ::= E)
• ! (X ::= defaultvalueE) = {X}

• ? (X ::= defaultvalueE) = ? (E) − ! (X ::= defaultvalueE)

3. Types

(a) τ (E) ⊑ τ (X)

4. Definition in SIGNAL
Let the following composition represent the whole set of partial definitions of a signal X in a

given compilation unit:

( | X ::= E1
...

| X ::= En

| X ::= defaultvalue En+1

|)
It is semantically equivalent to:

( | X := E1 default X
...

| X := En default X
| X := (En+1 when (X ̂− (E1 ̂+ ... ̂+ En))) default X
| X ̂ = E1 ̂+ ... ̂+ En ̂+ X
|)

5. Clocks For the above set of partial definitions of the signal X , any two different expressions Ei

must have the same value at their common instants if they have such common instants. The clock

of X is greater than the upper bound of the clocks of the expressions Ei, i = 1, . . . , n.

(a) ∀i, j = 1, . . . , n ω(Ei ∗̂ Ej) = ω(when ((Ei when Êj) == (Ej when Êi)))
(b) ω(X) = ω(E1 +̂ . . . +̂ En +̂ X)
(c) For i = 1, . . . , n, the clock of any expression Ei cannot be a context clock: in particular, Ei

cannot be a constant expression or a direct reference to a state variable.

The clock of En+1 can be a context clock.

1-d Equation of partial definition of a state variable

State variables (cf. section V–11, p. 91 et seq.) can be defined exclusively by equations of partial

definition. These equations define the next values of a state variable. The last defined value, which



98 EXPRESSIONS ON SIGNALS

is the only one that can be accessed at every instant, is referred to via the special notation X? (cf.

section VI–2.3, p. 108 et seq.).

X ::= E

1. Context-free syntax

The syntax is the same as that of an equation of partial definition of a signal.

2. Types

(a) τ (E) ⊑ τ (X)

3. Definition in SIGNAL
Let the following composition represent the whole set of partial definitions of a state variable X
in a given compilation unit:

( | X ::= E1
...

| X ::= En

|)
It is semantically equivalent to:

( | next_X := E1 default next_X
...

| next_X := En default next_X
| X := next_X $

|) / next_X

4. Clocks For the above set of partial definitions of the state variable X , any two different expressions

Ei must have the same value at their common instants if they have such common instants.

(a) ∀i, j ω(Ei ∗̂ Ej) = ω(when ((Ei when Êj) == (Ej when Êi)))

(b) The clock of any expression Ei has to be well defined: it cannot be a context clock. In

particular, Ei cannot be a constant expression or a non-clocked reference to another state

variable.

(c) The clock of X is upper than the upper bound of the clocks of all the signals of the compila-

tion unit in which X is declared.

1-e Equation of partial multiple definition

(X1,. . . ,Xn) ::= E
(X1,. . . ,Xn) ::= defaultvalueE

1. Context-free syntax

DEFINITION-OF-SIGNALS ::=

( Name-signal { , Name-signal }∗ ) ::= S-EXPR

| ( Name-signal { , Name-signal }∗ ) ::= defaultvalue S-EXPR



VI–1. SYSTEMS OF EQUATIONS ON SIGNALS 99

2. Types

(a) τ ((X1,. . . ,Xn)) = (τ (X1) × . . .× τ (Xn))

(b) τ (E) ⊑ (τ (X1) × . . .× τ (Xn))

3. Semantics

• X1, . . . , Xn designate signals or tuples of signals declared as shared variables, or state vari-

ables

(only signals or tuples of signals for (X1,. . . ,Xn) ::= defaultvalueE)

• This is the same generalization of 1-c and 1-d

(only of 1-c for (X1,. . . ,Xn) ::= defaultvalueE) as that of 1-b with respect to 1-a.

• Each signal, tuple or state variable Xi is respectively partially defined by the signal or tuple

vi that corresponds to it positionally as output of E.

VI–1.2 Invocation of a model
The invocation of a model of process provides an INSTANCE-OF-PROCESS by macro-expansion of

the text of the model, or by reference to this model if the text of the model is defined externally or is

compiled separately.

Depending on the fact that a model:

• has or not parameters,

• has or not inputs,

• has or not outputs,

the invocation of the model can take different syntactic forms. In all cases, the composition with the

context is done positionally, on the inputs and on the outputs.

If the model has no outputs, and only in this case, its invocation appears as an expression on processes

(ELEMENTARY-PROCESS); in any other case, an invocation of model appears as an expression on

signals (S-EXPR).

The table C–VI.1 gives the generic forms of the invocation of a model (which can be either an ex-

pression on processes or an expression on signals).

Positional definition No inputs

of the inputs

Without parameters P(E1,. . . ,En) P( )

With parameters P{V1,. . . ,Vm}(E1,. . . ,En) P{V1,. . . ,Vm}( )

Table C–VI.1: Syntactic forms of an invocation of model

The different forms are detailed below.

1. Context-free syntax

ELEMENTARY-PROCESS ::=

INSTANCE-OF-PROCESS



100 EXPRESSIONS ON SIGNALS

2-a Macro-expansion of a model

One has to take care that this basic form is used here to describe the semantics of any invocation of model.

The composition with the context is made by identity of names. However, this form is not necessarily

available as an external form in the language, except if the corresponding model of process does not

have inputs.

P{V1,. . . ,Vm}

The static parameters are parenthesized by { and } ; these parameters are types or constant

expressions mainly used as initial values of signals or array size. Note that parameters can also be

models (cf. part E, section XI–8, p. 204 et seq.).

1. Context-free syntax

INSTANCE-OF-PROCESS ::=

EXPANSION
| Name-model ( )

EXPANSION ::=

Name-model
{ [ S-EXPR-PARAMETER { , S-EXPR-PARAMETER }∗ ] }

S-EXPR-PARAMETER ::=

S-EXPR
| SIGNAL-TYPE

2. Profile

• ! (P{V1,. . . ,Vm}) is equal to the set of the names of the outputs of the visible declaration of

P , let {Y1, . . . , Yq}.

• ? (P{V1,. . . ,Vm}) is equal to the set of the names of the inputs of the visible declaration of

P , let {X1, . . . ,Xp}.

3. Types

(a) Let, in this order, P1, . . . , Pl be the names of the formal parameters of the visible declaration

of P .

(b) The actual parameters (S-EXPR-PARAMETER) of the invocation of the model must cor-

respond positionally to the formal parameters of the declaration of the model (cf. part E,

section XI–5, p. 193 et seq.). In particular, to the parameter types can only correspond types

(SIGNAL-TYPE), and to the “constant sequences” parameters can only correspond expres-

sions on sequences (S-EXPR).

(c) (τ (V1) × . . .× τ (Vm)) ⊑ (τ (P1) × . . .× τ (Pl))
(d) τ (P{V1,. . . ,Vm}) = τ (!P)

(cf. part E, section XI–5, p. 193 et seq.)

4. Semantics

• P being the name of a model of visible process, the expressions V1, . . . , Vm are the actual

parameters of the expansion, corresponding positionally to the formal parameters of this



VI–1. SYSTEMS OF EQUATIONS ON SIGNALS 101

model. The expansion P{V1,. . . ,Vm} is equivalent to the body of the visible declaration of P
in which each formal parameter has been substituted by the corresponding actual parameter.

• P( ) is the expansion of P when P has no parameters.

5. Clocks The actual parameters of sequences Vi must be constant expressions.

(a) ω(Vi) = ~

2-b Positional macro-expansion of a model

P{V1,. . . ,Vm}(E1,. . . ,En) or P(E1,. . . ,En) with n ≥ 1
In the external form of the language, the input signals are associated with an instance of model,

respecting their “position”: a list of expressions between the symbols ( and ) redefines the input

signals declared in the model respecting the order of these declarations.

1. Context-free syntax

INSTANCE-OF-PROCESS ::=

PRODUCTION

PRODUCTION ::=

MODEL-REFERENCE ( S-EXPR { , S-EXPR }∗ )

MODEL-REFERENCE ::=

EXPANSION
| Name-model

2. Profile

• ! (P{V1,. . . ,Vm}(E1,. . . ,En)) is equal to the set of the names of the outputs of the visible

declaration of P , let {Y1, . . . , Yq}.

• ? (P{V1,. . . ,Vm} (E1,. . . ,En)) =

n⋃

i=1

? (Ei) − {Y1, . . . , Yq}.

3. Types

(a) Let, in this order, P1, . . . , Pl be the names of the formal parameters and X1, . . . , Xp the

names of the inputs of the visible declaration of P .

(b) (τ (V1) × . . .× τ (Vm)) ⊑ (τ (P1) × . . .× τ (Pl))

(c) (τ (E1) × . . .× τ (En)) ⊑ (τ (X1) × . . .× τ (Xp))

(d) τ (P{V1,. . . ,Vm}(E1,. . . ,En)) = τ (!P )
(cf. part E, section XI–5, p. 193 et seq.)

4. Semantics
The form P(E1,. . . ,En) is used when P has no parameters.



102 EXPRESSIONS ON SIGNALS

5. Definition in SIGNAL
P{V1,. . . ,Vm}(E1,. . . ,En)

is equal to the process defined below in which {SXi} is a set of signal names that do not belong

to the inputs of the expressions Ei (

n⋃

i=1

? (Ei)), or to the sets of input or output names of P .

( | (SX1,...,SXp) := (E1,...,En)

| ( | (X1,...,Xp) := (SX1,...,SXp)

| P{V1,...,Vm}

|) / X1, ..., Xp

|) / SX1, ..., SXp

6. Clocks The actual parameters of sequences Vi must be constant expressions.

(a) ω(Vi) = ~

2-c Call of a model

(SS1,. . . ,SSr) := P{V1,. . . ,Vm}(E1,. . . ,En)

(the form P{V1,. . . ,Vm}(E1,. . . ,En) is used here generically to represent one of the forms defined in

2-a or in 2-b; moreover, it can also appear as argument of any expression on signals)

1. Context-free syntax

S-EXPR ::=

INSTANCE-OF-PROCESS

2. Definition in SIGNAL
(SS1,. . . ,SSr) := P{V1,. . . ,Vm}(E1,. . . ,En), with the model P having the output signals

{Y1, . . . , Yq}, is equal to the process defined below in which {SYi} is a set of signal names that

do not belong to the inputs of the expressions Ei (

n⋃

i=1

? (Ei)), or to the sets of input or output

names of P , or to the set {SS1, . . . , SSr}.

( | (SS1,...,SSr) := (SY1,...,SYq)

| ( | P{V1,...,Vm}(E1,...,En)

| (SY1,...,SYq) := (Y1,...,Yq)

|) / Y1, ..., Yq

|) / SY1, ..., SYq

The table C–VI.2 gives the different forms of the invocation of a model together with the priority of

their arguments (refer to the tables C–VI.3 and C–VI.4).

2-d Expressions of type conversion

T(E)



VI–1. SYSTEMS OF EQUATIONS ON SIGNALS 103

Scheme Type

Arguments → Result

P{V 0
1 ,. . . ,V 0

m}(E
0
1 ,. . . ,E0

n)

P{V 0
1 ,. . . ,V 0

m}() (µ1 × . . .× µm) × (ν1 × . . .× νn)
P{V 0

1 ,. . . ,V 0
m} → (ρ1 × . . .× ρp)

P(E0
1 ,. . . ,E0

n) (ν1 × . . .× νn)
P()

Table C–VI.2: INSTANCE-OF-PROCESS E25

• When the inputs Ei are absent, it is a model without input (the tuple ((ν1 × . . .× νn)) is then empty);

• When the model has at least one input, the types ν′1, . . . , ν′p being, in this order, those of the declaration of

the inputs of P , there is

(ν1 × . . .× νn) ⊑ (ν′1 × . . .× ν′p)

• The type ρi is that of the signal declaration corresponding positionally in output in P .

The conversions of values between distinct effective types can be explicited as call of a model

(INSTANCE-OF-PROCESS); the name of this model is the name of the destination type of the conver-

sion; the expressions of conversion can only appear as expressions on signals, but not as expressions on

processes.

1. Context-free syntax

S-EXPR ::=

CONVERSION

CONVERSION ::=

Type-conversion ( S-EXPR )

Type-conversion ::=

Scalar-type
| Name-type

2. Types

(a) If the conversion C
τ (E)
τ (T)

exists,

τ (T(E)) = τ (T )

(b) If the conversion C
τ (E)
τ (T)

does not exist, T(E) is incorrect.

3. Semantics

• If v is an element of the sequence of values represented by E, the corresponding element is

C
τ (E)
τ (T)

(v) in the sequence represented by T(E) (if the conversion C
τ (E)
τ (T)

exists).

• If the type T or the type of E is an external type, the applied conversion, when it exists,

depends on the environment while respecting the general rules concerning conversions (cf.



104 EXPRESSIONS ON SIGNALS

section V–6.3, p. 83 et seq.).

4. Clocks A conversion is a monochronous expression.

(a) ω(T(E)) = ω(E)

5. Examples

(a) integer(3.14) has the value 3.

VI–1.3 Nesting of expressions on signals
The expressions on signals can be nested in the respect of the priorities of the operators: any expression

with lower priority than the expression of which it is an argument must be parenthesized. Parenthesizing

is possible but not necessary in the other cases. Non parenthesized expressions which contain operators

with the same priority are evaluated from left to right, unless it is explicitly mentioned.

1. Context-free syntax

S-EXPR ::=

( S-EXPR )

2. Profile
The expressions S-EXPR do not return a named output; their inputs are the set obtained by the

union of the sets of inputs of their operands.

3. Semantics
In the respect of the rules of priority, an equation S :=: T (E1,. . . ,En) formed by a function (or

an operator) and sub-expressions E1,. . . ,En is equal to the composition

• of the equations calculating these expressions in auxiliary variables:

(Xi,1,. . . ,Xi,mi
) :=: Ei

• of the equation S :=: T (X1,1,. . . ,Xn,nm) equal to the equation S :=: T (E1,. . . ,En) in

which has been substituted, to each expression Ei, the tuple (Xi,1,. . . ,Xi,mi
) of the auxiliary

variables in which it is evaluated,

• and of the clock equations depending on the context of each one of these expressions.

Priorities and types of the operators on signals The tables C–VI.3 and C–VI.4 contain a sum-

mary of the properties of expressions on signals. In these tables:

• the priorities are described in the first column (priority of the expression) and the second column

(priorities of its arguments) by using Ei to describe an expression of priority i; the expressions are

evaluated in the decreasing order of priorities;

• the third column describes the types of the arguments and of the result:

– any i represents any type (however, one must refer to the definition of the operators for a

more precise description)

– bool i is the type boolean or event

– compar i is any type in which there exists a partial order



VI–1. SYSTEMS OF EQUATIONS ON SIGNALS 105

Prio- Scheme Type

rity Arguments → Result

E0 0̂ event

E1 E1 next E2
([0..n1] × . . . × [0..np ]) → any

1
×

([0..m1 ] × . . . × [0..mp]) → any
2

→ ([0..n1] × . . . × [0..np]) → any
1
⊔ any

2
a

E2 E3 : E3
([0..l1] × . . . × [0..lp]) → int1

n ×

([0..m1 ] × . . . × [0..mp]) → any
1

→ ([0..r1] × . . . × [0..rn]) → any
1

E3 E3 default E4 any1 × any2 → any1 ⊔ any2 a

E4 E4 when E5 any1 × bool 1 → any1
E5 E6 after E6 event × event

E6 from E6 → integer

E6 count E6 event × int1
E6 E6 +̂ E7, E6 −̂ E7 any1 × any2

E7 E7 ∗̂ E8 → event

E8 when E8, [:E0], [/:E0] bool 1

E9 if E0 then E0 else E9 bool 1 × any1 × any2 → any1 ⊔ any2 a

E10 E11..E11 step E11 int1 × int2 × int3 → [0..n] → int1 ⊔ int2
E11..E11 int1 × int2 → [0..n] → int1 ⊔ int2

E11 E11 xor E12 bool 1 × bool 2 → bool 1 ⊔ bool 2
E12 E12 or E13

E13 E13 and E14

E14 not E14 bool 1
E15 E16 == E16 any1 × any2 a

E16 «= E16 compar 1 × compar 2 → boolean a

E16 E17 Op E17 any1 × any2 → boolean a, b

compar 1 × compar 2 a, c

E17 E17 + E18, E17 − E18 num1 × num2 → num1 ⊔ num2

E17 |+ E18
[0..m1] → any

1
× [0..m2] → any

2
→ [0..m1 + m2 + 1] → any

1
⊔ any

2
a

E18 E18 ∗ E19, E18 / E19 num1 × num2 → num1 ⊔ num2

E18 |∗ E19 any1 × int1 → [0..m] → any1

E18 modulo E19 int1 × int2 → int2
E18 ∗. E19 d

E19 E20 ∗∗ E20 num1 × int1 → num1

E20 @ E20 real 1 × real 2 → cmplx 1 e

E20 + E21, − E21 num1 → num1

E21 var E22 init E22 any1 × any2 → any1 f

var E22 any1

E21 cell E22 init E22 any1 × bool 1 × any2 → any1 f

E21 cell E22 any1 × bool 1
S-EXPR-DYNAMIC C–VI.6

Table C–VI.3: Expressions on signals



106 EXPRESSIONS ON SIGNALS

Prio- Scheme Type

rity Arguments → Result

E22 tr E22 ([0..l] × [0..m]) → any1 → ([0..m] × [0..l]) → any1

E23 E24\\E24 any1 × any2 → any1 ⊔ any2 a

E24 Ê24 any1

E25 ≪E0,. . . ,E0≫ [0..m1 − 1] → any
1
× . . . × [0..mn − 1] → anyn → [0..

n∏

k=1

mk − 1] → any
1

× . . . × [0..

n∏

k=1

mk − 1] → anyn

[E0,. . . ,E0] any
1
× . . . × anyn → [0..n − 1] →

n⊔

i=1

anyi a

INSTANCE-OF-PROCESS C–VI.2

T(E0) any1 → τ (T) h

E26 E26[E0,. . . ,E0] (([0..n1] × . . . × [0..nm ]) → any
1

) × (int1 × . . . × intm) → any
1

([0..l1] × . . . × [0..ln]) → any
1
×

([0..m1] × . . . × [0..mp ]) → int1
n → ([0..m1] × . . . × [0..mp ]) → any

1

E26.Xi bundle({X1} → any
1
× . . . × {Xm} → anym) → anyi

E27 (E0,. . . ,E0) any
1
× . . . × anyn → (any

1
× . . . × anyn)

CONSTANT C–VI.5

Id τ (Id) i

( E0 ) τ (E)

Table C–VI.4: Expressions on signals

[a] for types belonging to the same domain

[b] for Op = or / =

[c] for Op <= or >= or < or >, a partial order being defined in the type compar

[d] matrix products

[e] cmplx 1 is of type complex if both arguments are of type real , it is of type dcomplex otherwise

[f] for any2 ⊑ any1

[g] Iterative enumeration

[h] Conversion

[i] τ (Id) is the type of the declaration of the signal identifier Id

– int i is an integer type (i.e., among short , integer , long )

– real i is a real type (i.e., among real , dreal )

– cmplx i is a complex type (i.e., among complex , dcomplex )

– numi is a numeric type (i.e., among int i, real i, cmplx i);

when, on a same line, two notations of type have the same index, then they designate the same

type;

• the last column is a reference to the notes that follow the table (lowercase letter) or a reference to

another table.



VI–2. ELEMENTARY EXPRESSIONS 107

VI–2 Elementary expressions
The expressions of elementary signals are the following:

1. Context-free syntax

S-EXPR-ELEMENTARY ::=

CONSTANT
| Name-signal
| Label
| Name-state-variable ?

VI–2.1 Constant expressions
A constant expression is a CONSTANT, an occurrence of constant identifier, an occurrence of parameter

identifier, a constant expression of tuple (cf. part D, section VIII–1, p. 153), a constant expression of array

(cf. part D, section IX–2, p. 159), or one of the following expressions having recursively as arguments

constant expressions:

• an INSTANCE-OF-PROCESS (only if it is the call of a monochronous function with constant

arguments), or a CONVERSION,

• among S-EXPR-TEMPORAL, a MERGING or an EXTRACTION,

• an S-EXPR-BOOLEAN,

• an S-EXPR-ARITHMETIC,

• an S-EXPR-CONDITION.

Clock expressions (S-EXPR-CLOCK) and dynamic expressions (S-EXPR-DYNAMIC) cannot be part

of a constant expression.

A constant is a denotation of value of a Scalar-type or of an ENUMERATED-TYPE:

1. Context-free syntax

CONSTANT ::=

Boolean-cst
| Integer-cst
| Real-cst
| Character-cst
| String-cst
| ENUM-CST

These syntactic categories are described elsewhere (cf. part A, section II–2, p. 25 et seq.).

1. Profile
A constant and consequently a constant expression have neither named input, nor named output.



108 EXPRESSIONS ON SIGNALS

2. Types

(a) The type of a constant expression is evaluated in accordance with the type of the S-EXPR
having the same syntax.

3. Clocks

(a) The clock of a constant expression and of its arguments is ~.

The table C–VI.5 contains a summary of these properties and gives the priority of the constant lexical

expressions.

Scheme Type

true event

false boolean

Integer-cst Integer-type following its value

Simple-precision-real-cst real

Double-precision-real-cst dreal

Character-cst character

String-cst string

Table C–VI.5: Types of the constants E27

VI–2.2 Occurrence of signal or tuple identifier

An occurrence of signal identifier has as value the signal that defines this identifier, as clock, the clock

of this signal and as type the type of its most internal declaration; the profile which is associated with it

contains as input this single identifier and does not contain a named output.

An occurrence of tuple identifier has as value the tuple of the signals that define this identifier.

In the rules describing the context-free syntax of the language, Name-signal can designate, following

the context, a signal name, a tuple name, or a field name in a tuple.

The occurrence of a label is more specifically described in chapter VII, section VII–5, p. 138 et seq.

VI–2.3 Occurrence of state variable
The notation X? allows to refer to the last defined value of a state variable X (cf. section V–11, p. 91

et seq.). State variables can be defined exclusively by equations of partial definition, that define the

next values of the state variable (cf. section VI–1.1, paragraph 1-d, p. 97 et seq.). For a declared state

variable X , the direct reference to X is not allowed in expressions on signals; the only way to refer to

the last defined value of the state variable is by using the notation X?. The notation X? designates the

value of the state variable X at the beginning of the “current step” (current logical instant). Moreover,

this notation must be used in a context in which a context clock is well defined.

X?

1. Types

(a) τ (X?) = τ (X)



VI–3. DYNAMIC EXPRESSIONS 109

2. Definition in SIGNAL
Let H be the context clock of X?, then, with the definition of X as it is given in section VI–1.1,

paragraph 1-d, p. 97 et seq., X? is equivalent to:

X whenH

3. Clocks

(a) The clock of X?, which is equal to the clock of X , is upper than the upper bound of the

clocks of all the signals of the compilation unit in which X is declared.

VI–3 Dynamic expressions
Dynamic expressions allow the handling of values of signals having distinct dates. They require the

definition of the value of the signals at their initial instants.

1. Context-free syntax

S-EXPR-DYNAMIC ::=

SIMPLE-DELAY
| WINDOW
| GENERALIZED-DELAY

The table C–VI.6 gives the different forms of dynamic expressions.

Scheme Type

Arguments → Result

E21 window E22 init E22 A1 × E1 × W1 → W2

E21 window E22 A1 × E1 → W2

E21 $ E22 init E22 A1 × E11 × W11 → A1

E21 $ init E22 A1 × A2 → A1

E21 $ E22 A1 × E11 → A1

E21 $ A1 → A1

Table C–VI.6: S-EXPR-DYNAMIC E21

A1 any1

E1 constant M of Integer-type, strictly positive

W1 [0..M − 2] → A2

W2 [0..M − 1] → A1

E11 signal i of Integer-type, positive or zero, bounded by a constant N ,

of implicit value 1

W11 [0..N − 1] → A2

Ai A2 ⊑ A1



110 EXPRESSIONS ON SIGNALS

VI–3.1 Initialization expression
E init V

The initialization expression allows to define the initial value(s) of a signal.

1. Types

(a) E is a signal of any type.

(b) The type of V can be, depending on the context of the initialization:

• a type ν such that ν ⊑ τ (E),

• a type [0..n− 1] → ν such that ν ⊑ τ (E).

2. Semantics

• If V has a type ν such that ν ⊑ τ (E), the value of V defines an initial value for the expression

E init V .

• If V has a type [0..n− 1] → ν such that ν ⊑ τ (E), then the value of V defines n initial

values for the expression E init V : the value ϕ(V [0]) defines the value of this expres-

sion at its first instant, the value ϕ(V [1]) defines the value of the expression at its second

instant, etc.

If V defines more values than required by the initialization of the expression E, the extra values

are not taken into account.

If V defines less values than required by the initialization of the expression E, the missing values

are defined by the default initial value of type ν.

An initialization expression can be associated with a signal either in an expression on signals, as it

is the case here, or in the declaration of a signal (cf. section V–9, p. 89 et seq.). When both forms

of initialization are defined for a same signal, the one which has the priority is that appearing in the

expression of definition of the signal. The presence of an initialization expression in the definition

of a signal specifies, with the same semantics as above, a default initialization for the signal, when

no initialization is specified in its expression of definition. For a state variable (cf. section V–11,

p. 91 et seq.), it is recommended that its initialization is described in its declaration, and not in its

expressions of definition.

When several initialization expressions are associated with a signal in different partial definitions,

they should be compatible.

3. Clocks

(a) ω(E init V ) = ω(E)
(b) ω(V ) = ~

VI–3.2 Simple delay
E $ init v0

1. Context-free syntax

SIMPLE-DELAY ::=

S-EXPR $ [ init S-EXPR ]



VI–3. DYNAMIC EXPRESSIONS 111

2. Types

(a) E is a signal of any type.

(b) τ (E $ init v0) = τ (E)

(c) τ (v0) ⊑ τ (E)

3. Semantics
The semantics of the delay is described formally in part B, section III–6.2, paragraph 2-b, p. 42.

The value of the signal E $ init v0 is at each instant t the value of the delayed signal E at the

instant t− 1. Initially, this value is the value defined by the initialization (ϕ(v0)).

4. Definition in SIGNAL
When the initial value is omitted, it is equal to the “null” value of type τ (E) (which implies that

it is defined for any type, including external one), 0τ (E):

E $ = E $ init 0τ (E),

except if an initial value is associated with the defined signal, in its declaration (cf. section VI–3.1,

p. 110).

5. Clocks

(a) ω(v0) = ~

(b) ω(E $ init v0) = ω(E)

6. Examples

(a) The values taken by y for y defined by y := x $ init 0 are described below for the

corresponding values of x in input:

x = 1 2 3 4 . . .

ց ց ց ց
y = 0 1 2 3 . . .

Note that the initial value is the first value of y, not that of x.

VI–3.3 Sliding window
E windowM init TE0

1. Context-free syntax

WINDOW ::=

S-EXPR window S-EXPR [ init S-EXPR ]

2. Types

(a) E is a signal of any type.

(b) The size of the window, M , is an integer constant expression the value of which is greater

than or equal to 1. If it is equal to 1, the initialization has no effect.

(c) τ (E windowM init TE0) = [0..ϕ(M) − 1] → τ (E)



112 EXPRESSIONS ON SIGNALS

(d) τ (TE0) = [0..n− 1] → µ,

where µ ⊑ τ (E), n ≥ ϕ(M) − 1, and n > 0
(in the particular case where ϕ(M) = 2, the single initialization value can be given by an

element of type τ (TE0) = µ, where µ ⊑ τ (E))

3. Semantics
For a signal X defined by X := E windowM init TE0:

• (t+ i ≥ ϕ(M)) ⇒ (Xt[i] = E
t−ϕ(M)+i+1

)

• (1 ≤ t+ i < ϕ(M)) ⇒ (Xt[i] = TE0[t-ϕ(M) + i + 2])

4. Definition in SIGNAL
X := E windowM init TE0

whose right side of := represents an expression of sliding window, is equal to the process defined

as follows, when ϕ(M) > 1:

( | X0 := E
| X1 := X0 $ init TE0[M − 2]

...

| XM−1 := XM−2 $ init TE0[0]
| X := [ XM−1, ..., X0 ]

|) / X0, ..., XM−1

5. Definition in SIGNAL
E windowM is equal, when ϕ(M) > 1, to the following expression on signals:

E windowM init 0[0..ϕ(M) − 2] → τ (E)

6. Definition in SIGNAL
X := E window 1 is equal to the process defined as follows:

X := [ E ]

7. Clocks

(a) ω(M) = ~

(b) ω(TE0) = ~

(c) ω( E window M init TE0) = ω(E)

8. Examples

(a) The values taken by y for y defined by y := x window 3 init [ -1,0 ] are described

below for the corresponding values of x in input:

x = 1 2 3 4 . . .

y = [ −1, 0, 1 ] [ 0, 1, 2 ] [ 1, 2, 3 ] [ 2, 3, 4 ] . . .



VI–3. DYNAMIC EXPRESSIONS 113

VI–3.4 Generalized delay
E $ I init TE0

1. Context-free syntax

GENERALIZED-DELAY ::=

S-EXPR $ S-EXPR [ init S-EXPR ]

2. Types

(a) E is a signal of any type.

(b) I is a positive or equal to zero integer, with an upper bound.

Let N be the upper bound (if I is an integer constant, N is equal to I).

(c) τ (E $ I init TE0) = τ (E)
(d) τ (TE0) = [0..n− 1] → µ,

where µ ⊑ τ (E), n ≥ ϕ(N), and n > 0
(in the particular case where ϕ(N) = 1, the single initialization value can be given by an

element of type τ (TE0) = µ, where µ ⊑ τ (E))

3. Definition in SIGNAL
X := E $ I init TE0

whose right side of := represents an expression of generalized delay bounded by the maximal

value N , is equal to the process defined as follows:

( | TX := E window N+1 init TE0

| X := TX[N − I]
|) / TX

4. Definition in SIGNAL
X := E $ I
is equal to the process defined as follws:

( | TX := E window N+1

| X := TX[N − I]
|) / TX

5. Clocks

(a) ω(I) = ω(E)
(b) ω(TE0) = ~

(c) ω(E $ I) = ω(E)

6. Examples

(a) The values taken by y for y defined by y := x $ 3 init [ -2,-1,0 ] are described

below for the corresponding values of x in input:



114 EXPRESSIONS ON SIGNALS

x = 1 2 3 4 5 6 . . .

y = −2 −1 0 1 2 3 . . .

(b) The values taken by y for y defined by y := x $ i init [ -2,-1,0 ] are described

below for the corresponding values of x and i in input:

i = 1 3 3 1 2 1 . . .

x = 1 2 3 4 5 6 . . .

y = 0 −1 0 3 3 5 . . .

VI–4 Polychronous expressions
The polychronous expressions are built on signals which have possibly different clocks.

1. Context-free syntax

S-EXPR-TEMPORAL ::=

MERGING
| EXTRACTION
| MEMORIZATION
| VARIABLE
| COUNTER

VI–4.1 Merging
E1 default E2

1. Context-free syntax

MERGING ::=

S-EXPR default S-EXPR

2. Types

(a) τ (E1) and τ (E2) are signals of a same domain.

(b) τ (E1 defaultE2) = τ (E1) ⊔ τ (E2)

3. Semantics
The semantics is described formally in part B, section III–6.3, paragraph 3-b, p. 43.

4. Clocks

(a) ω(E1 default E2) = ω(E1) + ((1 −ω(E1)) ∗ω(E2)) if ω(E2) 6= ~

(b) ω(E1 default E2) = ω(E1) + ((1 −ω(E1)) ∗ω(E1 default E2))
if ω(E2) = ~

5. Graph
When τ (E1 default E2) 6= boolean and τ (E1 defaultE2) 6= event :

(a) E1−→E1 defaultE2



VI–4. POLYCHRONOUS EXPRESSIONS 115

(b) E2
1−ω(E1)
−−−−−−−−→ E1 defaultE2

6. Properties

(a) (E1 defaultE2) defaultE3 = E1 default (E2 default E3)

(b) E1 defaultE2 = E1 default (E2 when not Ê1 default Ê2)

(c) (ω(E1) ∗ ω(E2) = 0̂) ⇒ ( E1 defaultE2 = E2 defaultE1)

(d) ((ω(E1) ≥ ω(E2))
∨

(ω(E1) = ~)) ⇒ (E1 default E2 = E1)

7. Examples

(a) the values taken by Y defined by Y := E1 default E2 are described below for the

corresponding values of E1 and E2 in input:

E1 = 1 3 ⊥ 5 7 . . .

E2 = 2 4 6 ⊥ 8 . . .

Y = 1 3 6 5 7 . . .

VI–4.2 Extraction
E when B

The values of a signal can be produced by extraction of the values of another signal when the values

of a Boolean signal are equal to true .

1. Context-free syntax

EXTRACTION ::=

S-EXPR when S-EXPR

2. Types

(a) E is a signal of any type.

(b) τ (B) ⊑ boolean

(c) τ (E when B) = τ (E)

3. Semantics
The semantics is described formally in part B, section III–6.3, paragraph 3-a, p. 42.

4. Clocks

(a) ω(E when B) = ω(E) ∗ω(B) ∗ (−1−B) if ω(E) 6= ~

(b) ω(E when B) = ω(B) ∗ (−1−B) if ω(E) = ~

5. Graph
When τ (E when B) 6= boolean and τ (E when B) 6= event :

(a) E−→E when B



116 EXPRESSIONS ON SIGNALS

6. Properties

(a) (τ (B) = event) ⇒ (B whenB = B)

(b) (E when B1) when B2 = E when (B1 when B2)

(c) E when (B when B) = E when B

7. Examples

(a) the values taken by X when C are described below for the corresponding values of X and

C in input:

X = 1 3 ⊥ 5 ⊥ 7 . . .

C = T ⊥ T F F T . . .

X when C = 1 ⊥ ⊥ ⊥ ⊥ 7 . . .

VI–4.3 Memorization
E cell B init V0

The memorization allows to memorize a given signal at the clock defined by the upper bound of the

clock of the signal and the clock defined by the instants at which a Boolean signal has the value true .

1. Context-free syntax

MEMORIZATION ::=

S-EXPR cell S-EXPR [ init S-EXPR ]

2. Types

(a) E is a signal of any type.

(b) τ (B) ⊑ boolean

(c) τ (E cell B init V0) = τ (E)

(d) τ (V0) ⊑ τ (E)

3. Definition in SIGNAL
X := E cell B init V0

whose right side of := represents an expression of memorization of E at the instants at which B
is true , is equal to the process defined as follows:

( | X := E default (X $ init V0)

| X ̂ = E ̂+ (when B)
|)

4. Definition in SIGNAL
When the initial value is omitted, it is equal to the “null” value of type τ (E), 0τ (E):

E cell B = E cellB init 0τ (E),

except if an initial value is associated with the defined signal, in its declaration (cf. section VI–3.1,

p. 110).



VI–4. POLYCHRONOUS EXPRESSIONS 117

5. Clocks

(a) ω(E cell B init V0) = ω(E) + ((1−ω(E)) ∗ω(B) ∗ (−1−B))

6. Examples

(a) the values taken by X cell C init 0 are described below for the corresponding values

of X and C in input:
X = ⊥ 1 3 ⊥ ⊥ ⊥ 5 ⊥ 7 . . .

C = T F T T F T ⊥ T ⊥ . . .

X cell C init 0 = 0 1 3 3 ⊥ 3 5 5 7 . . .

VI–4.4 Variable clock signal
var E init V0

The var operator allows to use a signal at any clock defined by the context.

1. Context-free syntax

VARIABLE ::=

var S-EXPR [ init S-EXPR ]

2. Types

(a) E is a signal of any type.

(b) τ (var E init V0) = τ (E)
(c) τ (V0) ⊑ τ (E)

3. Definition in SIGNAL
Let:

• F an expression on processes containing an occurrence vari of the expression on signals

var E init V0,

• H the context clock of vari in F ,

• FF the expression on processes equal to F in which XX has been substituted to vari.

F is then equivalent to:

( | FF
| X := E default (X $ init V0)

| XX := X when H
| X ̂ = E ̂+ H
|) / X, XX

4. Definition in SIGNAL
When the initial value is omitted, it is equal to the “null” value of type τ (E), 0τ (E):

var E = var E init 0τ (E)
except if an initial value is associated with the defined signal, in its declaration (cf. section VI–3.1,

p. 110).



118 EXPRESSIONS ON SIGNALS

5. Clocks

(a) ω(var E init V0) = ~

VI–4.5 Counters

H1 modality H2 or H1 countM

The counter expressions (modality after or from, or counter modulo: count) allow the number-

ing of the occurrences of a clock.

1. Context-free syntax

COUNTER ::=

S-EXPR after S-EXPR

| S-EXPR from S-EXPR

| S-EXPR count S-EXPR

2. Types

(a) τ (H1) = τ (H2) = event

(b) M is an integer constant expression.

(c) τ (H1 modality H2) = integer

(d) τ (H1 countM) = integer

3. Definition in SIGNAL
N :=H1 afterH2

whose right side of := represents an expression of counter of the events H1 after the reinitializa-

tion H2, is equal to the process defined as follows:

( | counting_active ::= H2

| count_state ::= newCount
| newCount := (0 when H2) default incrCount
| incrCount := (count_state? + 1) when counting_active? when H1

| N := (newCount when H1) default (0 when H1)

|) where

statevar boolean counting_active init false;

statevar integer count_state init 0;

integer newCount, incrCount;

The signal N counts the number of occurrences of the signal H1 (o1) since the last occur-

rence of the signal H2 (o2); but the occurrences o1 which are simultaneous to occurrences o2 are

not counted.

4. Definition in SIGNAL
N :=H1 fromH2

whose right side of := represents an expression of counter of the events H1 since the reinitial-

ization H2, is equal to the process defined as follows:



VI–4. POLYCHRONOUS EXPRESSIONS 119

( | counting_active ::= H2

| count_state ::= newCount
| newCount := (1 when H2 when H1) default (0 when H2) default incrCount
| incrCount := (count_state? + 1) when counting_active? when H1

| N := (newCount when H1) default (0 when H1)

| ) where

statevar boolean counting_active init false;

statevar integer count_state init 0;

integer newCount, incrCount;

The signal N counts the number of occurrences of the signal H1 (o1) since the last occur-

rence of the signal H2 (o2); the occurrences o1 which are simultaneous to occurrences o2 are

counted.

5. Definition in SIGNAL
N :=H1 countM
whose right side of := represents an expression of counter of the events H1 modulo ϕ(M), is

equal to the process defined as follows:

( | N := (0 when ZN >= (M − 1)) default (ZN + 1)

| ZN := N $ init (M − 1)

| N ̂ = H1

|) / ZN

The signal N has 0 as initial value and is incremented by 1, modulo ϕ(M), at each new

occurrence of the signal H1.

6. Clocks

(a) ω(H1 modality H2) = ω(H1)
(b) ω(M) = ~

(c) ω(H1 count M) = ω(H1)

7. Examples

(a) the values taken by E1 from E2, E1 after E2 and E1 count 3 are described below for

the corresponding signals E1 and E2 in input:
E1 = ⊥ • • • • • ⊥ • . . .

E2 = • ⊥ ⊥ • ⊥ ⊥ • ⊥ . . .

E1 from E2 = ⊥ 1 2 1 2 3 ⊥ 1 . . .

E1 after E2 = ⊥ 1 2 0 1 2 ⊥ 1 . . .

E1 count 3 = ⊥ 0 1 2 0 1 ⊥ 2 . . .

VI–4.6 Other properties of polychronous expressions
See also properties in section VI–4.1, p. 114 et seq. and section VI–4.2, p. 115 et seq.

• (E1 defaultE2) when B = (E1 when B) default (E2 when B)

• (τ (B1) = event) ⇒ (E when (B1 defaultB2) = (E when B1) default (E when B2))



120 EXPRESSIONS ON SIGNALS

VI–5 Constraints and expressions on clocks
A CONSTRAINT is an expression of processes which contributes to the construction of the system of

clock equations of the program. It is the tool for constraint programming. Such an expression can take

as arguments expressions on clocks or expressions on signals.

1. Context-free syntax

ELEMENTARY-PROCESS ::=

CONSTRAINT

VI–5.1 Expressions on clock signals

1-a Clock of a signal

Ê

The clock of a signal (of any type) is obtained by applying the operator̂ to this signal.

1. Context-free syntax

S-EXPR-CLOCK ::=

SIGNAL-CLOCK

SIGNAL-CLOCK ::=

̂ S-EXPR

2. Types

(a) E is a signal of any type.

(b) τ (̂ E) = event

3. Definition in SIGNAL

E == E
Remark: this definition uses the operator of relation == defined on any type (cf. section VI–7.2,

p. 127 et seq.).

4. Examples

(a) the values taken by X̂ are described below for the corresponding values of X in input:
X = 1 2 3 4 . . .

̂X = T T T T . . .

Remark: the expression Ê and the conversion event (E) have the same result.



VI–5. CONSTRAINTS AND EXPRESSIONS ON CLOCKS 121

1-b Clock extraction

when B or [:B] or [/:B]

The extraction of the true values of a Boolean condition are obtained by applying the operator unary

when on the condition; the extraction of the false values of a Boolean condition are obtained by applying

the operator unary when on the negation of the condition:

1. Context-free syntax

S-EXPR-CLOCK ::=

CLOCK-EXTRACTION

CLOCK-EXTRACTION ::=

when S-EXPR

| [: S-EXPR ]

| [/: S-EXPR ]

2. Types

(a) τ (B) ⊑ boolean

(b) τ (when B) = event

3. Definition in SIGNAL
when B, or equivalently [:B], is equal to:

B̂ when B

4. Definition in SIGNAL
[/:B] is equal to:

B̂ when not B

5. Clocks

(a) ω(when B) = ω(B) ∗ (−1−B)

(b) ω([:B]) = ω(B) ∗ (−1−B)

(c) ω([/:B]) = ω(B) ∗ (1−B)

6. Examples

(a) the values taken by [:C] (or when C) and [/:C] are described below for the correspond-

ing values of C in input:

C = T T F F T . . .

when C = [:C] = T T ⊥ ⊥ T . . .

[/:C] = ⊥ ⊥ T T ⊥ . . .

1-c Empty clock

0̂

The empty clock is the clock that does not “contain” any instant.



122 EXPRESSIONS ON SIGNALS

1. Context-free syntax

S-EXPR-CLOCK ::=

0̂

2. Types

(a) τ (̂ 0) = event

3. Definition in SIGNAL
0̂ is the lexical expression of the empty clock; it is equal to the solution of the following equation:

when not ( 0̂) ̂= 0̂

4. Clocks

(a) ω(̂0) = 0̂

VI–5.2 Operators of clock lattice
E1 ̂Op E2

1. Context-free syntax

S-EXPR-CLOCK ::=

S-EXPR +̂ S-EXPR

| S-EXPR −̂ S-EXPR

| S-EXPR ∗̂ S-EXPR

2. Types

(a) E1 and E2 are signals of any types.

(b) τ (E1 ̂Op E2) = event

3. Definition in SIGNAL
X := E1 +̂ E2

defines a signal equal to the upper bound of the clocks of the signals E1 and E2; this expression is

equal to the process defined as follows:

( | X := ̂E1 default ̂E2

|)

4. Definition in SIGNAL
X := E1 ∗̂ E2

defines a signal equal to the lower bound of the clocks of the signals E1 and E2; this expression is

equal to the process defined as follows:



VI–5. CONSTRAINTS AND EXPRESSIONS ON CLOCKS 123

( | X := ̂E1 when ̂E2

|)

5. Definition in SIGNAL
X := E1 −̂ E2

defines a signal equal to the complementary clock of E1 ∗̂ E2 in Ê1; this expression is equal to

the process defined as follows:

( | X := when ((not ̂E2) default ̂E1)

|)

6. Clocks

(a) ω(E1 ̂+ E2) = ω(E1) + ((1−ω(E1)) ∗ω(E2))
(b) ω(E1 ̂∗ E2) = ω(E1) ∗ω(E2)
(c) ω(E1 ̂− E2) = ω(E1) − (ω(E1) ∗ω(E2))

7. Properties

(a) E1 +̂ (E2 +̂ E3) = (E1 +̂ E2) +̂ E3

(b) E1 +̂ E2 = E2 +̂ E1

(c) E +̂ 0̂ = Ê

(d) E +̂ E = Ê

(e) E1 ∗̂ (E2 ∗̂ E3) = (E1 ∗̂ E2) ∗̂ E3

(f) E1 ∗̂ E2 = E2 ∗̂ E1

(g) E ∗̂ 0̂ = 0̂

(h) E ∗̂ E = Ê

(i) (E1 ∗̂ E2) +̂ E3 = (E1 +̂ E3) ∗̂ (E2 +̂ E3)

(j) (E1 +̂ E2) ∗̂ E3 = (E1 ∗̂ E3) +̂ (E2 ∗̂ E3)

VI–5.3 Relations on clocks
E1 ̂Op E2

The following expressions are expressions on processes describing constraints between clocks of

signals.

1. Context-free syntax

CONSTRAINT ::=

S-EXPR { ̂= S-EXPR }∗

| S-EXPR { ̂< S-EXPR }∗

| S-EXPR { ̂> S-EXPR }∗

| S-EXPR { #̂ S-EXPR }∗



124 EXPRESSIONS ON SIGNALS

2. Profile
A relation on clocks of signals is a process with no output and with:

? (E1 ̂Op ... ̂Op En) =

n⋃

i=1

? (Ei).

3. Types

(a) The arguments Ei are signals of any types, possibly distinct.

4. Definition in SIGNAL
E1 ̂Op E2 ̂Op EE
(where Ôp is one of the operatorŝ=,̂<,̂> and #̂, and where EE is an expression on clocks

or recursively a relation on clocks), builds the composition of the expressions Ei ̂Op Ej , for

any pair of distinct indices i and j, and thus expresses the conjunction of the associated relations.

It is recursively defined by the composition of the following expressions of processes:

( | E1 ̂Op E2

| E1 ̂Op EE
| E2 ̂Op EE
|)

5. Definition in SIGNAL
E1 ̂ = E2

constrains the clock of the expression on signals E1 to be equal to that of E2; this expression,

when H1 6∈ ? (E1 ̂ = E2), is equal to the process with no output defined as follows:

( | H1 := (̂E1) == (̂E2)

|) / H1

6. Definition in SIGNAL
E1 ̂ < E2

constrains the clock of the expression on signals E1 to be smaller than (or equal to) that of E2; this

expression is equal to the process with no output defined as follows:

E1̂= E1 ∗̂ E2

7. Definition in SIGNAL
E1 ̂ > E2

constrains the clock of the expression on signals E1 to be greater than (or equal to) that of E2; this

expression is equal to the process with no output defined as follows:

E1̂= E1 +̂ E2

8. Definition in SIGNAL
E1 ̂# E2 specifies the mutual exclusion of the clocks of the expressions on signals E1 and

E2; hence ω(E1)∗ω(E2) = 0̂. This expression is equal to the process with no output defined as

follows:

0̂ ̂= E1 ∗̂ E2



VI–6. IDENTITY EQUATIONS 125

VI–6 Identity equations not yet

imple-
mented

in

POLY-

CHRONY

E1 :=: E2

Identity equations are expressions on processes describing equality constraints between the se-

quences of values (and clocks) of two expressions.

1. Context-free syntax

CONSTRAINT ::=

S-EXPR :=: S-EXPR

2. Profile
An identity equation is a process with no output and with:

? (E1 :=: E2) = ? (E1) ∪ ? (E2).

3. Types

(a) E1 and E2 are of comparable types.

4. Semantics
If E1 and E2 can be viewed respectively as tuples (E11,. . . ,E1n) and (E21,. . . ,E2n), the identity

equation E1 :=: E2 constrains the sequences of values of the expressions E1i and E2i to be

respectively equal.

An equation E1 :=: E2 is the basic identity equation between signals in the language (cf. part B,

chapter III, p. 31 et seq.). It is a non oriented equation, that does not induce dependences between

E1 and E2.

5. Clocks

If E1i and E2i designate signals, they are synchronous. In this case:

(a) ω(E1i) = ω(E2i)

6. Properties

(a) E1 :=: E2

is equal to the following process:

( | (when (E11 == E21)) ̂ = E11
...

| (when (E1n == E2n)) ̂ = E1n

|)

VI–7 Boolean synchronous expressions
The Boolean expressions are synchronous expressions on signals. The operators defining such expres-

sions are the standard operators on Boolean elements extended to sequences of elements. The Boolean

expressions (or expressions with Boolean result) are either expressions of the Boolean lattice, or rela-

tions.



126 EXPRESSIONS ON SIGNALS

VI–7.1 Expressions on Booleans

1-a Negation

not E1

1. Context-free syntax

S-EXPR-BOOLEAN ::=

not S-EXPR

2. Types

(a) τ (E1) ⊑ boolean

(b) τ (not E1) = boolean

3. Semantics
The operator of negation has, on the occurrences of signals, its usual semantics.

4. Clocks

(a) ω(not E1) = ω(E1)

1-b Operators of Boolean lattice

E1 Op E2

1. Context-free syntax

S-EXPR-BOOLEAN ::=

S-EXPR or S-EXPR

| S-EXPR and S-EXPR

| S-EXPR xor S-EXPR

2. Types

(a) τ (E1) ⊑ boolean

(b) τ (E2) ⊑ boolean

(c) τ (E1 Op E2) = boolean

3. Semantics
The expressions on Boolean signals have, on the synchronous occurrences of these signals, their

usual semantics; however, they are not primitive operators of the SIGNAL language.

4. Definition in SIGNAL
X := E1 and E2

is equal to the process defined as follows:

( | X := (E1 when E2) default (not ̂E1)

| E1 ̂ = E2

|)



VI–7. BOOLEAN SYNCHRONOUS EXPRESSIONS 127

5. Definition in SIGNAL
X := E1 or E2

is equal to the process defined as follows:

( | X := (E1 when not E2) default ̂E1

| E1 ̂ = E2

|)

6. Definition in SIGNAL
X := E1 xor E2

is equal to the process defined as follows:

( | X := not (E1 == E2)

|)

7. Clocks

(a) ω(E1) = ω(E2)

(b) ω(E1 Op E2) = ω(E1)

VI–7.2 Boolean relations
The Boolean relations are equality, difference, and strict and non strict greater and lower relations.

Two classes of relation operators are distinguished according to their denotation:

• the operators which have a pointwise extension on elements of arrays (cf. part D, chapter X, p. 179

et seq.), denoted respectively = , / =, > , >=, < et <=; for example, the operator =
applied on two vectors has as result a vector of Booleans;

• the operators which have a Boolean result, whatever is the type of the signals on which they are

applied; in this class are only defined the operator of equality, denoted == and the operator of

inferior or equal relation order, denoted <<= (these operators are pointwise extended to families

of signals: polychronous tuples with named fields and tuples with unnamed fields).

E1 Op E2

1. Context-free syntax

S-EXPR-BOOLEAN ::=

RELATION



128 EXPRESSIONS ON SIGNALS

RELATION ::=

S-EXPR = S-EXPR

| S-EXPR / = S-EXPR

| S-EXPR > S-EXPR

| S-EXPR >= S-EXPR

| S-EXPR < S-EXPR

| S-EXPR <= S-EXPR

| S-EXPR == S-EXPR

| S-EXPR <<= S-EXPR

2. Types

(a) τ (E1 Op E2) = boolean

(b) For E1 == E2:

E1 and E2 are signals of a same domain, which is any domain.

(c) For E1 = E2 and E1 / = E2:

E1 and E2 are signals of a same domain Scalar-type or ENUMERATED-TYPE.

(d) For E1 <<= E2:

E1 and E2 are signals of a same domain Scalar-type (other than a Complex-type), or of

ENUMERATED-TYPE, or of a same type for which the environment defines this operator

while respecting the properties enounced in this section.

(e) For E1 > E2, E1 >= E2, E1 < E2, and E1 <= E2:

E1 and E2 are signals of a same domain Scalar-type (other than a Complex-type), or of

ENUMERATED-TYPE.

3. Semantics

• Two objects of array types are equal if and only if both arrays have the same dimension, are

of comparable types and the elements of same index are respectively equal.

• Two objects of monochronous tuple types are equal if and only if both objects are of compa-

rable types and the elements of corresponding fields are respectively equal.

• In the order defined on the values of type boolean , false is lower than true .

• The order defined on the values of type character is the order on the decimal values of their

encoding.

• The order defined on the values of type string is the corresponding lexicographic order.

• The order defined on the values of an ENUMERATED-TYPE is the syntactic order of their

declaration in the definition of the type (cf. section V–3, p. 76 et seq.).

With these precisions, the operators of relation have their usual semantics. The operators == and

= denote the relation of equality; the operators <<= and <= denote the relation inferior or

equal.

The comparisons are made in the greatest type (of a same domain). Then if v1 is an element of

the sequence of values represented by E1 and if v2 is the corresponding element in the sequence



VI–8. SYNCHRONOUS EXPRESSIONS ON NUMERIC SIGNALS 129

of values represented by E2,

the corresponding element is v1 Op E2 in the sequence represented by E1 Op E2.

4. Definition in SIGNAL
The expression E1 /= E2 is equal to the following expression:

not (E1 = E2)

5. Definition in SIGNAL
The expression E1 < E2 is equal to the following expression:

(not (E1 = E2)) and (E1 <= E2)

6. Definition in SIGNAL
The expression E1 >= E2 is equal to the following expression:

E2 <= E1

7. Definition in SIGNAL
The expression E1 > E2 is equal to the following expression:

E2 < E1

8. Clocks

(a) ω(E1) = ω(E2)

(b) ω(E1 Op E2) = ω(E1)

9. Graph
When the Ei are not of a domain Synchronization-type:

(a) E1−→E1 Op E2

(b) E2−→E1 Op E2

10. Properties
The relation <<= is an order relation on all the types of signals for which it is defined; it has all

the properties of an order relation:

(a) reflexivity

(b) transitivity

(c) anti-symmetry: ((E1 «= E2)
∧

(E2 «= E1)) ⇒ (E1 == E2)

11. Properties
The relation <= is an order relation on the domains of values on which it is defined; it is:

(a) reflexive,

(b) transitive,

(c) anti-symmetric: ((E1 <= E2)
∧

(E2 <= E1)) ⇒ (E1 = E2)

VI–8 Synchronous expressions on numeric signals
The synchronous expressions on numeric signals are defined by pointwise extension of the standard

arithmetic operators on sequences of elements.



130 EXPRESSIONS ON SIGNALS

VI–8.1 Binary expressions on numeric signals
E1 Op E2

1. Context-free syntax

S-EXPR-ARITHMETIC ::=

S-EXPR + S-EXPR

| S-EXPR − S-EXPR

| S-EXPR ∗ S-EXPR

| S-EXPR / S-EXPR

| S-EXPR modulo S-EXPR

| S-EXPR ∗∗ S-EXPR
| DENOTATION-OF-COMPLEX

2. Semantics
If the result of an expression cannot be represented in the type µ of this expression, its value is a

value of type µ depending on the implementation.

If v1 is an element of the sequence of values represented by E1 and if v2 is the corre-

sponding element of the sequence of values represented by E2, the corresponding element in the

sequence represented by E1 Op E2 is:

v1 Op v2

3. Clocks

(a) ω(E1) = ω(E2)

(b) ω(E1 Op E2) = ω(E1)

4. Graph

(a) E1−→E1 Op E2

(b) E2−→E1 Op E2

Operators + −, ∗, / E1 Op E2

1. Types

(a) τ (E1) and τ (E2) are of any Numeric-type in a same domain,

(b) τ (E1 Op E2) = τ (E1) ⊔ τ (E2)

2. Semantics
When an expression of division is of domain Integer-type, the division is the integer division.



VI–8. SYNCHRONOUS EXPRESSIONS ON NUMERIC SIGNALS 131

Operator modulo E1 modulo E2

1. Types

(a) τ (E1) and τ (E2) are of domain Integer-type.

In addition, E2 must be a constrained integer (strictly positive and with an upper bound).

(b) τ (E1 modulo E2) = τ (E2)

2. Semantics
If r is defined by r := a modulo b,
then at each instant, the following property is true:

(∃ an integer q) ( (a=b∗q+r)
∧

( 0 ≤ r < b) )

Operator ∗∗ E1 ∗∗ E2

1. Types

(a) τ (E1) is a Numeric-type.

(b) τ (E2) is an Integer-type.

(c) τ (E1 ∗∗ E2) = τ (E1)

Operator @ E1@E2

A pair of synchronous elements of Real-type defines a signal of domain Complex-type.

1. Context-free syntax

DENOTATION-OF-COMPLEX ::=

S-EXPR @ S-EXPR

2. Types

(a) τ (E1) is a Real-type,

(b) τ (E2) is a Real-type,

(c) if τ (E1) ⊔ τ (E2) = real , then τ (E1@E2) = complex

if τ (E1) ⊔ τ (E2) = dreal , then τ (E1@E2) = dcomplex

3. Examples

(a) 1.0 @ (−1.0) defines a complex constant.

VI–8.2 Unary operators
Op E1

1. Context-free syntax

S-EXPR-ARITHMETIC ::=

+ S-EXPR

| − S-EXPR



132 EXPRESSIONS ON SIGNALS

2. Types

(a) τ (E1) is a Numeric-type.

(b) τ (Op E1) = τ (E1)

3. Semantics
If the result of an expression cannot be represented in the type µ of this expression, its value is a

value of type µ depending on the implementation.

If v1 is an element of the sequence of values represented by E1,

the corresponding element in the sequence represented by Op E1 is:

Op v1

4. Clocks

(a) ω(Op E1) = ω(E1)

5. Graph

(a) E1−→Op E1

VI–9 Synchronous condition
if B then E1 else E2

The synchronous condition is an expression on signals with same clock.

1. Context-free syntax

S-EXPR-CONDITION ::=

if S-EXPR then S-EXPR else S-EXPR

2. Types

(a) τ (B) ⊑ boolean

(b) E1 and E2 are signals of a same domain Scalar-type, External-type or ENUMERATED-
TYPE.

(c) τ (if B then E1 else E2) = τ (E1) ⊔ τ (E2)

3. Definition in SIGNAL
X := if B then E1 else E2

whose right side of := represents an expression of synchronous condition, is equal to the process

defined as follows:

( | X := (E1 when B) default E2

| B ̂ = E1 ̂ = E2

|)

4. Clocks

(a) ω(E1) = ω(E2)



VI–9. SYNCHRONOUS CONDITION 133

(b) ω(B) = ω(E1)

(c) ω(if B then E1 else E2) = ω(E1)





Chapter VII

Expressions on processes

The expressions on processes allow to compose systems of equations on signals with the following

syntax:

1. Context-free syntax

P-EXPR ::=

ELEMENTARY-PROCESS
| HIDING
| LABELLED-PROCESS
| GUARDED-PROCESS
| GENERAL-PROCESS

GENERAL-PROCESS ::=

COMPOSITION
| CONFINED-PROCESS
| CHOICE-PROCESS
| ASSERTION-PROCESS

VII–1 Elementary processes
An elementary process is an instance of process (cf. section VI–1.2, p. 99 et seq.), a definition of signals

(cf. section VI–1.1, p. 93 et seq.), a constraint on clocks (cf. section VI–5, p. 120 et seq.) or on values

(cf. section VI–6, p. 125), or an expression of dependence (cf. part E, section XI–6.2, p. 196 et seq.).

VII–2 Composition
The composition of two processes P1 and P2 produces a process for which each execution observed

on the variables of P1 (respectively, P2) is an execution of P1 (respectively, P2). This composition is

similar to the aggregation of two systems of equations in a single one.

P1 | P2

1. Context-free syntax



136 EXPRESSIONS ON PROCESSES

COMPOSITION ::=

(| [ P-EXPR { | P-EXPR }∗ ] |)

2. Profile

• ! (P1 | P2) = ! (P1) ∪ ! (P2)

• ? (P1 | P2) = (? (P1) − ! (P2)) ∪ (? (P2) − ! (P1))

3. Types

(a) If their names are identical, an output x of P1 (respectively, P2) and an input x of P2 (respec-

tively, P1) have also the same type.

(b) If their names are identical, an input x of P1 and an input x of P2 have also the same type.

4. Semantics
A signal, input of P1 (respectively, P2), having as name the name of a signal, output of P2 (respec-

tively, P1) and totally defined in it, has as definition in P1 (respectively, in P2) its definition in P2

(respectively, in P1).

If the definitions of such a signal are partial definitions, in P1 and in P2, its resulting definition is

the combination of both partial definitions, as it is specified in section VI–1.1, paragraph 1-c, p. 96

et seq.

5. Clocks

(a) If their names are identical, an output x of P1 (respectively, P2) and an input x of P2 (respec-

tively, P1) have also the same clock.

(b) If their names are identical, an input x of P1 and an input x of P2 have also the same clock.

VII–3 Hiding
The hiding is an expression that modifies the profile of an expression of processes by hiding some of its

outputs.

P / A1, ..., An

1. Context-free syntax

HIDING ::=

GENERAL-PROCESS / Name-signal { , Name-signal }∗

| HIDING / Name-signal { , Name-signal }∗

2. Profile

• ? (P / A1, ..., An) = ? (P )

• ! (P / A1, ..., An) = ! (P ) − {A1, . . . , An}



VII–4. CONFINING WITH LOCAL DECLARATIONS 137

3. Semantics
The hiding operation allows to hide outputs of the process P : the outputs of the resulting process

are the outputs of P which do not appear in the list A1, ..., An.

The Ai can be names of tuples: in that case, the hiding applies globally on the tuples.

4. Examples
Let P be a process with A, B and C as inputs and X and Y as outputs.

(a) P / Y has only X as output;

(b) P / Z is equal to P.

VII–4 Confining with local declarations
Local declarations can be associated with any expression of processes.

1. Context-free syntax

CONFINED-PROCESS ::=

GENERAL-PROCESS DECLARATION-BLOCK

DECLARATION-BLOCK ::=

where { DECLARATION }+ end

The DECLARATIONs are local to the CONFINED-PROCESS; they are described in part E, sec-

tion XI–2, p. 191 et seq. (chapter “Models of processes”).

Local declarations of sequences

The signals (or tuples) that appear in a list of S-DECLARATIONs associated with an expression of

processes are hidden in output of this CONFINED-PROCESS.

P where µ1 A1, ..., An1; ...; µm A1, ..., Anm ... end

The names A1, . . . , An1 , . . . , A1, . . . , Anm must be mutually distinct.

1. Profile

• ? (P where µ1 A1, ..., An1; ...; µm A1, ..., Anm ... end) =

? (P )

• ! (P where µ1 A1, ..., An1; ...; µm A1, ..., Anm ... end) =

! (P ) − {A1, . . . , An1 , . . . , A1, . . . , Anm}

2. Types
The expression

P where µ1 A1, ..., An1; ...; µm A1, ..., Anm end

establishes a new syntactic context of P .

The declarations



138 EXPRESSIONS ON PROCESSES

where µ1 A1, ..., An1; ...; µm A1, ..., Anm end

are called “local declarations” for P .

(a) In this context, the type τ (µi) is that associated with the signals A1, . . . , Ani
, in accordance

with the rules defined in part C, chapter V, “Domains of values of the signals”.

3. Definition in SIGNAL

P / A1, ..., An1, ..., A1, ..., Anm

with, in the context of P , the associations of types defined above.

The following rules help to specify the context of visibility established by the local declarations of a

confined process (see also in part E, section XI–2, p. 191 et seq.).

• An identifier of sequence X (or an identifier of constant, or an identifier of type) used in an ex-

pression on processes that does not contain a declaration of X is said external to this expression of

processes.

• An identifier of sequence (or of constant, or of type) X local to an expression of processes P ,

or external to P and declared in a list of DECLARATIONs D, is local to the CONFINED-
PROCESS P where D end.

• An identifier of sequence (or of constant, or of type) X external to an expression of processes P ,

and not declared in a list of DECLARATIONs D, is external to the CONFINED-PROCESS P
where D end.

• Let A be an identifier of input signal of an expression of processes P (used but not defined in P ),

then A must be external to P .

• Let B be an identifier of output signal of a model M , then B must be an output signal defined

(at least partially) in the expression of processes associated with M , external to this expression of

processes.

• Any sequence used in a MODEL but not declared in the interface of this MODEL must be either

local to the associated expression of processes, or external to the MODEL (visible in a syntactic

context that includes it). In the same way, any constant or type identifier used in a MODEL must

be either local to the associated expression of processes, or external to that MODEL.

VII–5 Labelled processes
It is possible to label an expression of processes:

XX :: P

1. Context-free syntax

LABELLED-PROCESS ::=

Label :: P-EXPR



VII–5. LABELLED PROCESSES 139

Label ::=

Name

The labelled process XX :: P has the same semantics as the process P , but the label XX defines

a context clock for the process P , and implicit signals are added to the graph.

The label XX associated with P can be used to designate the process P in some expressions

(dependences, for example).

In particular, the label XX can be used to define or to reference a characteristic clock of P : the tick

of P . For that purpose, the label is considered as a signal of special type label, for which it is always

possible to reference its clock (in the usual ways: X̂X for example).

This clock of the label XX (the tick of the process P ) is recursively defined as the upper bound of the

ticks of the components of the process.

The tick of an equation X := E is the clock of X.

The tick of an equation X ::= E is the clock of E.

The tick of the invocation of a process model is the tick of this process model. There is a particular

case when the called process model is an external process model:

• In that case, if the (external) process model is declared as being an action (cf. part E, sec-

tion XI–1.2, p. 186), the tick of its invocation is fixed through the closest label of the invocation:

it is equal to the clock of this label (which can be fixed by explicit equations, for instance). This

clock must be greater than the upper bound of the clocks of the inputs/outputs of the action.

• Otherwise (if the external process model is not declared as an action), the tick of its invocation is

equal to the upper bound of the clocks of its inputs/outputs.

Thus, no “visible clock” in P is greater than the clock of the label XX .

The clock of the label XX represents the context clock of P .

The other effect of labelling a process is to add the two following signals to the graph: let us denote

them respectively ? XX and ! XX , although these notations are not available in the syntax of the

language.

Both ? XX and ! XX have the clock X̂X as their common clock. The implicit signal ? XX is

a signal that precedes all the nodes of the graph of the process P : there is a dependence from ? XX
to each one of the signals designated in P . Symmetrically, the implicit signal ! XX is a signal which

is preceded by all the nodes of the graph of P : there is a dependence from each one of the signals

designated in P to the signal !XX .

This feature is used to specify explicit dependences between processes (cf. part E, section XI–6.2,

p. 196 et seq.).

The labels declared in a model of process (cf. part E, section XI–3, p. 192) are visible (i.e., can be

referenced) everywhere in this model, but not in its included models of processes: a label is in some way

local to a model.

In one model, a label cannot have the same name as another visible object (signal, parameter, con-

stant, type, model).



140 EXPRESSIONS ON PROCESSES

VII–6 Guarded processes
An expression of processes may be guarded by a clock (or an expression that provides a clock):

onH1 :: P

The guarded process onH1 :: P provides a guard (the clock defined by H1) which is a tick for the

process P , the inputs of which are filtered by this guard.

1. Context-free syntax

GUARDED-PROCESS ::=

on S-EXPR :: P-EXPR

| on Label :: P-EXPR

2. Profile

• ? (Pi) = {e1, . . . , en}

• ? (onH1 :: P ) = ? (H1) ∪ ? (P )

• ! (onH1 :: P ) = ! (P )

3. Types

(a) τ (H1) = event

or H1 is a label (associated with some other process).

4. Definition in SIGNAL
The guard H1 defines a context clock Ĥ1 which provides a tick (cf. section VII–5, p. 138 et

seq.) for the guarded process: in this process, no “visible clock” can be greater than this context

clock. The inputs of the process P are filtered by this guard. Then the above guarded process is

equivalent to:

( | e′1 := e1 when ̂H1
...

| e′n := en when ̂H1

| l1 ::

( | P [e′1/e1, ..., e′n/en]
| l1 ̂ = H1

|)

|) / e′1, ..., e′n

where P [e′1/e1, . . . , e′n/en] represents the process P in which new identifiers e′i are substi-

tuted to the identifiers ei which are inputs of P .

The new identifiers e′i are mutually distinct and do not appear elsewhere.



VII–7. CHOICE PROCESSES 141

VII–7 Choice processes
not yet

fully

imple-

mented
in

POLY-

CHRONY

A choice process is an expression of processes that allows to compose definitions according to the

different values of a signal (or of a signal expression such as clocked occurrence of state variable)1.

case E in

{V1,1, ..., V1,n1} : P1
...

{Vm,1, ..., Vm,nm} : Pm

else Pm+1

end

The “else” part is optional.

Other forms of enumeration of values can also be used in the different branches of the choice process.

They are described below.

1. Context-free syntax

CHOICE-PROCESS ::=

case S-EXPR in { CASE }+ [ ELSE-CASE ] end

CASE ::=

ENUMERATION-OF-VALUES : GENERAL-PROCESS

ELSE-CASE ::=

else GENERAL-PROCESS

ENUMERATION-OF-VALUES ::=

{ S-EXPR { , S-EXPR }∗ }

| [. [ S-EXPR ] , [ S-EXPR ] .]

| [. [ S-EXPR ] , [ S-EXPR ] [.

| .] [ S-EXPR ] , [ S-EXPR ] .]

| .] [ S-EXPR ] , [ S-EXPR ] [.

2. Profile

• ? (case E in ... end) = ? (E) ∪
⋃

i

? (Pi) −
⋃

i

! (Pi)

• ! (case E in ... end) =
⋃

i

! (Pi)

3. Types

(a) E has a Scalar-type or ENUMERATED-TYPE and

∀i, j τ (Vi,j) ⊑ τ (E)
1not yet implemented in POLYCHRONY: intervals of values.



142 EXPRESSIONS ON PROCESSES

4. Semantics
Each ENUMERATION-OF-VALUES enumerates some subset of constant values which are in

the same domain as the signal defined by E, signal on which the choice is based, and which are

possible values of E.

All the enumerations of values of the different branches (the “guard” values of the choice) must

be mutually exclusive. When there is an “else” part, the different sub-types corresponding to the

guard values of the different branches form a partition of the type of E.

The enumerations of values can take the form of explicit enumerations (used for the description

below), or of intervals. The four possible forms of intervals are usable only if the values of the type

of E are totally ordered: they define intervals of values that can be, for both sides of the interval,

opened or closed. The bounds of an interval are optional (one of the two must be present): if the

lower bound is absent, the interval represents all the values smaller than the upper bound (included

or not); if the upper bound is absent, the interval represents all the values greater than the lower

bound (included or not).

5. Definition in SIGNAL
In each branch, the guard of the choice (i.e., the condition representing the instants at which the

signal defined by E on which the choice is based takes as value one of the values enumerated in

the considered branch) defines a context clock Bi which provides a tick (cf. section VII–5, p. 138

et seq.) for the process defined by the corresponding branch: in this process, no “visible clock”

can be greater than this context clock. For this branch, the inputs of the process Pi are filtered by

this guard. Then, using guarded processes (cf. section VII–6, p. 140), the above choice process is

equivalent to:

( | ( | B1 := when ((E = V1,1) or ... or (E = V1,n1))

| on B1 :: P1

|) / B1

|
...

| ( | Bm := when ((E = Vm,1) or ... or (E = Vm,nm))

| on Bm :: Pm

|) / Bm

| ( | Bm+1 := when ((E /= V1,1) and ... and (E /= Vm,nm))

| on Bm+1 :: Pm+1

|) / Bm+1

|)

Note that it is possible that a given shared variable or state variable be defined in different

branches of the choice process. In this case, corresponding equations may appear as partial

definitions.

6. Clocks The values Vi,j are constant expressions:

(a) ω(Vi,j) = ~

(b) The clock of the signal defined by the expression E has to be well defined: it cannot be a



VII–7. CHOICE PROCESSES 143

context clock. In particular, E cannot be a constant expression or a non-clocked reference to

a state variable.

Example

Consider the statechart:

Q

i

j

Q2
m

nj

a

b

a

b

P

Q1

(1)
VU

X Y

Z

R

S

Note that transition labelled by event a from state Q has a higher priority (1) than transition labelled

by event b (priority considered as 0 by default). Moreover, external transitions from a substate are

considered of higher priority than inner ones.
This statechart may be described by the following program (process models and modules are de-

scribed respectively in part E, chapter XI, p. 183 et seq., and part E, chapter XII, p. 207 et seq.):

module P_statechart =

type P_states = enum (Q, R, S);

type Q1_states = enum (U, V);

type Q2_states = enum (X, Y, Z);

process P_chart =

( ? event Tick;

event a, b, i, j, m, n;

! P_states P_currentState;

Q1_states Q1_currentState;

Q2_states Q2_currentState;

)

(| (| case P_currentState in

{#Q}: (| P_nextState ::= (#R when a) default (#S when b) |)

{#R}: (| P_nextState ::= #S when b |)

{#S}: (| P_nextState ::= #Q when a |)

end

| P_nextState ::= defaultvalue P_currentState

| P_currentState := P_nextState $ init #Q

| P_currentState ^= Tick

|)

| clk_Q_chart := when (P_currentState = #Q)

| start_Q_chart := when (P_nextState = #Q) when (P_currentState /= #Q)

| Q1_State ^= Q2_State ^= clk_Q_chart ^+ start_Q_chart

| (| case Q1_State in



144 EXPRESSIONS ON PROCESSES

{#U}: (| Q1_newState ::= #V when i |)

{#V}: (| Q1_newState ::= #U when j |)

end

| Q1_newState ::= defaultvalue Q1_State

| Q1_newState ^= Q1_State

| Q1_nextState := (#U when start_Q_chart) default Q1_newState

| Q1_State := Q1_nextState $ init #U

| Q1_currentState := Q1_State when clk_Q_chart

|)

| (| case Q2_State in

{#X}: (| Q2_newState ::= #Y when m |)

{#Y}: (| Q2_newState ::= #Z when n |)

{#Z}: (| Q2_newState ::= #X when j |)

end

| Q2_newState ::= defaultvalue Q2_State

| Q2_newState ^= Q2_State

| Q2_nextState := (#X when start_Q_chart) default Q2_newState

| Q2_State := Q2_nextState $ init #X

| Q2_currentState := Q2_State when clk_Q_chart

|)

|)

where

shared P_states P_nextState;

shared Q1_states Q1_newState;

shared Q2_states Q2_newState;

event clk_Q_chart, start_Q_chart;

Q1_states Q1_State, Q1_nextState;

Q2_states Q2_State, Q2_nextState;

end;

end;

(note that the program could be better structured using several process models).

Another description of the same statechart is the following one, which uses state variables:

module P_statechart =

type P_states = enum (Q, R, S);

type Q1_states = enum (U, V);

type Q2_states = enum (X, Y, Z);

process P_chart =

( ? event Tick;

event a, b, i, j, m, n;

! P_states P_currentState;

Q1_states Q1_currentState;

Q2_states Q2_currentState;

)

(| (| P_currentState := P_State? when Tick

| case P_currentState in

{#Q}: (| P_State ::= (#R when a) default (#S when b) |)

{#R}: (| P_State ::= #S when b |)

{#S}: (| P_State ::= #Q when a

| start_Q_chart := a

|)



VII–8. ASSERTION PROCESSES 145

end

|)

| clk_Q_chart := when (P_currentState = #Q)

| (| Q1_currentState := Q1_State? when clk_Q_chart

| Q1_State ::= #U when start_Q_chart

| case Q1_currentState in

{#U}: (| Q1_State ::= #V when i |)

{#V}: (| Q1_State ::= #U when j |)

end

|)

| (| Q2_currentState := Q2_State? when clk_Q_chart

| Q2_State ::= #X when start_Q_chart

| case Q2_currentState in

{#X}: (| Q2_State ::= #Y when m |)

{#Y}: (| Q2_State ::= #Z when n |)

{#Z}: (| Q2_State ::= #X when j |)

end

|)

|)

where

statevar P_states P_State init #Q;

statevar Q1_states Q1_State init #U;

statevar Q2_states Q2_State init #X;

event clk_Q_chart, start_Q_chart;

end;

end;

See also another description using automaton processes in part E, section XI–1.6, p. 187 et seq.

VII–8 Assertion processes
An assertion process is a process with no output which specifies assumed properties in a model. It

can be used in particular to specify assumptions on inputs of the model or guarantees on outputs. The

assertions are expressed as constraints.

assert (| P1 | ... | Pn |)

1. Context-free syntax

ASSERTION-PROCESS ::=

assert (| [ CONSTRAINT { | CONSTRAINT }∗ ] |)

2. Profile

• ! (assert (| P1 | ... | Pn |) ) = ∅

• ? (assert (| P1 | ... | Pn |) ) = ? (P1) ∪ . . .∪ ? (Pn)

3. Definition in SIGNAL

assert (| P1 | ... | Pn |)



146 EXPRESSIONS ON PROCESSES

is equivalent to:

( | assert (| P1 |)
...

| assert (| Pn |)
|)

We distinguish the different sorts of constraint equations: clock relations (cf. section VI–5.3, p. 123

et seq.) and identity equations (cf. section VI–6, p. 125).

VII–8.1 Assertions of clock relations

• assert (| E1 ̂Op E2 ̂Op EE |)

(where Ôp is one of the operatorŝ=,̂<,̂> and #̂) is recursively defined by:

1. Definition in SIGNAL

( | assert (| E1 ̂Op E2 |)
| assert (| E1 ̂Op EE |)
| assert (| E2 ̂Op EE |)
|)

In the following definitions, we use a clock_assert process which is defined below (cf.

section VII–8.3, p. 148 et seq.). Note that this process is not provided in the syntax of the language.

• assert (| E1 ̂ = E2 |)
asserts that the clock of the expression on signals E1 is equal to that of E2.

1. Definition in SIGNAL

clock_assert(E1, E2)

Example The following example adds an assumption of clock equivalence:

process two_oversampling =

( ? integer u1, u2;

! boolean b1, b2;

)

(| b1 := oversampling(u1)

| b2 := oversampling(u2)

| assert (| when b1 ^= when b2 |)

|)

where

process oversampling =

( ? integer u;

! boolean b;

)



VII–8. ASSERTION PROCESSES 147

(| z := u default v

| v := (z $ init 1) - 1

| b := v <= 0

| u ^= when b

|)

where

integer z, v;

end

;

end

;

• assert (| E1 ̂ < E2 |)
asserts that the clock of the expression on signals E1 is smaller than (or equal to) that of E2.

1. Definition in SIGNAL

clock_assert(E1, E1 ∗̂ E2)

• assert (| E1 ̂ > E2 |)
asserts that the clock of the expression on signals E1 is greater than (or equal to) that of E2.

1. Definition in SIGNAL

clock_assert(E1, E1 +̂ E2)

• assert (| E1 ̂# E2 |)
asserts that the clocks of the expressions on signals E1 and E2 are mutually exclusive.

1. Definition in SIGNAL

clock_assert( 0̂, E1 ∗̂ E2)

VII–8.2 Assertions of identity equations
assert (| E1 :=: E2 |)
asserts that: 1/ the clocks of the expressions on signals E1 and E2 are equal; 2/ at this common clock,

the values of these expressions are equal.

1. Definition in SIGNAL



148 EXPRESSIONS ON PROCESSES

( | clock_assert(E1, E2)

| assert(E1 == E2)

|)

This definition uses the assertion on Boolean signal which is defined below (cf. section VII–8.3,

p. 148 et seq.).

VII–8.3 Assertion on Boolean signal
The syntax of an INSTANCE-OF-PROCESS (cf. section VI–1.2, p. 99 et seq.) is used to assert that a

given Boolean signal must have the value true each time it is present. It is a process with no output (it

has the syntax of a process call with no output).

assert(B)

1. Context-free syntax

INSTANCE-OF-PROCESS ::=

assert ( S-EXPR )

2. Profile

• ! (assert(B)) = ∅

• ? (assert(B)) = ? (B)

3. Types

(a) τ (B) = boolean

4. Semantics
A property specified by an assertion can be assumed by the clock calculus.

5. Definition in SIGNAL
assert(B)
is equal to the process defined as follows:

( | B ̂ = when B
|)

6. Examples

(a) The process

assert(A < 5)

expresses that the values of A must be always lower than 5 (when A is present).

• The process assert(h1 = h2) does not specify that the clocks (signals of type event) h1 and

h2 are equal. In the same way, the process assert(x ∗̂ y = 0̂) does not specify that the signals

x and y are exclusive.



VII–8. ASSERTION PROCESSES 149

This is the reason why we introduced the process (or “macro”) clock_assert, which is defined

as follows:

process clock_assert = ( ? event h1, h2; ! )

( | b1 := h1 default not (h1 ̂+ h2)

| b2 := h2 default not (h1 ̂+ h2)

| assert(b1 = b2)

|)
where boolean b1, b2;

end;

Using the left_tt process (cf. part E, section XIII–3, p. 214), an equivalent definition is the

following:

process clock_assert = ( ? event h1, h2; ! )

( | b1 := left_tt(h1, h2)

| b2 := left_tt(h2, h1)

| assert(b1 = b2)

|)
where boolean b1, b2;

end;

Using this process, for instance, clock_assert(h1, h2), the equality of the clocks h1 and h2
can be assumed by the clock calculus.

Again, note that the process clock_assert is not provided in the syntax of the language: it is

only used as intermediate macro for the definition of assertion processes.

• The keyword assert may be used in two different contexts:

– in an ASSERTION-PROCESS, it takes a composition of CONSTRAINTS as argument,

– in an INSTANCE-OF-PROCESS, it takes a Boolean signal as argument.

Example

The following example uses the intrinsic process affine_sample defined in part E, sec-

tion XIII–2, p. 211 et seq., and, given general properties of affine relations such as the one encoded

in the assertion, allows to synchronize resulting clocks, even if the clock calculus does not implement

the corresponding synchronisability rules.

process affine_relations =

{ integer n1, n2, n3, phi1, phi2, phi3; }

( ? integer e;

! integer s;

)

(| s1 := affine_sample {phi1, n1} (e)

| s2 := affine_sample {phi2, n2} (e)

| s3 := affine_sample {phi3, n3} (s2)

| s := s1 + s3

| (| b := ^s1 default not (s1 ^+ s3)

| bb := ^s3 default not (s1 ^+ s3)

| assert ((b = bb) when (n2*phi3+phi2 = phi1) when (n1 = n2*n3))

|)

|)



150 EXPRESSIONS ON PROCESSES

where

integer s1, s2, s3;

boolean b, bb;

end

;



Part D

THE COMPOSITE SIGNALS





Chapter VIII

Tuples of signals

An expression of tuple is an enumeration of elements of tuple, or a designation of field.

1. Context-free syntax

S-EXPR-TUPLE ::=

TUPLE-ENUMERATION
| TUPLE-FIELD

VIII–1 Constant expressions
A constant expression of tuple is an S-EXPR-TUPLE which has recursively as arguments constant ex-

pressions, or any expression defining a tuple the elements of which are constants.

VIII–2 Enumeration of tuple elements
A tuple represents a list (finite sequence) of signals or tuples.

(E1, . . . , En)

1. Context-free syntax

TUPLE-ENUMERATION ::=

( S-EXPR { , S-EXPR }∗ )

2. Types

(a) τ ((E1, . . . , En)) = (τ (E1) × . . . × τ (En))

3. Semantics
The tuple (E1, . . . , En) is equal to < v1, . . . , vn > where < v1, . . . , vn > is the sequence of

signals or tuples resulting from the evaluation of the expressions E1, . . . , En.

The semantics is described formally in part B, section III–7.1, p. 44 et seq.



154 TUPLES OF SIGNALS

VIII–3 Denotation of field
X.Xi

1. Context-free syntax

TUPLE-FIELD ::=

S-EXPR . Name-field

2. Types

(a) τ (X) = bundle({X1} → µ1 × . . .× {Xm} → µm)

(b) τ (X.Xi) = µi

3. Semantics
If X is a tuple with named fields X1, . . . , Xm, X.Xi designates the signal or the tuple corre-

sponding to the field with name Xi.

In particular, the denotation of field may apply on an INSTANCE-OFPROCESS when the output

of the corresponding model is a tuple with named fields. It may also apply on an array element if

the elements of the array are monochronous tuples with named fields.

The semantics is described formally in part B, section III–7.1, p. 44 et seq.

VIII–4 Destructuration of tuple
The syntax of an INSTANCE-OF-PROCESS is used to denote the call of predefined functions of de-

structuration of tuples:

• tuple(X)

– If X is a tuple with named fields of type bundle({X1} → µ1 × . . .× {Xm} → µm),
tuple(X) is the corresponding tuple with unnamed fields, (X1, . . . , Xm), of type

(µ1 × . . .× µm)

– If X is a tuple with unnamed fields, the components of which are, in this order, X1, . . . , Xm,

tuple(X) is the tuple with unnamed fields (tuple(X1), . . . , tuple(Xm))

– If X is not of tuple type, then tuple(X) is equal to X.

• rtuple(X)

– If X is a tuple with named fields of type bundle({X1} → µ1 × . . .× {Xm} → µm),
rtuple(X) is the tuple with unnamed fields

(rtuple(X1), . . . , rtuple(Xm))

– If X is a tuple with unnamed fields, the components of which are, in this order, X1, . . . , Xm,

rtuple(X) is the tuple with unnamed fields

(rtuple(X1), . . . , rtuple(Xm))

– If X is not of tuple type, then rtuple(X) is equal to X .



VIII–5. EQUATION OF DEFINITION OF TUPLE COMPONENT 155

VIII–5 Equation of definition of tuple component
A tuple can be defined component by component. An equation of definition of component of tuple is an

expression of processes the syntax of which extends the DEFINITION-OF-SIGNALS given in part C,

section VI–1.1, p. 93 et seq. The general form can contain both definitions of components of tuples and

global definitions of tuples and signals.

(X1.A1, . . . , Xn.An) := E

1. Context-free syntax

DEFINITION-OF-SIGNALS ::=

COMPONENT := S-EXPR

| COMPONENT ::= S-EXPR

| COMPONENT ::= defaultvalue S-EXPR

| ( COMPONENT { , COMPONENT }∗ ) := S-EXPR

| ( COMPONENT { , COMPONENT }∗ ) ::= S-EXPR

| ( COMPONENT { , COMPONENT }∗ ) ::= defaultvalue
S-EXPR

COMPONENT ::=

Name-signal

| Name-signal . COMPONENT

2. Types

(a) τ ((X1.A1, . . . ,Xn.An)) = (τ (X1.A1) × . . . × τ (Xn.An))

(b) τ (E) ⊑ (τ (X1.A1) × . . .× τ (Xn.An))

3. Semantics

• X1.A1, . . . , Xn.An designate signals or tuples of signals, respectively components of the

tuples X1, . . . , Xn.

• Each signal or tuple Xi.Ai is respectively equal to the signal or tuple vi that corresponds

positionally to it in output of E.

4. Clocks A signal and the signal vi that defines it are synchronous. In that case:

(a) ω(Xi.Ai) = ω(vi)





Chapter IX

Spatial processing

Spatial processing is obtained by manipulations of arrays.

The following operators are provided:

• operators of definition by enumeration

(ARRAY-ENUMERATION, CONCATENATION, ITERATIVE-ENUMERATION);

• an operator of definition of indices (INDEX);

• operators of access to elements of arrays (ARRAY-ELEMENT, SUB-ARRAY);

• an operator of array restructuration (ARRAY-RESTRUCTURATION);

• operators of sequential definition

(SEQUENTIAL-DEFINITION, ITERATIVE-ENUMERATION);

• global operators on matrices such as transposition (TRANSPOSITION) and products (ARRAY-
PRODUCT).

Moreover, structures of iteration are also defined on processes (ITERATION-OF-PROCESSES),

with an associated operator of definition of multiple indexes (MULTI-INDEX).

1. Context-free syntax

S-EXPR-ARRAY ::=

ARRAY-ENUMERATION
| CONCATENATION
| ITERATIVE-ENUMERATION
| INDEX
| ARRAY-ELEMENT
| SUB-ARRAY
| ARRAY-RESTRUCTURATION
| MULTI-INDEX
| SEQUENTIAL-DEFINITION
| TRANSPOSITION
| ARRAY-PRODUCT
| REFERENCE-SEQUENCE



158 SPATIAL PROCESSING

IX–1 Dimensions of arrays and bounded values
Dimensions of arrays

The syntax of an INSTANCE-OF-PROCESS is used to denote the call of predefined functions with

constant result giving the dimension of an array and the size of a dimension:

• dim(T)
If T has a type ([0..n1 − 1] × . . .× [0..nm − 1]) → ν where ν is a Scalar-type or External-type
or ENUMERATED-TYPE,

then ϕ(dim(T)) = m.

If T has a type ν where ν is a Scalar-type or External-type or ENUMERATED-TYPE,

then ϕ(dim(T)) = 0.

• size(T ,I)
If T has a type ([0..n1 − 1] × . . .× [0..nm − 1]) → ν where ν is a Scalar-type or External-type
or ENUMERATED-TYPE,

and if 1 ≤ ϕ(I) ≤ m,

then ϕ(size(T ,I)) = nI ,

else ϕ(size(T ,I)) is not defined: it is an error in the program.

• size(T) is, by definition, equivalent to

size(T ,1)

Bounded values

The syntax of an INSTANCE-OF-PROCESS is used to denote the call of a predefined function

used to deliver bounded values.

bounds(E1, E2, E3)

The values of E1 are compelled to evolve between that of E2 and E3.

1. Types

(a) E1, E2 and E3 are signals of a same domain Scalar-type (other than a Complex-type), or

ENUMERATED-TYPE.

(b) τ (bounds(E1, E2, E3)) = τ (E1) ⊔ τ (E2) ⊔ τ (E3)

(c) The pointwise extension is described in chapter X, p. 179 et seq.

2. Definition in SIGNAL
X := bounds(E1, E2, E3)

whose right side of := represents an expression of bounded values, is equal to the process

defined as follows:

( | X := if E1 < E2 then E2 else if E1 > E3 then E3 else E1

|)



IX–2. CONSTANT EXPRESSIONS 159

3. Clocks

(a) ω(E1) = ω(E2)

(b) ω(E1) = ω(E3)

(c) ω(bounds(E1, E2, E3)) = ω(E1)

IX–2 Constant expressions
A constant expression of array is an S-EXPR-ARRAY which has recursively as arguments constant

expressions, or any expression defining an array the elements of which are constants.

IX–3 Enumeration
The enumeration of the elements of an array defines a vector by the ordered list of its elements.

[E1, . . . , En]

1. Context-free syntax

ARRAY-ENUMERATION ::=

[ S-EXPR { , S-EXPR }∗ ]

2. Profile

? ([E1, . . . , En]) =

n⋃

i=1

? (Ei)

3. Types

(a) τ ([E1, . . . , En]) = [0..n− 1] →
n⊔

i=1

τ(Ei)

4. Semantics
[E1, . . . , En] designates the vector the n components of which are, in this order, E1, . . . , En (cf.

part B, section III–7.2, p. 46 et seq.).

5. Clocks

(a) ω([E1, ..., En]) = ω(Ei) ∀i = 1, . . . , n

6. Examples

(a) With M1 := [[M11,M12,M13],[M21,M22,M23]],

M1[0] is equal to [M11,M12,M13].



160 SPATIAL PROCESSING

IX–4 Concatenation
The concatenation allows to concatenate arrays along to their first dimension.

E1 |+ E2

1. Context-free syntax

CONCATENATION ::=

S-EXPR |+ S-EXPR

2. Types

(a) τ (E1) = [0..m1 − 1] → µ1

(b) τ (E2) = [0..m2 − 1] → µ2

(c) τ (E1 |+ E2) = [0..m1 +m2 − 1] → µ1 ⊔ µ2

3. Definition in SIGNAL
X := E1 |+ E2 is equal to the process defined as follows:

X := [E1[0], . . . , E1[m1 − 1], E2[0], . . . , E2[m2 − 1]]

4. Clocks

(a) ω(E1) = ω(E2)

(b) ω(E1 |+ E2) = ω(E1)

IX–5 Repetition
The repetition is a simple form of iterative enumeration which allows the finite repetition of a value.

E |∗ N

1. Context-free syntax

ITERATIVE-ENUMERATION ::=

S-EXPR |∗ S-EXPR

2. Types

(a) τ (E) = µ

(b) N is a positive integer expression, with a strictly positive upper bound, Nmax.

(c) τ (E |∗ N) = [0..Nmax − 1] → µ

3. Semantics
At a given instant, all the elements of the vector defined by E |∗ N have the same value, which is

the value of E.



IX–6. DEFINITION OF INDEX 161

The semantics is described formally in part B, section III–7.2, p. 46 et seq., using the “iterative enu-

meration of array”. The maximum number of iterations is given by N , and the iteration function

which is used here is the identity function with first value the value E itself.

4. Clocks

(a) ω(E) = ω(N)
(b) ω(E |∗ N) = ω(E)

IX–6 Definition of index
E1..E2 step E3

1. Context-free syntax

INDEX ::=

S-EXPR .. S-EXPR [ step S-EXPR ]

2. Types

(a) E1 and E2 are bounded integers such that the difference E1 − E2 has always the same sign

(at every instant): ∀t, E1t ≤ E2t or ∀t, E1t ≥ E2t.

lower_bound(E1), upper_bound(E1), lower_bound(E2) and upper_bound(E2) will de-

note respectively the lower bounds and upper bounds of E1 and E2.

(b) E3 is an integer constant different from 0, such that

if ∀t, E1t ≤ E2t then ϕ(E3) > 0

and if ∀t, E1t ≥ E2t then ϕ(E3) < 0.

When the step expression, E3, is omitted, its value is implicitly equal to 1.

(c) If ϕ(E3) > 0,

τ (E1..E2 step E3) =

[0..((upper_bound(E2)− lower_bound(E1))/ϕ(E3) + 1)− 1] → τ (E1) ⊔ τ (E2)
If ϕ(E3) < 0,

τ (E1..E2 step E3) =

[0..((upper_bound(E1)− lower_bound(E2))/(−ϕ(E3)) + 1)− 1] → τ (E1) ⊔ τ (E2)
In any case, the size of the vector must be strictly positive.

3. Semantics
The vector of integers defined by E1..E2 step E3 has as successive elements the values E1t,

E1t +ϕ(E3), E1t + (2 ∗ϕ(E3)), etc., up to the last value between E1t and E2t (included).

The semantics is described formally in part B, section III–7.2, p. 46 et seq., using the “iterative

enumeration of array”.

The iteration function is the function f such that f(x) = x+ϕ(E3). The first value is E1.

If ϕ(E3) > 0, the maximum number of iterations is given by

N = (E2 − E1) / ϕ(E3) + 1.

If ϕ(E3) < 0, the maximum number of iterations is given by

N = (E1 − E2) / (−ϕ(E3)) + 1.

4. Clocks

(a) ω(E1) = ω(E2) = ω(E1..E2 step E3)



162 SPATIAL PROCESSING

(b) ω(E3) = ~

A constant index is an index which is defined using only constant expressions.

IX–7 Array element
An array element is obtained by indexing following the syntax of the first rule below. Every index of

array must be a positive bounded integer, whose upper bound is strictly inferior to the size n of the

considered dimension; the second rule provides a syntax of “local recovery” which defines the value of

the expression for the values of index outside the segment [0..n− 1].

1. Context-free syntax

ARRAY-ELEMENT ::=

S-EXPR [ S-EXPR { , S-EXPR }∗ ]

| S-EXPR [ S-EXPR { , S-EXPR }∗ ] ARRAY-RECOVERY

ARRAY-RECOVERY ::=

\\ S-EXPR

IX–7.1 Access without recovery
T[E1, . . . , Em]

1. Profile

? (T[E1, . . . , Em]) = ? (T) ∪
m⋃

i=1

? (Ei)

2. Types

(a) For all i, Ei is a positive (or zero) integer, with an upper bound. Let ni the value of its upper

bound.

(b) τ (T ) = ([0..n1 − 1] × . . .× [0..nm − 1]) → µ
(remark: µ can be an array type.)

(c) τ (T[E1, . . . , Em]) = µ

3. Semantics
If v1, . . . , vm represent respectively the self-corresponding elements in the sequences of values

represented by E1, . . . , Em, the corresponding element in the sequence represented by T[E1,

..., Em] is T (< v1, . . . , vm >).

The semantics is described formally in part B, section III–7.2, p. 46 et seq.

4. Clocks

(a) ω(E1) = ω(T ), . . . , ω(Em) = ω(T )
(b) ω(T[E1, ..., Em]) = ω(T)

5. Properties

(a) (E1, . . . , Em of type integer) ⇒ (T[E1, . . . , Em] = T[E1] . . .[Em])



IX–8. EXTRACTION OF SUB-ARRAY 163

IX–7.2 Access with recovery
T[E1, . . . , Em]\\V

1. Types

(a) τ (T ) = ([0..n1 − 1] × . . .× [0..nm − 1]) → µ1

(b) For all i = 1, . . . ,m, τ (Ei) is an Integer-type.

(c) τ (V ) = µ2

(d) τ (T[E1, . . . , Em]\\V ) = µ1 ⊔ µ2

2. Definition in SIGNAL
X := T[E1, . . . , Em]\\V
whose right side of := represents an expression of access to an array element with recovery, is

equal to the process defined as follows:

( | X1 := T[E1 modulo n1, ..., Em modulo nm]

| B1 := (0 <= E1) and (E1 <= (n1 − 1))
...

| Bm := (0 <= Em) and (Em <= (nm − 1))

| B := (B1 and ... and Bm) when ̂T
| X2 := V when ̂T
| X := (X1 when B) default X2

|) / X1, X2, B, B1, ..., Bm

3. Clocks

(a) ω(E1) = ω(T ), . . . , ω(Em) = ω(T )

(b) ω(V ) = ω(T )

(c) ω(T[E1, ..., Em]\\V ) = ω(T )

IX–8 Extraction of sub-array
The expression of extraction of sub-array is a generalization, with the same syntax, of the expression

of access to an array element (cf. section IX–7, p. 162 et seq.). Only the form where the accesses

are obtained via “generalized indices” (represented as arrays of integers) is given here; when they are

integers, the description of the corresponding expression is given in section IX–7.

T[I1, . . . , In]

1. Context-free syntax

SUB-ARRAY ::=

S-EXPR [ S-EXPR { , S-EXPR }∗ ]



164 SPATIAL PROCESSING

2. Types

(a) τ (I1) = . . . = τ (In) = ([0..b1] × . . .× [0..bp]) → ν
with ν an integer type, and the basic integer values of the Ii are positive or zero.

(b) More generally, the list of indices I1, . . . , In can be specified by any expression denoting a

function ([0..b1] × . . . × [0..bp]) → νn (with ν an integer type).

(c) τ (T ) = ([0..a1] × . . .× [0..an]) → µ
(µ can be an array type).

(d) τ (T[I1, . . . , In]) = ([0..b1] × . . . × [0..bp]) → µ

3. Semantics
T[I1, . . . , In] extracts some sub-array from T .

The semantics is described formally in part B, section III–7.2, p. 46 et seq. (non defined values,

represented by nil in the semantics, are any values of correct type).

If T has at least n dimensions (and has the basic type µ for the elements corresponding to these n
first dimensions), it can be traversed using jointly n indices I1, . . . , In (one per dimension), that

allow to extract elements of type µ.

Each one of the indices is an array with the same number of dimensions, let p.

The result, let X , has the same number of dimensions as the indices, which is p. Its basic elements

have the type µ (type of the extracted elements).

With each “position” (j1, . . . , jp) in X , it is associated the element of T the position of which is

given by the value of the n indices in (j1, . . . , jp), i.e., in the position

(I1[j1, . . . , jp], . . . , In[j1, . . . , jp]) in T .

4. Clocks

(a) ω(I1) = ω(T ), . . . , ω(In) = ω(T )

(b) ω(T[I1, ..., In]) = ω(T )

5. Properties

(a) If V is a vector of type [0..n− 1] → µ and if I is an index defined by I := 0..n−1, then

the expressions V and V [I] are equivalent.

6. Examples

(a) ([[10,20],[30,40]])[1,0] value is 30.

(b) (0..10)[2..4] value is [2,3,4].

(c) if M is a n× n matrix, then M[0..n−1,0..n−1] is the vector containing its diagonal.

IX–9 Array restructuration
The array restructuration allows to define partially (in the general case) an array, by defining some

indices-defined coordinate points of this array. Non defined values are any values of correct type. This

operator is the “reverse” of the operator of extraction of sub-array (cf. section IX–8, p. 163 et seq.) in

the following informal way: let T be the result of (I1,. . . ,In) : S; if the indices are such that each



IX–9. ARRAY RESTRUCTURATION 165

element of S is used only once by the definition, then T[I1, . . . , In] value is S.

(I1,. . . ,In) : S

1. Context-free syntax

ARRAY-RESTRUCTURATION ::=

S-EXPR : S-EXPR

2. Types
Depending on I1, . . . , In being integers or arrays of integers, one of the following sets of relations

on types applies:

(a) • For any k, τ (Ik) is a positive or null integer, with an upper bound. Let ak this upper

bound.

• τ (S) = µ

• τ ((I1,. . . ,In) : S) = ([0..a1] × . . .× [0..an]) → µ

(b) • τ (I1) = . . . = τ (In) = ([0..b1] × . . .× [0..bp]) → ν
with ν an integer type, and for 1 ≤ i ≤ n, min

K∈Dom(Ii)
Ii(K) ≥ 0

• More generally, the tuple of indices (I1,. . . ,In) can be specified by any expression

denoting a function ([0..b1] × . . . × [0..bp]) → νn (with ν an integer type).

• τ (S) = ([0..c1] × . . . × [0..cp]) → µ
with c1 ≥ b1, . . . , cp ≥ bp

• τ ((I1,. . . ,Im) : S) = ([0..a1] × . . .× [0..an]) → µ
with for 1 ≤ i ≤ n, ai = max

K∈Dom(Ii)
Ii(K)

3. Semantics
(I1,. . . ,In) : S specifies a partial definition of array, using the coordinate points defined by the

tuple of “generalized indices” (I1, . . . , In) and the values of S obtained by skimming through

these coordinates.

The semantics is described formally in part B, section III–7.2, p. 46 et seq. (non defined values,

represented by nil in the semantics, are any values of correct type).

Let T be the array defined by the expression (I1,. . . ,In) : S. If the indices I1, . . . , In are such that

they allow to scan exactly the array T (each position is visited only once using these indices), then

the restructuration T := (I1,. . . ,In) : S defines the array T such that the extraction of sub-array

T[I1, . . . , In] (cf. section IX–8, p. 163 et seq.) is equal to S.

In other words, T[I1[k1,. . . ,kp], . . . , In[k1,. . . ,kp]] = S[k1,. . . ,kp].

If (I1[k1, . . . , kp], . . . , In[k1, . . . , kp]) defines the same position for several distinct values of

(k1, . . . , kp), it is the element corresponding to the max of the (k1, . . . , kp) (in lexicographic order)

which is used.

4. Clocks

(a) ω(I1) = ω(S), . . . , ω(In) = ω(S)

(b) ω((I1,...,In) : S) = ω(S)



166 SPATIAL PROCESSING

5. Examples

(a) 2 : 1 is a vector [any,any,1].

where any represents any well-typed value (nil in the semantics).

Its type is [0..2] → integer since the maximal value of 2 is 2.

(b) (1,2) : 3 is a matrix [[any,any,any],[any,any,3]].

Its type is ([0..1] × [0..2]) → integer .

(c) 1 : [[1,2],[3,4]] is a 3-dimensions array

[[[any,any],[any,any]],[[1,2],[3,4]]].

Its type is ([0..1] × [0..1] × [0..1]) → integer .

(d) [3,6] : [2,4] is a vector [any,any,any,2,any,any,4].

(e) ([0,1],[2,1]) : [4,5] is a matrix [[any,any,4],[any,5,any]].

IX–10 Generalized indices
The syntax of an INSTANCE-OF-PROCESS is used to denote the call of a predefined function that

delivers generalized “unit” indices. Such indices can be used for standard array traversal in extraction of

sub-array (cf. section IX–8, p. 163 et seq.) or array restructuration (cf. section IX–9, p. 164 et seq.).

indices(a1,. . . ,an)

Let the expression indices(a1,. . . ,an) define jointly n indices I1, . . . , In:

(I1,. . . ,In) := indices(a1,. . . ,an)

1. Types

(a) The elaborated values of a1 (ϕ(a1)), . . . , an (ϕ(an)) are strictly positive integers.

(b) For all j = 1, . . . , n,

τ (Ij) = ([0..ϕ(a1) − 1] × . . .× [0..ϕ(an) − 1]) → ν
where ν is an Integer-type.

2. Semantics
For all j = 1, . . . , n,

for all kl such that 0 ≤ kl ≤ ϕ(al) − 1,

(∀t) ( Ij t(k1, . . . , kn) = kj )

3. Definition in SIGNAL
(I1,. . . ,In) := indices(a1,. . . ,an)
may be obtained by the process defined as follows:

( | (II1,...,IIn) := ≪0..a1 − 1,...,0..an − 1≫
| iterate (II1,...,IIn) of

(I1[II1,...,IIn], ..., In[II1,...,IIn]) := (II1, ..., IIn)
end

|) / II1, ..., IIn

(cf. section IX–12, p. 168 and section IX–13, p. 168 et seq.).



IX–11. EXTENDED SYNTAX OF EQUATIONS OF DEFINITION 167

4. Clocks

(a) ω(a1) = ~, . . . ,ω(an) = ~

(b) ω(indices(a1, . . . , an)) = ~

5. Examples

(a) if M is a 4 × 5 matrix, then M[indices(3,4)] is the 3 × 4 submatrix of M that contains

the three first lines and the four first columns of the matrix M.

IX–11 Extended syntax of equations of definition
not yet

fully
imple-

mented
in

POLY-

CHRONY

The following syntax1 extends the syntax of DEFINITION-OF-SIGNALS given in VIII–5, page 155:

1. Context-free syntax

DEFINITION-OF-SIGNALS ::=

DEFINED-ELEMENT := S-EXPR

| DEFINED-ELEMENT ::= S-EXPR

| DEFINED-ELEMENT ::= defaultvalue S-EXPR

| ( DEFINED-ELEMENT { , DEFINED-ELEMENT }∗ )

:= S-EXPR

| ( DEFINED-ELEMENT { , DEFINED-ELEMENT }∗ )

::= S-EXPR

| ( DEFINED-ELEMENT { , DEFINED-ELEMENT }∗ )

::= defaultvalue S-EXPR

DEFINED-ELEMENT ::=

COMPONENT
| COMPONENT [ S-EXPR { , S-EXPR }∗ ]

An equation

X[I1,. . . ,Im] := E
is another way to write:

X := (I1,. . . ,Im) : E
The definition is similar when the symbol ::= is used.

If one equation defines only partially an array, this array can be defined using several equations,

defining different parts or elements of this array.

Independently of non defined elements (represented by nil in the semantics), like any signal, a given

element cannot be defined by distinct values at a same instant.

All the elements of an array have the same clock, which is the clock of the array. In particular, if some

element is undefined at a given instant at which other elements are defined, this element is considered to

have any well-typed value.

1not yet implemented in POLYCHRONY: multiple partial definitions for different elements of an array.



168 SPATIAL PROCESSING

IX–12 Cartesian product
The cartesian product is used mainly to define jointly indices, to be used in the provided structure

of iteration of processes (cf. section IX–13, p. 168 et seq.). Intuitively, the sequence of iteration is

represented by the first dimension of the indices (which are vectors). Thus, it is different from the

generalized indices used in extraction of sub-array (cf. section IX–8, p. 163 et seq.) or array restruc-

turation (cf. section IX–9, p. 164 et seq.), which are, in the more general case, multi-dimensional indices.

≪I1, . . . , In≫

1. Context-free syntax

MULTI-INDEX ::=

<< S-EXPR { , S-EXPR }∗ >>

2. Types

(a) ∀k, τ (Ik) = [0..mk − 1] → µk

(b) τ (≪I1, . . . , In≫) = [0..

n∏

k=1

mk − 1] → µ1 × . . .× [0..

n∏

k=1

mk − 1] → µn

3. Semantics
The cartesian product ≪I1, . . . , In≫ defines a tuple of n vectors II1, . . . , IIn, the size of which

is equal to the product of the sizes of the vectors I1, . . . , In. These vectors II1, . . . , IIn are such

that the tuples obtained by their elements of same index describe successively the respective values

of the elements of I1, . . . , In in embedded loops such that the most external one enumerates the

elements of I1 and the most internal one enumerates the elements of In.

The semantics is described formally in part B, section III–7.2, p. 46 et seq.

4. Clocks

(a) ω(I1) = . . . = ω(In)

(b) Each one of the defined IIk has the same clock as Ik.

IX–13 Iterations of processes
not yet

fully

imple-
mented

in

POLY-

CHRONY

Structures of iteration are provided as process expressions2 .

1. Context-free syntax

GENERAL-PROCESS ::=

ITERATION-OF-PROCESSES

ITERATION-OF-PROCESSES ::=

array ARRAY-INDEX of P-EXPR [ ITERATION-INIT ] end

| iterate ITERATION-INDEX of P-EXPR [ ITERATION-INIT ] end

2not yet implemented in POLYCHRONY: creation of the implicit added dimension when necessary; multiple associated

indices.



IX–13. ITERATIONS OF PROCESSES 169

ARRAY-INDEX ::=

Name to S-EXPR

ITERATION-INDEX ::=

DEFINED-ELEMENT
| ( DEFINED-ELEMENT { , DEFINED-ELEMENT }∗ )
| S-EXPR

ITERATION-INIT ::=

with P-EXPR

REFERENCE-SEQUENCE ::=

S-EXPR [ ? ]

The structure of array is used in the SIGNAL language to represent a notion of iteration.

The signals which are defined iteratively have a virtual additional first dimension (with respect to

their declaration), the size of which is the number of iterations. Moreover, a virtual index −1 in this first

dimension is used to represent the initial value of the considered signal, at the beginning of the iterations.

The current value of the signal at a given iteration step may be a function of its value at the previous

iteration step.

Note that this representation of bounded iterations using an additional spatial dimension is only a

means to represent simply such iterations within the existing semantic context. In practice, this added

dimension has not necessarily to be created.

Let us first consider the following form:

iterate (I1,. . . ,Ip) of P with Pinit end

where P is a process expression with equations that may contain the following occurrences of signal

expressions:

• in the left hand side:

X[f(I1, . . . , Ip)] (or just X)

• in the right hand side:

X[g(I1, . . . , Ip)] (or just X)

and:

X[?][h(I1, . . . , Ip)] (or just X[?])

Pinit is also a process expression with equations that may contain signal expressions of the form

X[u(I1, . . . , Ip)] (or just X) in the left hand side.

The equations which are under the scope of a structure of iteration (“iteration of processes”) in a

given unit of compilation are rewritten as a new system of equations according to the context of rewritting

established by the embedding of iteration structures. An indexing function (which can be represented

as some list of constant indexes—cf. section IX–6, p. 161 et seq.) corresponds to such a context. The

indexing function is a function:

I : [0..(n1 ∗ . . . ∗ np)− 1] → [0..n1 − 1] × . . .× [0..np − 1] (where the ni are integer constants).

For simplicity, let this function be represented here by the tuple of constant indexes I1, . . . , Ip (in this

order): each index has a size equal to n1 ∗ . . . ∗ np. We note m = n1 ∗ . . . ∗ np.

Let us consider also the following “generic” forms of equations in Pinit:

X[u(I1, . . . , Ip)] := E



170 SPATIAL PROCESSING

and in P :

X[f(I1, . . . , Ip)] := k(X[?][h(I1,. . . ,Ip)], Y [g(I1,. . . ,Ip)], . . .)
(X , Y represent any variable—Y may be X— defined in the iteration, the functions f , g, h, u. . . on

indexes can represent tuples. . . ; note that besides the representation of the iteration in an added dimension

for the signals, each defined element has several definitions along the iteration.)

Considering this iteration context, the equations affected by this context are rewritten in the follow-

ing way (“expanded”, in some way), as a composition of equations (XX , Y Y . . . are new variables,

corresponding to the variables defined in the iteration, with the same type as the corresponding variable,

but with an additional first dimension of size m+ 1):

• initialization equations:

X[u(I1, . . . , Ip)] := E
is rewritten as the composition of equations:

∀i1, . . . , ip,∀ϕ(I1[i1]), . . . ,ϕ(Ip[ip]),

XX[−1][u(ϕ(I1[i1]), . . . ,ϕ(Ip[ip]))] := E
where −1 refers to the virtual first index of the added dimension.

• equations of the body:

X[f(I1, . . . , Ip)] := k(X[?][h(I1,. . . ,Ip)], Y [g(I1,. . . ,Ip)], . . .)
is rewritten as the composition of equations:

∀l = 0, . . . ,m− 1,

– XX[l][f(I1[l], . . . , Ip[l])] :=
k(XX[l − 1][h(I1[l], . . . , Ip[l])], Y Y [l][g(I1[l], . . . , Ip[l])], . . .)

– ∀j 6= f(I1[l], . . . , Ip[l]),
XX[l][j] :=XX[l − 1][j]

• final results:

X :=XX[m− 1]

This rewritting is some sort of preprocessing. In particular, the typing of a program has to be consid-

ered on the rewritten program.

As mentioned above, the iteration indexes can be represented as some list of constant indexes. A

particular case is to have such a list defined as a tuple resulting from the cartesian product of indexes.

More generally, the iteration indexes can be specified by any expression denoting a function

[0..(n1 ∗ . . . ∗ np)− 1] → [0..n1 − 1] × . . . × [0..np − 1] (where the ni are integer constants).

For a given set of equations, the context of iteration is established, in some unit of compilation,

by the whole embedding structure of the iterations containing these equations. As it will be easier to

understand it in a regular context, let us consider as typical example the embedding of two structures of

iteration, the indexing functions of them, taken separately, are given by cartesian products of indexes:

let ≪I1, . . . , Ip≫ for the most external one, and ≪Ip+1, . . . , Ip+q≫ for the inner one. Then, for

the equations which are under the scope of both structures of iteration, the indexing function (which

determines the rewritting) is given by the following cartesian product: ≪I1, . . . , Ip+q≫. This rule is

generalized following the same principle for any indexing function and for any embedding of structures

of iteration.

Particular case. In order to allow “incomplete” iterations (for instance with some iteration index

depending on the value of another iteration index), it may be allowed to define only partially, for a given

iteration, indexes used as iterators. In that case, the “non defined” values are not considered for the



IX–13. ITERATIONS OF PROCESSES 171

resulting indexing function I: more precisely, tuples (i1,. . . ,ip) where at least one ik is “non defined”

are not considered. In that case, m = n1 ∗ . . . ∗ np is not the actual size of iteration but only its upper

bound.

The “array” notation is a special case of the “iterate” one, inherited from the previous version of the

SIGNAL language.

array I to N of P with Pinit end

where N is an expression defining a constant integer (and for which I has not to be declared)

is equal to the process defined as follows:

( | I := 0..N
| iterate I of P with Pinit end

|) / I

Examples

• array I to N−1 of

array J to N−1 of

U[I,J] := if I=J then 1 else 0

end

end defines U as a unit matrix.

• array I to N−1 of

array J to N−1 of

T[I,J] := if J>=I then I+J else 0

end

end

defines T as a triangular matrix.

• array I to N−1 of

D[I] := M[I,I]

end

defines D as a vector equal to the diagonal of matrix M.

• array I to N−1 of

T[I] := if I=K then A else (T$)[I]

end

defines the vector T which at each instant keeps the values it had at the previous instant, except in

K where it takes the values of A (K and A can be signals).

• array I to N−1 of

V[I] := T[I] + V[?][I−1]\\0
end

defines the vector V in which each element, of index i, contains the sum of the first i elements of a

vector T.

• array I to N−1 of

R := op(T[I],R[?])

with R := v0

end



172 SPATIAL PROCESSING

defines in R the scalar obtained by the reduction of the vector T by the operator op (v0 is the

initial value).

• array I to N−1 of

Y[I] := FILTER(Y[?][I−1]\\X)
end

defines a cascade of N processes FILTER connected in series. The process model FILTER is

declared with one input and one output of some basic type. Each input of an instance of the

process FILTER is supplied by the output of the previous process FILTER (the signal X provides

the input of the first process FILTER). The vector Y is delivered as output.

• array I to N of

F := if I=0 then 1 else I∗F[?]
end

defines in F the factorial of N. Note that here, N is a constant.

It is also possible (in a different way) to specify in the SIGNAL language the computation of

factorial for an “unbounded” integer signal N by “inserting instants” between consecutive instants

of the input signal N (oversampling).

• array I to N−1 of

FOUND := if FOUND[?] /= −1
then FOUND[?]

else if ELEM = TABLE[I]

then I

else FOUND[?]

with FOUND := −1
end

specifies the research of the element ELEM in an unsorted TABLE.

• With fulladd a model of function defined as follows (cf. part E, chapter XI, p. 183 et seq.):

function fulladd =

( ? boolean cin, x, y; ! boolean cout, s; )

(| s := x xor y xor cin

| cout := (x and y) or (y and cin) or (cin and x)

|)

;

then the following model of function defines an unsigned byte adder:

function byte_adder =

( ? [8] boolean X, Y; ! [8] boolean S; boolean overflow; )

(| array i to 7 of

(overflow, S[i]) := fulladd (overflow[?], X[i], Y[i])

with overflow := false

end

|)

;

• Using the model of function exchg:

function exchg =

( ? integer a, v; ! integer aa, w; )

(| aa := v | w := a



IX–13. ITERATIONS OF PROCESSES 173

|)

;

then the following model of function defines in W a circular permutation of V:

function Rotate =

{ integer n; } ( ? [n] integer V; ! [n] integer W; )

(| array i to n-1 of

(aa, W[i]) := exchg (aa[?], V[i])

with aa := V[n-1]

end

|)

where integer aa; ... end

;

• The following model of function sorts the vector A in increasing order in T:

function Sort =

{ integer n; } ( ? [n] integer A; ! [n] integer T; )

(| array j to n-2 of

array i to (n-2)-j of

(| T := T[?]

next (i : if T[?][i] > T[?][i+1]

then T[?][i+1] else T[?][i])

next (i+1 : if T[?][i] > T[?][i+1]

then T[?][i] else T[?][i+1])

|)

end

with T := A

end

|)

;

(the sequential expression is defined in section IX–14, p. 174).

It can be written as follows, using iterate:

function Sort =

{ integer n; } ( ? [n] integer A; ! [n] integer T; )

(| j := 0..n-2

| iterate j of

(| i := 0..(n-2)-j

| iterate i of

(| T := T[?]

next (i : if T[?][i] > T[?][i+1]

then T[?][i+1] else T[?][i])

next (i+1 : if T[?][i] > T[?][i+1]

then T[?][i] else T[?][i+1])

|)

end

|)

with T := A

end

|)



174 SPATIAL PROCESSING

where [n-1] integer j, i;

end;

(note that this is an example with “incomplete” iterations).

Some other examples are given in the definition of operators on matrices (cf. section IX–16, p. 176

et seq.).

IX–14 Sequential definition
The sequential definition is used mainly for the redefinition of elements of arrays.

T1 next T2

1. Context-free syntax

SEQUENTIAL-DEFINITION ::=

S-EXPR next S-EXPR

2. Types

(a) τ (T1) = ([0..c1] × . . .× [0..cp]) → µ1

(b) τ (T2) = ([0..b1] × . . .× [0..bp]) → µ2

with c1 ≥ b1, . . . , cp ≥ bp and µ1 and µ2 are comparable types

(T1 and T2 are, in the general case, arrays with the same number of dimensions, but on each

of them, T2 may be smaller than T1)

(c) τ (T1 next T2) = ([0..c1] × . . . × [0..cp]) → µ1 ⊔ µ2

3. Semantics
T1 next T2 defines, in the general case, the array which takes the value of T2 at each point at

which T2 is defined (i.e., is semantically different from nil), and the value of T1 elsewhere.

The semantics is described formally in part B, section III–7.2, p. 46 et seq.

4. Clocks

(a) ω(T1) = ω(T2)

(b) ω(T1 next T2) = ω(T1)

5. Examples

(a) T := T $ next K : A

defines the vector T which at each instant keeps the values it had at the previous instant,

except in K where it takes the values of A (K and A can be signals).

IX–15 Sequential enumeration
The sequential enumeration is a form of iterative enumeration that allows to define arrays using sequential

multi-dimensional iterations.

1. Context-free syntax



IX–15. SEQUENTIAL ENUMERATION 175

ITERATIVE-ENUMERATION ::=

[ ITERATION { , PARTIAL-DEFINITION }∗ ]

PARTIAL-DEFINITION ::=

DEFINITION-OF-ELEMENT
| ITERATION

DEFINITION-OF-ELEMENT ::=

[ S-EXPR { , S-EXPR }∗ ] : S-EXPR

ITERATION ::=

{ PARTIAL-ITERATION { , PARTIAL-ITERATION }∗

: DEFINITION-OF-ELEMENT

| { PARTIAL-ITERATION { , PARTIAL-ITERATION }∗

: S-EXPR

PARTIAL-ITERATION ::=

[ Name ] [ in S-EXPR ] [ to S-EXPR ] [ step S-EXPR ]

Let us consider the following definition of an array T by sequential enumeration:

T := [D1,. . .,Dm]

(note: this is not an enumeration such as described in section IX–3, p. 159).

This definition is equivalent to:

T :=D1 next . . . nextDm

where D1 should be a complete definition of the array.

Let us now consider the following general form of a given Dk (the typing rules for lower bounds,

upper bounds and steps are those of section IX–6, p. 161):

{i1 in b1 to c1 step d1,. . .,ip in bp to cp step dp} : [f(i1, . . . , ip)] : E
It can be considered that the definition of Dk is obtained by the following composition:

( | i1 := b1..c1 step d1
| iterate i1 of

(| . . .

(| ip := bp..cp step dp
| iterate ip of Dk[f(i1, . . . , ip)] := E end

|)
. . .

|)
end

|) / i1, ..., ip

If the denotation of the indices, [f(i1, . . . , ip)], is omitted, it is equivalent to [(i1,. . . ,ip)].

If the lower bound of an index is omitted, it is by default equal to 0. An upper bound can be omitted

if it corresponds without ambiguity to the upper bound of the corresponding dimension of the array. If a

step is omitted, it is by default equal to 1. The name of an index can be omitted if it has not to be used

explicitly.

A Dk with the simple form:

[I] : E



176 SPATIAL PROCESSING

can be considered as being defined by the equation:

Dk[I] := E

IX–16 Operators on matrices

IX–16.1 Transposition
1. Context-free syntax

TRANSPOSITION ::=

tr S-EXPR

Transposition on matrix

tr E

1. Types

(a) τ (E) = ([0..l − 1] × [0..m− 1]) → µ

(b) τ (tr E) = ([0..m− 1] × [0..l − 1]) → µ

2. Definition in SIGNAL
X := tr E
whose right side of := represents an expression of transposition of matrix, is equal to the process

defined as follows:

array i tom − 1 of

array j to l − 1 of

X[i,j] := E[j,i]
end

end

3. Clocks

(a) ω(tr E) = ω(E)

Transposition on vector

To create a matrix-column, it is possible to create a matrix-line and then to transpose it as follows:

tr [V ]

IX–16.2 Matrix products
1. Context-free syntax

ARRAY-PRODUCT ::=

S-EXPR ∗. S-EXPR



IX–16. OPERATORS ON MATRICES 177

2. Types

(a) The elements of the operands of an expression of matrix product have a basic type which is

a Numeric-type.

3. Clocks

(a) The operators of matrix product are synchronous.

2-a Product of matrices

E1 ∗. E2

1. Types

(a) τ (E1) = ([0..l − 1] × [0..m− 1]) → µ1

(b) τ (E2) = ([0..m− 1] × [0..n− 1]) → µ2

(c) τ (E1 ∗. E2) = ([0..l − 1] × [0..n− 1]) → µ1 ⊔ µ2

2. Definition in SIGNAL
X := E1 ∗. E2

whose right side of := represents an expression of product of matrices, is equal to the process

defined as follows:

array i to l − 1 of

array j to n − 1 of

array k tom − 1 of

X[i,j] :=X[?][i,j] + E1[i,k] ∗ E2[k,j]
withX[i,j] := 0

end

end

end

2-b Matrix–vector product

E1 ∗. E2

1. Types

(a) τ (E1) = ([0..l − 1] × [0..m− 1]) → µ1

(b) τ (E2) = [0..m− 1] → µ2

(c) τ (E1 ∗. E2) = [0..l − 1] → µ1 ⊔ µ2

2. Definition in SIGNAL
X := E1 ∗. E2

whose right side of := represents an expression of matrix–vector product, is equal to the process

defined as follows:

array i to l − 1 of

array k tom − 1 of



178 SPATIAL PROCESSING

X[i] :=X[?][i] + E1[i,k] ∗ E2[k]
withX[i] := 0

end

end

2-c Vector–matrix product

E1 ∗. E2

1. Types

(a) τ (E1) = [0..l − 1] → µ1

(b) τ (E2) = ([0..l − 1] × [0..m− 1]) → µ2

(c) τ (E1 ∗. E2) = [0..m− 1] → µ1 ⊔ µ2

2. Definition in SIGNAL
X := E1 ∗. E2

whose right side of := represents an expression of vector–matrix product, is equal to the process

defined as follows:

array j tom − 1 of

array k to l − 1 of

X[j] :=X[?][j] + E1[k] ∗ E2[k,j]
withX[j] := 0

end

end

2-d Scalar product

E1 ∗. E2

1. Types

(a) τ (E1) = [0..l − 1] → µ1

(b) τ (E2) = [0..l − 1] → µ2

(c) τ (E1 ∗. E2) = µ1 ⊔ µ2

2. Definition in SIGNAL
X := E1 ∗. E2

whose right side of := represents an expression of scalar product, is equal to the process defined

as follows:

array i to l − 1 of

X :=X[?] + E1[i] ∗ E2[i]
withX := 0

end



Chapter X

Extensions of the operators

X–1 Rules of extension
not yet

fully

imple-
mented

in
POLY-

CHRONY

The operators defined in the SIGNAL language are termwise extended to arrays and tuples, provided that

there is no possible ambiguity between the new operator resulting from the extension and some other

operation1 .

The extension of a given operator defines a new operator, so that termwise extension may be applied

recursively.

The semantics of the extension on tuples is described formally in part B, section III–7.1, p. 44 et seq.

The semantics of the extension on arrays is described formally in part B, section III–7.2, p. 46 et seq.

Instances of processes and conversions follow the same rules of extension than operators.

A given extension is either an extension on tuples, or an extension on arrays. Mixed extensions are

not defined. If the types of the arguments of an operator are such that both extension on tuples and

extension on arrays can be applied, the extension on tuples applies first.

When an extension is applied, the rules associated with the operator (type relations, clock

relations. . . ) apply element by element. Moreover, for the arrays, the constraint that all the elements

have the same clock has to be respected.

For tuples, there are different categories of tuples: monochronous tuples, which are signals, and

polychronous tuples, which are gatherings of signals (they have not, in general, one proper clock).

Monochronous tuples are tuples with named fields and polychronous tuples may be tuples with named or

unnamed fields. Whatever is the type of the arguments, the results of an extension on tuples are always

tuples with unnamed fields (remind that a tuple with unnamed fields can always be assigned to a tuple

with named fields with a compatible type). Moreover, if the extension applies on tuples with named

fields, the operator applies on the elements of these tuples, independently of their names in the consid-

ered tuples. In other words, if X is such a tuple with named fields on which the extension applies, this

extension applies effectively on tuple(X).

The possibly existing extensions for the operators of the SIGNAL language are deduced from the

examination of authorized types for the arguments of there operators.

For example, the operator == is defined on signals of any types (in particular, on arrays and on

monochronous tuples with named fields) and has always a Boolean result. Thus the extension of == on

arrays or on monochronous tuples with named fields has no purpose. On the other hand, this extension

is defined on polychronous tuples (in that case, the result is a polychronous tuple with unnamed fields of

Booleans).

1not yet implemented in POLYCHRONY: extensions to tuples; some extensions to arrays.



180 EXTENSIONS OF THE OPERATORS

Concerning the other equality operator, = , it is defined only on signals of scalar types. Thus the

extension on arrays (for example) can apply and in this case, the result is an array of Booleans. The

extension on tuples (monochronous or polychronous) applies too.

The extension of the operator when on polychronous tuples applies, on the first argument as well as

on the second one. But the extension on arrays is not defined in the general case on the second argument

since the resulting array would have elements with different clocks.

X–2 Examples
• If V1 and V2 are two vectors, the expression V1 ∗ V2 defines the termwise product of the vectors

V1 and V2.

• If K is a scalar and V a vector, the expression K ∗ V defines the vector each element of which is

equal to the product of K with the corresponding element of V.

• If M1 and M2 are two matrices, the expression M1 ∗ M2 defines the termwise product of the

matrices M1 and M2.

• If P designates a process model which defines two outputs X and Y,

the expression P() when C defines the signals X when C and Y when C.

• If P designates a process model with two inputs,

the expression P ((A,B) when C) specifies a subsampling by the condition C on each one of

the inputs of P.



Part E

THE MODULARITY





Chapter XI

Models of processes

The language allows to describe signals (synchronized sequences of typed values) and relations between

signals by equations; these equations can be grouped together in parameterized models of systems of

equations: the models of processes. The call of a model in a system is, in principle (when the cor-

responding model is not compiled separately), equivalent to the direct writing of the equations of this

model.

XI–1 Classes of process models
A process model establishes a designation between a name and a set of parameterized equations; any

reference to this name is formally replaced by the designated equations.

The set of equations may be simply defined by the keyword external (cf. section XII–1, p. 207

et seq.). In that case, it is an external process model (or model of external process). Its definition should

be provided in the environment of the program.

The set of equations may also be empty. In that case, it is a virtual process model. It means that

its actual definition is defined elsewhere (the virtual process model is “overridden”) in the context or is

provided in a module (cf. section XII–1, p. 207 et seq.).

If the process model is external, or if the considered model is compiled separately, the replacement

of a reference to this model by its equations remains partial. Such a partial replacement is limited to

the EXTERNAL-GRAPH of the called process (cf. section XI–6, p. 195 et seq.). The result of the

invocation of a model of external process or of a separately compiled process model (which could be not

in accordance with its description) can be only theoretically described. The tick characteristic clock of

the invocation of an external process model is described in part C, section VII–5, p. 138 et seq.

For a model of external process, its graph properties are established by the EXTERNAL-GRAPH.

For a described process model, the graph properties are established by the composition of the

EXTERNAL-GRAPH and the body of the model. A good situation is that the EXTERNAL-GRAPH
verifies the properties deduced from the body of the model.

The following classes of processes are distinguished:

• A process is said safe if it is an iteration of function (on the inputs), such as highlighted in part B,

section III–8.1, p. 52.

It does not make any “side effect”:



184 MODELS OF PROCESSES

(| Y1 := f(X) | Y2 := f(X) |) ≡ (| Y1 := f(X) | Y2 := Y1 |)

Two different instantiations of a safe process with the same input values will provide the same

results. Such a process is memoryless. It cannot call external processes that are not safe.

• A process is said deterministic automaton—or more shortly, deterministic—(or memory safe), if

it is a function of sequences, from initial states, trajectories of the inputs and trajectories of the

clocks of the outputs (considered, in some sense, as inputs), into trajectories of the outputs.

This corresponds to the notion of deterministic process (on the inputs), highlighted in part B,

section III–8.3, p. 52 et seq.

Its only possible “side effects” are changes to its private memory.

Two different instantiations of a deterministic automaton process with the same sequences of input

values (and output clocks), and in the same initial conditions, will provide the same sequences of

outputs. It cannot call external processes that are not safe.

Any safe process is deterministic automaton.

• A process is unsafe in all other cases.

Two different calls of an unsafe process are never supposed to return the same results.

The following SIGNAL processes are examples of unsafe processes:

– x := a or x

– (| x := a default ((x$1 init 0)+1) | b:= x when ̂b |)/x

The class of the process described by a process model may be precised by a specific keyword in the

EXTERNAL-GRAPH of the model.

In addition, it is possible to specify complementary non-standardized information in the DIREC-
TIVES (cf. section XI–7, p. 198 et seq.).

Besides the above characterization of processes, different classes of process models are syntactically

distinguished. These are models of:

• processes,

• actions,

• procedures,

• nodes,

• functions,

• automata.

Any process model called in the program must have a declaration visible in the syntactic context of

the call.

A process MODEL is defined according to the following syntax:

1. Context-free syntax



XI–1. CLASSES OF PROCESS MODELS 185

MODEL ::=

PROCESS
| ACTION
| PROCEDURE
| NODE
| FUNCTION
| AUTOMATON

PROCESS ::=

process Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

ACTION ::=

action Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

PROCEDURE ::=

procedure Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

NODE ::=

node Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

FUNCTION ::=

function Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

AUTOMATON ::=

automaton Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

BODY ::=

DESCRIPTION-OF-MODEL

DESCRIPTION-OF-MODEL ::=

GENERAL-PROCESS
| EXTERNAL-NOTATION

XI–1.1 Processes
A process (described by a model of process) belongs to the most general class of processes.

There are no required particular relations regarding clocks as well as dependences. It is the job of the

compilation (clock calculus, dependence calculus) to synthesize these relations.

A process may be safe, deterministic automaton, or unsafe. This may be specified in the



186 MODELS OF PROCESSES

EXTERNAL-GRAPH. By default, unless it can be proved different, it is considered as unsafe.

XI–1.2 Actions
Actions are processes that are called (activated) at a specific clock, that may be designated via a label,

which is the tick of the action (cf. part C, section VII–5, p. 138 et seq.). Syntactically, the invocation (or

activation) of an action has to be under the scope of such a label, in a labelled process.

An action (described by a model of action) has to respect some relations regarding its clocks and

dependences:

• Its tick is the clock designated by the label under the scope of which the action call is. If the

action is not an external one, this tick is also equal, as usual, to the upper bound of the ticks of its

components.

The tick of the action is not necessarily available through the interface of the model of the action.

• For the dependence relation, each input of an action precedes each output of that action at the

product (intersection) of their clocks.

An action may be safe, deterministic automaton, or unsafe. This may be specified in the

EXTERNAL-GRAPH. By default, unless it can be proved different, it is considered as unsafe.

XI–1.3 Procedures
Procedures are special cases of actions. The tick of a procedure is defined as the upper bound of the

clocks of its inputs and outputs (the procedure is called at this tick).

A procedure must have at least one input or one output.

XI–1.4 Nodes

not yet

fully

imple-
mented

in

POLY-

CHRONY

Nodes are essentially endochronous processes (cf. part B, section III–8.2, p. 52).

Roughly speaking, an endochronous process knows when it has to read its inputs, thus it is au-

tonomous when run in a given environment.

It may be shown that if the clock relations associated with a process can be organized as a tree of

clocks, the root of the tree representing the most frequent clock (which is the single greatest clock) of the

system, then this process is endochronous.

Besides the property that it is endochronous, a node (described by a model of node) has to respect

some relations regarding its clocks and dependences:

• Its tick (cf. part C, section VII–5, p. 138 et seq.) is necessarily the clock of an input or output of

the node.

• For the dependence relation, each input of a node precedes each output of that node at the product

(intersection) of their clocks.

A model of node must provide an abstraction (cf. section XI–6, p. 195 et seq.) of its interface clock

functional hierarchy.

A node must have at least one output.

A node may be safe or deterministic automaton. This may be specified in the EXTERNAL-GRAPH.

By default, unless it can be proved safe, it is considered as deterministic automaton.



XI–1. CLASSES OF PROCESS MODELS 187

XI–1.5 Functions
A function is a process that specifies an iteration of function such as defined in part B, section III–8.1,

p. 52.

A function (described by a model of function) is a particular case of node and has to respect all

the relations respected by a node regarding its clocks and dependences (cf. section XI–1.4, p. 186). In

addition, all the inputs and outputs of a function must have the same clock.

A function must have at least one output.

A function is constant on time and does not produce any side effect. In particular, it cannot contain

delay operators (or other operators derived from delay), that define some memory.

Note that it is nevertheless possible to specify some assertions on the input signals (for instance) of

a function. For example, the equation x̂= when (x > 0) specifies that when it is present, x must be

positive.

A function is necessarily safe (this has not to be specified in the EXTERNAL-GRAPH).

XI–1.6 Automata
Automata are processes representing explicitly finite-state automata. In these automata (automaton pro-

cesses), labelled processes (cf. part C, section VII–5, p. 138 et seq.) represent states and specific intrinsic

processes (cf. chapter XIII, p. 211 et seq.) are used to represent other automaton features such as tran-

sitions. Usual equations can be used in these automaton processes to specify constraints or to define

computations.

A basic statement for these automaton processes is that state change is supposed to take time: at a

given level, an automaton is in a single state at each logical instant and there is no immediate transition.

An automaton is clocked: it is controllable by an external clock (that can be explicit), its control

clock. The tick (cf. part C, section VII–5, p. 138 et seq.) of the automaton is at most equal to this control

clock. By default, the control clock of the automaton is equal to the upper bound of the clocks of its

input signals (including the inputs possibly non declared in the interface of the automaton process but

declared in some upper level and referenced in the automaton process—cf. section XI–4, p. 192 et seq.).

For the dependence relation, each input of an automaton precedes each output of that automaton at

the product (intersection) of their clocks.

An automaton process is necessarily deterministic automaton.

The following simple example illustrates how an automaton process can be specified:

automaton vauto =

( ? boolean C1; ! integer RESULT; )

(| (| (| on S_1 :: ACTIONS_S1 () |) % actions in S_1 %

| (| on S_2 :: ACTIONS_S2 () |) % actions in S_2 %

|)

| (| Automaton_Initial_State(S_1) % the initial state %

% transitions %

| Automaton_Transition (S_1, S_1, [/:C1])

| t_1_2 :: Automaton_Transition (S_1, S_2, [:C1])

| Automaton_Transition (S_2, S_2, [:C1])

| t_2_1 :: Automaton_Transition (S_2, S_1, [/:C1])

% actions on some transitions %

| on t_1_2 :: (| ... |)

| on t_2_1 :: (| ... |)

|)



188 MODELS OF PROCESSES

% definition of the output %

| (| RESULT := RESULT_1 default RESULT_2 |)

|)

where

label S_1, S_2, % states %

t_1_2, t_2_1;

process ACTIONS_S1 = ( ! integer RESULT_1; ) ... ;

process ACTIONS_S2 = ( ! integer RESULT_2; ) ... ;

end

;

This automaton has two states, S_1 and S_2, declared as labels and specified as labelled processes.

The initial state (S_1) is designated through the intrinsic process Automaton_Initial_State.

Here, the actions associated with the state S_1 (resp., S_2) are supposed to be defined in the process

ACTIONS_S1 (resp., ACTIONS_S2), which produces an output RESULT_1 (resp., RESULT_2). The

outputs of the automaton (here, the signal RESULT) are defined by usual equations. The transitions

between states are specified thanks to the intrinsic process Automaton_Transition. The first input

of the process corresponds to the source of the transition, the second input to its target, and the third input,

which has to be of type event , is the trigger of the transition. A fourth input, optional, can represent

a static priority. Like any process, a transition can be labelled. Then, referring to these labels, actions

can be associated to transitions. Here, actions are associated with two of the transitions, in the form of

guarded processes.

The following intrinsic process models are used to express the definition of an automaton process.

They are supposed to be used in a consistent way.

• process Automaton_Initial_State = ( ? S1; ! );

Description: This process defines the initial state of the automaton as being S1.

• process Automaton_IsIn = ( ? S; ! boolean b);

Description: This process provides a non clocked Boolean signal which is true when the automa-

ton is in state S.

• process Automaton_Transition = ( ? S1, S2; event trigger; ! );

or

process Automaton_Transition = ( ? S1, S2; event trigger;

integer prio; ! );

Description: This process specifies a transition S1 -[trigger]-> S2.

As Automaton_IsIn(S1) represents a Boolean signal which is true when the automaton is in

state S1, the clock of the transition is equal to ω([Automaton_IsIn(S1)] ̂∗ trigger).

The input prio is optional. It provides a (static) priority to the specified transition. Its value must

be a constant integer. When this input is not specified, the priority of the transition is supposed

to be equal to 0. A fireable transition t_1 from a given state has a higher priority than a fireable

transition t_2 from the same state if the priority associated with t_1 is greater than the priority

associated with t_2. Values of priorities can be negative.

For two transitions having a common source, the trigger of the highest priority transition is implic-

itly removed from the trigger of the lowest priority transition.



XI–1. CLASSES OF PROCESS MODELS 189

• process Automaton_SetClock = ( ? event clockExpr; ! );

Description: This process defines the clock (or control clock) of the automaton as being

clockExpr. By default, the clock of the automaton is equal to the upper bound of the clocks of

its input signals.

• process Automaton_Clock = ( ? ! event vAutomatonclk; );

Description: This process returns in vAutomatonclk the clock (or control clock) of the au-

tomaton.

• process Automaton_SetCurrentStateId = ( ? id; ! );

Description: This process specifies the internal state variable of the automaton (used to represent

the state of the automaton) as being id.

The specification of an automaton process is translated into the SIGNAL language without automaton

processes.

An enumerated type (StateType) is used to represent the states of the automaton. The

enumerated values are those given by the names used as first and second arguments in the

Automaton_Transition intrinsic process calls which specify the transitions of the automaton. For

the example described above, the enumerated type is: type StateType = enum (S_1, S_2);

An internal state variable (by default, _CurState) is used for the management of the state of the

automaton. Its type is the enumerated type StateType. Its name may be defined using the intrinsic

process Automaton_SetCurrentStateId. It is initialized with the initial state provided in the

Automaton_Initial_State intrinsic process. For the above example, the internal state variable is

declared as: statevar StateType _CurState init StateType#S_1;

The evolution of the automaton, specified with the Automaton_Transition intrinsic process

calls, is managed by assignments to the internal state variable. For example, a transition specified by

Automaton_Transition (S_1, S_2, e) is translated as:

_CurState ::= StateType#S_2 when (_CurState? == StateType#S_1) when e

where _CurState? is the expression that expresses the value of the state variable _CurState at the

previous instant (cf. part C, section VI–2.3, p. 108 et seq.).

Concerning the actions Pi associated with a given state Si (for example, ACTIONS_S1() in state

S_1), their translation can be expressed using guarded processes (cf. part C, section VII–6, p. 140). The

position of the automaton in a given state Si defines a context clock (the clock of the label Si) for Pi.

This clock Hi, which is the guard of the guarded process on Hi :: Pi, is defined by the condition

when (_CurState? == StateType#Si). Thus, each input of the process Pi is filtered by this

condition.

For actions associated with transitions, they are usual guarded processes, whose guard is the clock of

the transition.

Example

The statechart described in part C, section VII–7, p. 141 et seq. can be alternatively specified using
automaton processes:

automaton P_chart =

( ? event Tick;

event a, b, i, j, m, n;

! integer IP_currentState, IQ1_currentState, IQ2_currentState;

)



190 MODELS OF PROCESSES

(| (| (| Automaton_Initial_State(Q)

| Automaton_Transition (Q, R, a, 1)

| Automaton_Transition (Q, S, b)

| Automaton_Transition (R, S, b)

| Automaton_Transition (S, Q, a)

|)

| IP_currentState := 0 when Automaton_IsIn(Q)

default 1 when Automaton_IsIn(R)

default 2 when Automaton_IsIn(S)

default -1

| IP_currentState ^= Automaton_Clock()

|)

| InQ := when Automaton_IsIn(Q) when Automaton_Clock()

| Q1_chart(InQ)

| Q2_chart(InQ)

|)

where

event InQ;

label Q, R, S;

automaton Q1_chart =

( ? event Tick;

! integer IQ1_currentState;

)

(| (| Automaton_Initial_State(U)

| Automaton_Transition (U, V, i)

| Automaton_Transition (V, U, j)

|)

| IQ1_currentState := 0 when Automaton_IsIn(U)

default 1 when Automaton_IsIn(V)

default -1

| IQ1_currentState ^= Automaton_Clock()

|)

where

label U, V;

end;

automaton Q2_chart =

( ? event Tick;

! integer IQ2_currentState;

)

(| (| Automaton_Initial_State(X)

| Automaton_Transition (X, Y, m)

| Automaton_Transition (Y, Z, n)

| Automaton_Transition (Z, X, j)

|)

| IQ2_currentState := 0 when Automaton_IsIn(X)

default 1 when Automaton_IsIn(Y)

default 2 when Automaton_IsIn(Z)

default -1

| IQ2_currentState ^= Automaton_Clock()

|)

where

label X, Y, Z;

end;

end;



XI–2. LOCAL DECLARATIONS OF A PROCESS MODEL 191

XI–2 Local declarations of a process model
The local declarations of a process model may be declarations of signals (or tuples), declarations of

shared variables, declarations of state variables, declarations of constants, declarations of types, decla-

rations of labels, declarations of references to signals with extended visibility, or declarations of local

models.

1. Context-free syntax

DECLARATION ::=

S-DECLARATION
| DECLARATION-OF-SHARED-VARIABLES
| DECLARATION-OF-STATE-VARIABLES
| DECLARATION-OF-CONSTANTS
| DECLARATION-OF-TYPES
| DECLARATION-OF-LABELS
| REFERENCES
| MODEL

A given zone of local declarations constitutes a given level of declarations; this level is that of the

process expression that defines this zone. When this expression is the expression that defines the process

model, this zone is said the zone of the local declarations of the model. When this expression is the

expression that defines the external graph of the model, this zone is said the zone of the local declarations

of the external graph.

The zones of declaration of the formal parameters and of the inputs and outputs of a process model

constitute a same level of declarations, the one of the model.

The levels of declarations are ordered in the following way:

• the level of a model is greater than the level of the local declarations of the external graph;

• the level of the local declarations of the external graph is greater than the level of the local decla-

rations of the model;

• the level of a model is greater than the level of any sub-expression of this model;

• the level of an expression is greater than the level of any sub-expression of this expression;

• the level of a model is greater than the level of any local model declared in this model.

A local declaration of a model in a given level is visible (and thus, this model can be called as

INSTANCE-OF-PROCESS) in this whole level and in all lower levels, everywhere it is not hidden by

a declaration with the same name in a lower level. In particular, a model Q declared in the zone of the

local declarations of a model P can be called in the expression associated with P and in the expressions

associated with the other sub-models of P . For these expressions, it possibly hides a model with the

same name that, without it, would be visible.

The set of sub-models declared in a model P cannot contain two models with the same name. More

generally, any two objects (models, types, signals, etc.) declared in a same level of declaration cannot

have the same name (see below).

The parameters declared in a process model are visible (and thus, may be referenced) in this whole

process model (in particular, the other parameters, the inputs and outputs, etc.) and in all the embedded

process models, everywhere they are not hidden by a declaration with the same name in a lower level.



192 MODELS OF PROCESSES

The constants declared in a given level are visible in this whole level and in all lower levels, every-

where they are not hidden by a declaration with the same name in a lower level.

The types declared in a given level are visible in this whole level and in all lower levels, everywhere

they are not hidden by a declaration with the same name in a lower level.

The declaration of labels and their visibility obey to specific rules, which are more detailed in sec-

tion XI–3, p. 192.

As a general rule, the local declarations of signals (or tuples)—including shared variables—and state

variables correspond to the confining of these objects (cf. part C, section VII–4, p. 137 et seq.) to the

corresponding level and the lower ones. However, the visibility of signals, tuples and state variables obey

to specific rules, which are more detailed in section XI–4, p. 192 et seq.

The names of declared objects (models, signals or tuples, state variables, parameters, constants,

types, labels) can mutually mask themselves. In a given level, there cannot have two such identical

names.

Note that the scope of the declarations is statically defined by the syntax: it does not depend on

instantiations of process models.

A given compiler may adapt the visibility rules for some classes of objects in the following way:

in the level where it is declared, a given object can be used only in a syntactic position that follows its

declaration (in this case, the order of declarations is significant). The rules for names redefinitions may

be adapted accordingly.

XI–3 Declarations of labels
1. Context-free syntax

DECLARATION-OF-LABELS ::=

label Name-label { , Name-label }∗ ;

The labels declared in a process model, at any declaration level of this model, are visible (and can

be referenced) anywhere in this model, except in its interface (parameters, inputs and outputs, external

graph). The labels declared in the external graph of a process model are visible (and can be referenced)

anywhere in this model.

However, the labels declared in a process model are not visible in the sub-models of that model.

A label declared in a model cannot have the same name as any other object declared in that model (it

cannot be masked).

XI–4 References to signals with extended visibility
not yet

fully

imple-
mented

in
POLY-

CHRONY

1. Context-free syntax

REFERENCES ::=

ref Name-signal { , Name-signal }∗ ;

The rules for the visibility of signals in the previous versions of SIGNAL were that this visibility was

always limited to the process model in which the signal was declared, excluding the sub-models of that

model.



XI–5. INTERFACE OF A MODEL 193

This version offers the possibility to extend the visibility of signals (or tuples) and state variables,

with the same rules as for most of the other objects of the language. In that case, a signal (or tuple, or

state variable) declared in a given level is visible in this whole level and in all lower levels, everywhere

it is not hidden by a declaration with the same name in a lower level. A signal with extended visibility is

assimilated to a shared variable (cf. part C, section V–10, p. 90 et seq.) with at most one definition (but

it can be declared in the interface of a process model).

However, some freedom is left to the compilers to accept or not (possibly according to specific

options) signals with extended visibility. The three following cases may be distinguished:

1. Signals with extended visibility are not allowed.

2. Signals with extended visibility are allowed, but the use of such a signal must be explicitly refer-

enced as such when it crosses a frontier of process model with respect to its declaration.

Such a use is pointed by a “ref” declaration, under the scope of which is the considered use (with

the general scoping rules, restricted here to the considered process model).

A signal with extended visibility cannot be used if it has been hidden by the declaration of another

object with the same name.

A “ref” declaration cannot mask some object with the same name.

3. Signals with extended visibility are allowed, and their use may be explicitly referenced (previous

case), though it is not mandatory.

XI–5 Interface of a model
The interface of a model contains an optional description of its formal static parameters, followed by a

description of its visible part. This one is composed of the lists (possibly empty) of its input and output

signals, and an optional description of the external behavior of the model.

1. Context-free syntax

DEFINITION-OF-INTERFACE ::=

INTERFACE

INTERFACE ::=

[ PARAMETERS ] ( INPUTS OUTPUTS ) EXTERNAL-GRAPH

PARAMETERS ::=

{ [ { FORMAL-PARAMETER }+ ] }

FORMAL-PARAMETER ::=

S-DECLARATION
| DECLARATION-OF-TYPES

INPUTS ::=

? [ { S-DECLARATION }+ ]

OUTPUTS ::=

! [ { S-DECLARATION }+ ]



194 MODELS OF PROCESSES

The formal parameters of the interface of a model can contain type parameters. These type param-

eters necessarily appear under the form of names of types, without a DESCRIPTION-OF-TYPE
definition (cf. part C, section V–7, p. 86 et seq.).

2. Types
The list of inputs (respectively, outputs) declared in the interface of a process model named P
constitutes a tuple the type of which is denoted τ (?P ) (respectively, τ (!P )).

The type of the tuple of inputs and the type of the tuple of outputs are tuples with unnamed fields.

Thus:

(a) if the inputs and outputs of a process model P appear as

(? µ1 E1; ... µm Em; ! ν1 S1; ... νn Sn;)

(to simplify the presentation, we consider that each designation of type qualifies one single

name of signal or tuple; the generalization to the case with lists of names is trivial)

then

τ (?P ) = (τ (µ1) × . . . × τ (µm))
τ (!P ) = (τ (ν1) × . . .× τ (νn))

3. Semantics
A model must have at least one input, or one output, or one communication with non null clock

with some external process.

The names of parameters, input signals and output signals must be mutually distinct.

The declarations of the input signals (INPUTS) and the output signals (OUTPUTS) of a model

are declarations of sequences. The declarations of formal parameters (PARAMETERS) can con-

tain declarations of parameter types (DECLARATION-OF-TYPES) and declarations of constant

sequences (S-DECLARATION). In particular, the declarations of sequences can contain tuples of

parameters or signals. The declaration of a model sets up a context in which:

• the parameter types define formal types, in a way similar to the declarations of types de-

scribed in part C, chapter V, “Domains of values of the signals”, p. 71 et seq.;

• a type is associated with the declared parameters, input signals, and output signals, in a

similar way to the association of a type to local signals of a process (cf. part C, chapter VII,

“Expressions on processes”, p. 135 et seq.), according to the rules defined in the chapter

“Domains of values of the signals”.

The invocation of a model sets up an expansion context in which:

• an effective type is associated with the parameter types, in a similar way to the definition of

type obtained by a DESCRIPTION-OF-TYPE (cf. part C, section V–7, p. 86 et seq.): if

µ is the effective parameter corresponding, positionally, to the formal parameter type type

A; then the type A is defined as being equal to the type µ in the context of this invocation of

model;

• a value (or a tuple of values) is associated with each identifier of formal parameter, and a

signal (or a tuple of signals) is associated with each name of input or output signal (or tuple).

The declaration of a process model induces the existence of a given order on the parameters

(whatever they are parameter types or not), an order on the input signals of the model, and an

order on its output signals. Each one of these orders is the order of specification of the objects of

the considered class (parameter, input or output) in the interface. Any positional invocation of the



XI–6. GRAPH OF A MODEL 195

model is made respectively to these orders.

Example: a process model P the interface of which is specified as

{Y1; ... Yl;} ( ? A1; ... An; ! B1; ... Bm;)

can be called such as

(BB1, ..., BBm) := P {Y Y1, ..., Y Yl} (AA1, ..., AAn)

where each signal or parameter XXi corresponds to the signal or parameter Xi.

XI–6 Graph of a model
The EXTERNAL-GRAPH of a model allows to specify clock and graph properties of the model, such

as the properties necessary and sufficient to be able to use this model after a separate compilation. These

properties may be provided by the designer or calculated by the compiler. They refer to input and output

signals of the model.

1. Context-free syntax

EXTERNAL-GRAPH ::=

[ PROCESS-ATTRIBUTE ] [ SPECIFICATION-OF-PROPERTIES ]

PROCESS-ATTRIBUTE ::=

safe

| deterministic

| unsafe

SPECIFICATION-OF-PROPERTIES ::=

spec GENERAL-PROCESS

The PROCESS-ATTRIBUTE allows to qualify the corresponding model as safe (keyword safe),

deterministic automaton (keyword deterministic), or unsafe (keyword unsafe)—cf. sec-

tion XI–1, p. 183 et seq. It must be in accordance with the syntactic class of the model.

The SPECIFICATION-OF-PROPERTIES of an EXTERNAL-GRAPH uses a process expres-

sion that can make reference to the formal parameters and input and output signals of the MODEL. Any

other identifier used in this expression is that of a local object (signal, process model, etc.), that must

have a declaration in this expression.

When the EXTERNAL-GRAPH is that of a described process model, the process defined by the

model is obtained, at the semantic level, by the composition of the process defined by this EXTERNAL-
GRAPH and of the process defined by the body of this model. By construction, the process defined by

the EXTERNAL-GRAPH is thus an abstraction of the process defined by composing itself with the one

of the body of the process model. A particular case may be the one for which the properties established

by the EXTERNAL-GRAPH are deduced from the properties verified by the body of the model (i.e.,

the process defined by the EXTERNAL-GRAPH is an abstraction of the process defined by the body

of the model).

When the EXTERNAL-GRAPH is that of an external process model, the properties it describes

establish the properties of the model for any invocation of this model.



196 MODELS OF PROCESSES

In that case, the invocation X {V1, ..., Vl} of an external process model

process X = {F1; ... Fl;}

( ? E1; ... Em;

! S1; ... Sn; )

spec C;
is equal to the process defined as follows:

( | X {V1, ..., Vl}

| C
|)

If C1 is the syntactic context of expansion established by the invocation of the model of external

process by the association of a value with each identifier of formal parameter, and by the association of

a signal with each input or output signal name, then, the invocation of this model results in the context

of expansion C2 equal to C1 enriched by the equations (in particular, clock equations and dependences)

resulting from the construction of the EXTERNAL-GRAPH.

XI–6.1 Specification of properties
The SPECIFICATION-OF-PROPERTIES is described by a usual process expression, the elementary

expressions of which are typically an instance of process (which may be, in that case, an instance of a

model of synchronization), a definition of signals, a clock equation, or an expression of dependence.

XI–6.2 Dependences
An expression of explicit DEPENDENCES may appear in the EXTERNAL-GRAPH of a MODEL,

but also in its body. The purpose of a specification of dependences in the external graph is to make

explicit dependences between input and output signals of the model, or to establish these dependences in

the case of a model of external process. The explicit dependences between signals are defined with the

following syntax:

1. Context-free syntax

ELEMENTARY-PROCESS ::=

DEPENDENCES

DEPENDENCES ::=

SIGNALS { −− > SIGNALS }∗

| { SIGNALS −− > SIGNALS } when S-EXPR

SIGNALS ::=

ELEMENTARY-SIGNAL
| { ELEMENTARY-SIGNAL { , ELEMENTARY-SIGNAL }∗ }

ELEMENTARY-SIGNAL ::=

DEFINED-ELEMENT
| Label

We distinguish first the case where some of the “signals” for which dependences are specified are

labels (cf. part C, section VII–5, p. 138 et seq.). In that case, for a label XX , the designated signal is



XI–6. GRAPH OF A MODEL 197

either ! XX (that is preceded by all the signals that are defined in the process labelled by XX), or ?

XX (that precedes all the signals that are defined in the process labelled by XX), depending that XX
appears at the left side or at the right side of the dependence arrow. In the following, ! XX and ? XX
are only notations used to designate the corresponding signals.

If XX is a label:

• XX −−> E

1. Definition in SIGNAL

! XX −−> E

• E −−> XX

1. Definition in SIGNAL

E −−> ? XX

Then, with the designated signals:

• E1 −−> E2 −−> E3

1. Definition in SIGNAL

( | E1 −−> E2

| E2 −−> E3

|)
Note that for the particular case where a label XX appears as

E1 −−> XX −−> E3

this expression is equivalent to:

( | E1 −−> ? XX
| ! XX −−> E3

|)

• {X1, ..., Xn} −−> E

1. Definition in SIGNAL

( | X1 −−> E
...

| Xn −−> E
|)

• E −−> {Y1, ..., Ym}

1. Definition in SIGNAL

( | E −−> Y1
...

| E −−> Ym

|)



198 MODELS OF PROCESSES

• {E −−> {Y1, ..., Ym}} when B

1. Definition in SIGNAL

( | {E −−> Y1} when B
...

| {E −−> Ym} when B
|)

• {X −−> Y } when B

1. Types

(a) τ (B) ⊑ boolean

2. Semantics
The result of the expression {X −−> Y } when B
is to add to the dependence graph a dependence from X to Y labelled by the condition B,

representing the clock at which B has the value true .

The semantics of such a dependence is described formally in part B, section IV–3.1, p. 62 et

seq.

3. Graph

(a) X
B
−−→ Y

4. Properties

(a) X
B
−−→ Y = X

X ∗̂ Y ∗̂ [:B]
−−−−−−−−−−−−→ Y

5. Examples

(a) (| S1 :: ERASE (X)

| S2 :: DISPLAY (X)

| S1 −−> S2 |)

allows to sequentialize the actions ERASE and DISPLAY.

XI–7 Directives
The DIRECTIVES allow to associate specific information, or pragmas, with the objects of a program.

This information may be used by a compiler or another tool.

A PRAGMA contains a Name, the list of the designations of objects with which it is associated,

and a Pragma-statement.

PR {X1,...,Xn} "Y Y Y "

1. Context-free syntax

DIRECTIVES ::=

pragmas { PRAGMA }+ end pragmas



XI–7. DIRECTIVES 199

PRAGMA ::=

Name-pragma

[ { PRAGMA-OBJECT { , PRAGMA-OBJECT }∗ } ]
[ Pragma-statement ]

PRAGMA-OBJECT ::=

Label
| Name

Pragma-statement ::=

String-cst

2. Semantics
The pragma with name PR and with (optional) statement "Y Y Y " is associated with each one of

the objects designated by X1, . . . , Xn.

The designations (that should reference objects which are visible at the level of the model, model

type or module) can be:

• labels (in that case, the designated object is a process expression),

• names of signals, parameters, constants, types, etc. (the designated object is the correspond-

ing signal, parameter, constant, type, etc.).

By default (when there is no designated object), the pragma is associated with the current process

model (cf. section XI–1, p. 183 et seq.), model type (cf. section XI–8, p. 204 et seq.) or module

(cf. section XII–1, p. 207 et seq.).

A pragma has no semantic effect. It can be ignored by a compiler, or it can trigger a specific

processing.

3. Examples
The following pragmas are recognized in the INRIA POLYCHRONY environment:

(a) General information

• Comment

– Associated with the current model.

– Comment on this model.

(b) Compilation directives

• Main

– Associated with the current model.

– In a module, means that the corresponding model is an “entry point” of this module:

it may constitute a compilation unit (cf. section XII–1, p. 207 et seq.).

• Unexpanded

– Associated with the current model (used for traceability and code generation pur-

pose).

– Means that the model is not expanded when it is called. The corresponding process

must be endochronous, its greatest clock must be the clock of an input signal, and

every output signal is preceded by every input signal. Moreover, if the model has

inner memorization or static parameters, then no more than one instance is allowed



200 MODELS OF PROCESSES

in its calling process. If the model refers to outer shared variables or state variables,

then no more than one instance can be active at each instant: in this case, the actual

greatest clocks of two instances of the same unexpanded process must be exclusive.

• SIGNAL_Thread

– Associated with the current model

– Means that the model represents a “thread”. It is used in particular to denote the

translation to SIGNAL of AADL1 thread components. The first input signal of the

model is supposed to be the “dispatch” signal of the thread; the last output signal is

supposed to be the “complete” signal of the thread (end of execution, waiting for a

new dispatch). The corresponding model should be compiled as “Unexpanded” (see

above).

• DefinedClockHierarchy

– Associated with the current model.

– Means that the corresponding process is endochronous, without clock constraints,

and that its clock hierarchy is explicit (it may be the result of a previous compila-

tion). When it is compiled, its clock hierarchy can be rebuilt without clock synthesis.

(c) Partitioning information

• RunOn

– Associated with the current model, P , or with a list of labels of labelled processes

partitioning the subprocesses of this model.

– The statement of this pragma is a string representing a constant integer value i.

– If the pragma is associated with the current model P , each “node” (or vertex) of the

internal representation of P (this internal representation is a graph) is attributed by

the value i.
If the pragma is associated with a list of labels, each “node” (or vertex) of the in-

ternal representation of the processes labelled by one of these labels is attributed by

the value i.
When a partitioning based on the use of the pragma RunOn is applied on an appli-

cation, the global graph of the application is partitioned according to the n different

values of the pragmas RunOn so as to obtain n sub-graphs, corresponding to n sub-

models. The tree of clocks and the interface of these sub-models may be completed

in such a way that they represent endochronous processes.

• Topology

– Associated with a list of input or output signals.

– The statement of this pragma is a string representing a constant integer value i. This

value must be a value used also in a pragma RunOn.

– Read or write “nodes” (or vertices), corresponding to the considered input or output

signals, of the internal representation of the process model (this internal representa-

tion is a graph) are attributed by the value i.
This pragma may be used when a partitioning based on the use of the pragma RunOn

is applied on an application.

(d) Separate compilation

• BlackBox

– Associated with the current model.

1Architecture Analysis & Design Language.



XI–7. DIRECTIVES 201

– Qualifies the “black box” abstraction of a model (may be the result of a compilation).

Only the interface of the model, including its external graph, is represented: its body

is empty.

• GreyBox

– Associated with the current model.

– Qualifies a “grey box” abstraction of a model. It contains an external graph that

represents clock and dependence relations of the interface, but also a restructuring

of the model into clusters together with a representation of the scheduling of these

clusters (clock and dependence relations between these clusters). Each cluster is

represented as a “black box” abstraction which is such that any input of the cluster

precedes any of its outputs.

• Cluster

– Associated with the current model.

– Qualifies the “black box” abstraction of a model. It may be added to the BlackBox

pragma to represent the fact that the abstracted model is one cluster in a “grey box”

abstraction.

• DelayCluster

– Associated with the current model.

– May qualify one of the clusters of a “grey box” abstraction when code generation is

expected from this abstraction: in that case, one of the clusters, the “delay cluster”

(represented, like the other ones, by its “black box” abstraction), groups together

the delay operations of the model and is preceded by each one of the other clusters

(in the generated code, memories will be updated at the end of one instant).

(e) Code generation directives

The pragmas C_Code, C_Code_Import, C_Code_declare, CPP_Code,

CPP_Code_Import, CPP_Code_declare, Java_Code, Java_Code_Import,

Java_Code_declare are specific to code generation.

They are associated with the current model.

Their statement is a possibly “parameterized” string representing a piece of code in the con-

sidered implementation language (see below for the description of parameters).

For C_Code, CPP_Code, and Java_Code: each call of the model is translated by the

associated string in the generated code, after substitution of the encoded parameters by the

corresponding signals in the considered call.

For C_Code_Import,CPP_Code_Import, and Java_Code_Import: the associated

string is inserted as import in the generated code.

For C_Code_declare, CPP_Code_declare, and Java_Code_declare: the asso-

ciated string is added as a declaration in the generated code.

• C_Code, C_Code_Import, C_Code_declare are used for C code generation.

• CPP_Code, CPP_Code_Import, CPP_Code_declare are used for C++ code

generation.

• Java_Code,Java_Code_Import,Java_Code_declare are used for Java code

generation.

(f) Distribution

• Target

– Associated with the current model.



202 MODELS OF PROCESSES

– The statement of this pragma is a string representing some communication system

(for example, "MPI").

– When distributed code is generated, the corresponding communication system is

used.

• Environment

– Associated with an input or output signal, which corresponds to an input or output

of the application.

– The statement of this pragma is a string representing a logical tag.

– The logical tag represents the channel used for the communication with the environ-

ment when distributed code is generated.

• Receiving

– Associated with an input signal, x, of the current process model, P1. This input has

to be received from another process model, P2, of the application.

– The statement of this pragma is a string constant composed of two substrings: the

first one, say "s1", represents a logical tag; the second one, say "s2", is the name

of the process model P2.

– When distributed code is generated, the component corresponding to the process

model P1 receives the signal x from the component named "s2", using the channel

represented by the logical tag "s1".

• Sending

– Associated with an output signal, x, of the current process model, P1. This output

has to be sent to another process model, P2, of the application.

– The statement of this pragma is a string constant composed of two substrings: the

first one, say "s1", represents a logical tag; the second one, say "s2", is the name

of the process model P2.

– When distributed code is generated, the component corresponding to the process

model P1 sends the signal x to the component named "s2", using the channel

represented by the logical tag "s1".

(g) Profiling directives

• Morphism

– Associated with the current model (“operator”).

– This pragma is used to describe homomorphisms of programs in the SIGNAL lan-

guage. An homomorphism associates a new program in the SIGNAL language with

an original one. A typical example is profiling for performance evaluation, for which

the homomorphic program represents time evaluation for the original program. A

new signal is associated with each original signal and a new operator is associated

with each original operator. For example, an operator “CostPlus” can be associ-

ated with the operator “+”.

Associated with a model represented as an “operator”, the pragma Morphism spec-

ifies the homomorphic image of each reference to this operator. The statement of

the pragma is a “parameterized” string representing this image. See below for the

description of parameters.

Note
Although they do not belong to the official syntax of the SIGNAL language, operators

may be described as follows:



XI–7. DIRECTIVES 203

MODEL ::=

OPERATOR

OPERATOR ::=

operator Operator-name =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

Operator-name ::= Name-model

| Operator-symbol

where Operator-symbol represents reserved words or symbols of operators.

• ProcessorType

– Associated with the current model.

– The statement of this pragma is a string representing a name, for example, "DSP",

that should be the name of a file DSP.LIB containing a module that defines the cost

of each operator by particular models.

– When profiling (performance evaluation) is required on a given program imple-

mented on some processor represented as a model with the ProcessorType

pragma, a morphism of this program is applied, that defines a new program repre-

senting cost evaluation of the original program. The image of the original program

by this morphism uses the library designated by the pragma to interpret the cost

evaluation operators.

(h) Link with the SIGALI prover

• Sigali

– Associated with the current model.

– The statement of this pragma is a “parameterized” string that may represent the way

a call of this model has to be viewed by the SIGALI prover. See below for the

description of parameters.

– This pragma is in particular associated with models contained in a specific library

dedicated to the SIGALI prover. The calls of these models are external calls that are

interpreted when translated into the SIGALI representation. These are models used

for verification purpose or for controller synthesis.

Parameters of pragmas

The statements of some of the pragmas (for example, code generation directives, profiling

directives, link with the SIGALI prover) are strings that may be “parameterized”. Gener-

ally, such a string describes a model of translation in which parameters serve to transmit the

names of designated objects. In this case, the pragma is associated with a model (process

model, “operator”) and describes the translation that has to be associated with each call of

this model (i.e., with each reference to this model). The resulting translation is obtained after

substitution of the encoded parameters by the corresponding objects in the considered call.

The following encoded parameters are recognized:

– &pj (where j is a constant integer value) represents the jth parameter of the call;

– &ij (where j is a constant integer value) represents the jth input signal of the call;

– &oj (where j is a constant integer value) represents the jth output signal of the call;



204 MODELS OF PROCESSES

– &n represents the name of the model;

– &m represents the name of the higher level model which is the current compilation unit.

A few parameters are followed by other parameters to which they apply:

– &t represents the type of the considered object (for example, &t&i1 represents the type

of the first input signal of the call);

– &b represents the scalar basic type for an object which is an array;

– &lexp represents a list of objects (for example, &lexp&o represents the list of output

signals of the call);

– &ck represents the clock of the considered object;

– &h represents the image of the considered object in the considered homomorphism when

the translation describes an homomorphism (for example, &h&i1 represents the first

input signal of the image of the call in the homomorphic program);

– &hck represents the clock of the image of the considered object in the considered ho-

momorphism when the translation describes an homomorphism.

XI–8 Models as types and parameters
The notion of type presented so far is enriched with the notion of model type, that represents the interface

of a process model. Then model types can be used to specify formal process models as formal parameters

of process models: a process model with the corresponding model type as interface must then be provided

as effective parameter.

Model types

A model type is an interface of process model.

The following rules for a DEFINITION-OF-TYPE extend those given in part C, section V–7, p. 86

et seq. (these rules do not concern formal parameters, which are described below).

Pragmas may be associated with the objects of a model type in the same way they can be associated

with the objects of a model (cf. section XI–7, p. 198 et seq.). When there is no designated object for a

pragma specified in a model type, it is by default associated with the considered model type.

The rule for a DEFINITION-OF-INTERFACE extends those given in section XI–5, p. 193.

process T = I
(the corresponding DECLARATION-OF-TYPE is: type process T = I;),

or action T = I , etc.

1. Context-free syntax

DEFINITION-OF-TYPE ::=

process Name-model-type = DEFINITION-OF-INTERFACE [ DIRECTIVES ]

| action Name-model-type = DEFINITION-OF-INTERFACE [ DIRECTIVES ]

| procedure Name-model-type = DEFINITION-OF-INTERFACE [ DIRECTIVES ]

| node Name-model-type = DEFINITION-OF-INTERFACE [ DIRECTIVES ]

| function Name-model-type = DEFINITION-OF-INTERFACE [ DIRECTIVES ]

| automaton Name-model-type = DEFINITION-OF-INTERFACE [ DIRECTIVES ]



XI–8. MODELS AS TYPES AND PARAMETERS 205

DEFINITION-OF-INTERFACE ::=

Name-model-type

2. Types

(a) The declaration type process T = I; defines the model type with name T as being

equal to the interface of process model I .

Let us denote this equality:

τ (T ) = interfaceprocess(I)

(b) When a named interface (model type) is used for a process model declaration, both classes

of process models (function, node, action or process) must be coherent.

3. Semantics

• The same scoping rules as for other types apply to model types.

4. Properties

(a) With the declarations

type process A = I;
and type process B = I;
then τ (A) = τ (B) = interfaceprocess(I).

Some implementations may not ensure this property.

On the opposite, the declarations

type process A = I;
and type function B = I; (for instance)

define distinct model types.

5. Examples

(a) type process T = ( ? integer a; ! integer b; ); declares the pro-

cess model type T.

(b) type process TT = T; declares the process model type TT which is equal to T.

(c) process PP =

T

(| ...|);

declares the process model PP with its interface specified by T.

Models as parameters

The following rules for a FORMAL-PARAMETER extend those given in section XI–5, p. 193.

The rule for S-EXPR-PARAMETER extends those given in part C, section VI–1.2, paragraph 2-a,

p. 100.

1. Context-free syntax

FORMAL-PARAMETER ::=

FORMAL-MODEL



206 MODELS OF PROCESSES

FORMAL-MODEL ::=

process Name-model-type Name-model

| action Name-model-type Name-model

| procedure Name-model-type Name-model

| node Name-model-type Name-model

| function Name-model-type Name-model

| automaton Name-model-type Name-model

S-EXPR-PARAMETER ::=

Name-model

The formal parameters of the interface of a model P can contain model parameters, that appear as

a formal name of model, say Q, typed with a model type, say T , which is visible in the current

syntactic context: typically, process T Q.

2. Semantics
To complete the description that was given in section XI–5, p. 193 et seq., the declaration of a

model sets up a context in which the model parameters define formal models, that is to say, models

for which only the interface (described by a model type) is known (analogous to model of external

processes).

The same scoping rules as for other parameters apply to model parameters.

In the body of the process model P , the formal model Q is invoked using the usual syntax for the

invocation of models.

The invocation of a model sets up an expansion context in which an effective model, designated

by its name (which must be the name of a process model visible in the context of this invocation),

is associated with each model (positional association, just like other parameters).

3. Examples

(a) process P =

{ process T Q; }

( ? ... ! ... )

(| ... x := Q(y) ... |);

declares the process model P wich has a model parameter Q, the interface of which is de-

scribed by the model type T (in that case, it has, for instance one input and one output).

The model P must be called with a visible process model as effective parameter; the interface

of this process model must be equal to T.

For example: ... P{PP}(...)...



Chapter XII

Modules

XII–1 Declaration and use of modules
A module is a named set of declarations of constants, types and models.

The syntax of DECLARATION-OF-CONSTANTS, DECLARATION-OF-TYPES, PROCESS,

ACTION, NODE and FUNCTION given below extends the syntax of these declarations such as defined

in part C, section V–8, p. 88, part C, section V–7, p. 86 et seq., and part E, section XI–1, p. 183 et

seq. The presence of the private attribute is reserved to declarations which are in a module. The

syntax of EXTERNAL-NOTATION may be used as well for a DESCRIPTION-OF-CONSTANT, a

DESCRIPTION-OF-TYPE or a DESCRIPTION-OF-MODEL, either they appear in a model or in a

module. It is provided in this section.

The importation of objects of a module in another module or in a model is done via a use importation

command that may be found in a list of DECLARATIONs. Then, the syntax of DECLARATION given

below extends that defined in section XI–2, p. 191 et seq.

1. Context-free syntax

MODULE ::=

module Name-module =

[ DIRECTIVES ] { DECLARATION }+ end ;

DECLARATION-OF-CONSTANTS ::=

private constant SIGNAL-TYPE

DEFINITION-OF-CONSTANT { , DEFINITION-OF-CONSTANT }∗ ;

DECLARATION-OF-TYPES ::=

private type

DEFINITION-OF-TYPE { , DEFINITION-OF-TYPE }∗ ;



208 MODULES

PROCESS ::=

private process Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

ACTION ::=

private action Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

NODE ::=

private node Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

FUNCTION ::=

private function Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

EXTERNAL-NOTATION ::=

external [ String-cst ]

DECLARATION ::=

IMPORT-OF-MODULES

IMPORT-OF-MODULES ::=

use IMPORTED-OBJECTS { , IMPORTED-OBJECTS }∗ ;

IMPORTED-OBJECTS ::=

Name-module

Pragmas may be associated with the objects of a module in the same way they can be associated with

the objects of a model (cf. section XI–7, p. 198 et seq.). When there is no designated object for a pragma

specified in a module, it is by default associated with the current module.

The set of declarations of a module constitutes a same level of declarations: the level of a module.

The level of a module is greater than the level of any model declared in this module. With the usual rule,

there cannot be two objects with the same name declared in a module.

The visibility of the objects declared in a module may be restricted to this module using the attribute

private: when a declaration of constants, types or model is preceded by the keyword private

(private constant ..., private type ..., private process ..., etc.), then the

visibility of the corresponding objects is confined to the module that contains that private declaration,

even if this module is referenced by a use command.

In a module M , but also in a model, the description of a constant, a type or a model can be given

by an expression of the SIGNAL language, or it can be described as external by using the external



XII–1. DECLARATION AND USE OF MODULES 209

attribute, or it can be specified as virtual by the absence of description.

The objects declared in a module can be totally or partially imported from a model or another module

thanks to the use command. Such a module provides a context of definition for some of the objects

described as virtual in the model or the module containing the use command (and visible at this level).

These virtual objects are redefined (or overridden) in this way if they are imported (as corresponding

objects with the same name) from a used module, or transitively, from a module imported in an imported

module. The overridden constants must have a smaller type (or the same one) as that appearing in their

declaration as virtual (or an overriding of this type if it is a virtual type). In the same way, the overridden

models must have compatible interfaces.

More generally, any object described as virtual in some zone of declarations L may inherit a

(re)definition from any context, visible in L, that provides such a definition.

Though it is not mandatory, it may be a good policy to systematically declare as virtual in a module

M the objects referenced in M , but imported by a use command from another module. However, in

this case, they should be used only as virtual objects: for example, if some signal is declared with a

virtual type, only polymorphic operators could be applied to it.

A model or a module are a compilation unit when all the objects they use (except predefined or

intrinsic ones) have a declaration (which may be that of a virtual object) in this entity, taking into account

the use commands contained in it. In any case, a module necessarily constitutes a compilation unit.

Note that for code generation purpose, it may be necessary that all the virtual objects of a compilation

unit have been overridden.

The objects whose definitions or redefinitions are imported in a model or module P by a use com-

mand situated in a zone of local declarations of P are made visible at the level of the expression con-

taining these local declarations and at all lower levels (with the usual scoping rules, everywhere another

object with the same name is not declared at such a level). More precisely, a use command inside the

local declarations of an expression establishes a new level of declaration which is just greater than that

of the expression. For example, an expression

E where L; use M; end

may be considered, from the point of view of the scoping rules, as equivalent to the following one:

(E where L; end) where Decl(M) end

where Decl(M ) represents the declarations of M . This equivalence holds wherever the use command

is located in the local declarations.

A similar rule also applies for a use command located in the declarations of a module.

The importable objects of a module are the objects of this module that are not declared as private.

The objects imported by a use command are all the importable objects of the module.

When several use commands appear at a same level of declaration, their syntactic order determines

a corresponding nesting of the importations, thus avoiding multiple definitions of a same object at a given

level. For example, to:

E where L; use M1; ...; use Mn; end

corresponds the following nesting:

(((E where L; end) where Decl(Mn) end) ...) where Decl(M1) end

(the declarations of M1 are visible in Mn, but the converse is not true).

In this way, if several objects with the same name are imported in a given context from different

modules, the single one which is effectively visible is the one from the last module containing it in the

ordered list of the use commands. Note that the rule applies differently for virtual objects since virtual

definitions are overridden by corresponding non virtual ones.



210 MODULES

The nesting of declarations also allows to override, in some way, declarations of imported modules

(libraries) by local declarations, since the local ones have priority.

When several modules are specified in a same use command, the corresponding declarations are

imported at the same level. For example,

E where L; use M1, ..., Mp;end

would correspond to:

(E where L; end) where Decl(M1) ... Decl(Mp) end

In this case, there is a potential risk of conflicts of the declarations imported from different modules.

In a given compilation unit, when an object is described as virtual, then:

• either it is defined in an imported module,

• or it is defined in the context in which this compilation unit is used.

In a given compilation unit, when an object is described as external (using the external nota-

tion), then it means that it is externally defined, in another language for instance, in the implementation

environment of the compilation unit.

The description of an object as external may be followed by a string, such as external "X",

which is an attribute allowing to describe specific characteristics of the implementation of this object:

implementation language, for instance (this is indeed a short notation for a specific pragma).

The name M used in a command “use M;” is the name of a module visible in the design

environment. The way this module is made available is not normalized.

As an example, in the INRIA POLYCHRONY environment, there is an environment variable,

SIGNAL_LIBRARY_PATH,

which defines the paths at which library files may be found in the design environment. Such a file has

the name “M”, with the suffixe “.LIB” or “.SIG” (i.e., “M.LIB” or “M.SIG”), and contains the definition

of a module named M , in SIGNAL.

Examples

• module Stack =

use my_elem;

type elem;

type stack = external;

process initst = ( ! stack p;);

process push = ( ? stack p; elem x; ! event except; )

spec (| x ^> except | x --> except |);

process pop = ( ? stack p; ! elem x; ! event except; )

spec (| x ^# except |);

...

end;



Chapter XIII

Intrinsic processes

Intrinsic process models constitute libraries of processes that may be used in SIGNAL programs. These

models have not to be declared. The names of the intrinsic process models are not reserved words of

the SIGNAL language. In addition to the following general intrinsic processes (described in the present

chapter), specific intrinsic processes (described in section XI–1.6, p. 187 et seq.) may occur only in

automata.

XIII–1 Minimal clock
not yet
imple-

mented

in
POLY-

CHRONY

The intrinsic process min_clock is a process with no output which is used to fix the clock of a signal

in the current compilation unit. When the considered clock has some freedom, which is expressed by

a recursive definition of this clock, a solution of the equation is chosen, which is the non null minimal

clock.

min_clock(X)

1. Types

(a) X is a signal of any type.

2. Semantics
A call to the intrinsic process model

process min_clock = ( ? x; ! );

expresses a directive for the clock calculus.

Using min_clock(X), the clock of the signal X is replaced by the non null minimal solution

of the system of equations that defines it.

In this way, if ω(X) = Q ∗ω(X) +R, the solution ω(X) = R is chosen.

XIII–2 Affine transformations
Consider (n, φ, d) such that n, d ∈ IIN∗, the set of strictly positive integers, and φ ∈ Z, the set of integers.

Given some process P , an (n, φ, d)-affine transformation from a clock c1 to a clock c2 may be

obtained through the following steps:



212 INTRINSIC PROCESSES

1. Construct a new clock c′ as the union of the set of instants of c1 with the set of instants obtained

by introducing n − 1 fictive instants between any two successive instants of c1 (and −φ fictive

instants before the first instant of c1 when φ is negative).

2. Define the clock c2 as the set of instants {dt + φ|t ∈ c′}, with c′ = {t|t ∈ IIN}: in other words,

counting every d instant, starting with the instant φ of c′ (or with the first instant of c′ when φ is

negative).

Clocks c1 and c2 are then said to be in an (n, φ, d)-affine relation: c1R
P
(n,φ,d)c2.

It can be expressed as follows: clocks c1 and c2 are in an (n, φ, d)-affine relation if there exists a clock

c′ such that c1 and c2 can be respectively expressed using the affine functions λ.(nt+φ1) and λ.(dt+φ2),
with φ2 − φ1 = φ, with respect to the time indices of c′: c′ = {t|t ∈ IIN}, c1 = {nt + φ1|t ∈ c′},

c2 = {dt+ φ2|t ∈ c′}.

A particular case of affine relation is RP
(1,φ,d), with φ ≥ 0. In this case, the relation c1R

P
(n,φ,d)c2 in

a process P can be denoted c2 = [c1](φ,d) to express that c2 is a subsampling of positive phase φ and

strictly positive period d on c1.

The clock calculus may implement synchronisability rules based on properties of affine relations,

against which synchronization constraints can be assessed.

The following affine_sample, affine_clock_relation and affine_unsample pro-

cesses are defined as intrinsic process models.

Affine sample process

The process affine_sample is defined as follows:

process affine_sample =

{ integer phi, d; }

( ? x;

! y;

)

(| v ^= x

| v := (d-1) when (zv=0) default (zv-1)

| zv := v $ init phi

| y := x when (zv=0)

|)

where

integer v, zv;

end

;

The signal y is defined as an affine subsampling of phase phi and period d on the signal x.

The phase phi is a positive integer (ϕ(phi) ≥ 0) and the period d is a strictly positive integer

(ϕ(d) ≥ 1).

The following affine relation holds between the clocks of x and y:

ω(y) = [ω(x)]
(ϕ(phi),ϕ(d))

Affine clock relation process



XIII–2. AFFINE TRANSFORMATIONS 213

The process affine_clock_relation is defined as follows:

process affine_clock_relation =

{ integer n, phi, d; }

( ? x, y; )

(| clk_x := affine_sample {max(0,-phi), n} (clk_i)

| clk_y := affine_sample {max(0,phi), d} (clk_i)

| clk_x ^= x

| clk_y ^= y

|)

where

event clk_x, clk_y, clk_i;

function max =

( ? long x1, x2; ! long y; )

(| y := if (x1 >= x2) then x1 else x2 |);

end

;

There is an (n, phi, d)-affine relation between the clocks of x and y: ω(x)RP
(n,phi,d)ω(y). The

process does not constrain the values of x and y.

The values of n and d are strictly positive integers (ϕ(n) ≥ 1, ϕ(d) ≥ 1) and the value of phi is an

integer.

The clock clk_i is a clock defined by the process, such that the following affine relations hold

between clk_i and the clocks of x and y:

ω(x) = [ω(clk_i)]
(max(0,−ϕ(phi)),ϕ(n))

ω(y) = [ω(clk_i)]
(max(0,ϕ(phi)),ϕ(d))

Affine unsample process

The process affine_unsample is defined as follows:

process affine_unsample =

{ integer n, phi; }

( ? x1, x2;

! y;

)

(| affine_clock_relation {n, phi, 1} (x1, y)

| y := (x1 when ^y) default x2

| x2 ^= y

|)

;

The signal y is defined as an oversampling from the signal x1. The signal x2 provides the values of

y when x1 is not present; note that though x2 is an input signal of affine_unsample, its clock has

not to be defined as input of this process: it is internally defined as equal to the clock of the output.

The value of n is a strictly positive integer (ϕ(n) ≥ 1) and the value of phi is an integer.

The clock clk_i is a clock defined by the process, such that the following affine relations hold

between clk_i and the clocks of x1 and y:



214 INTRINSIC PROCESSES

ω(x1) = [ω(clk_i)]
(max(0,−ϕ(phi)),ϕ(n))

ω(y) = [ω(clk_i)]
(max(0,ϕ(phi)),1)

The clocks of x2 and y are equal:

ω(y) = ω(x2)

XIII–3 “Left true” process
The following left_tt process is defined as intrinsic process model:

process left_tt = ( ? boolean b1, b2; ! boolean c; )

(| c := b1 default false when ̂b2 |)
;

It may be used to define some clock (represented by the true values of a Boolean b1) at an other

clock (the upper bound of the clocks of b1 and b2): with respect to this upper bound, the true values of

b1 are retained, the false values are retained, and the absence is represented as false values.

XIII–4 Mathematical functions
The following mathematical functions are defined as intrinsic process models. They correspond to func-

tions of the “math.h” library of the language C. A full description of them may be found in the documen-

tation of this library.

• arc cosine function:

function acos = ( ? dreal x; ! dreal y; );

• arc sine function:

function asin = ( ? dreal x; ! dreal y; );

• arc tangent function:

function atan = ( ? dreal x; ! dreal y; );

• arc tangent function of two variables:

function atan2 = ( ? dreal x1; dreal x2 ! dreal y; );

• cosine function:

function cos = ( ? dreal x; ! dreal y; );

• sine function:

function sin = ( ? dreal x; ! dreal y; );

• tangent function:

function tan = ( ? dreal x; ! dreal y; );

• hyperbolic cosine function:

function cosh = ( ? dreal x; ! dreal y; );

• hyperbolic sine function:

function sinh = ( ? dreal x; ! dreal y; );

• hyperbolic tangent function:

function tanh = ( ? dreal x; ! dreal y; );



XIII–5. COMPLEX FUNCTIONS 215

• exponential function:

function exp = ( ? dreal x; ! dreal y; );

• multiply floating-point number by integral power of 2:

function ldexp = ( ? dreal x; integer i ! dreal y; );

• logarithmic function:

function log = ( ? dreal x; ! dreal y; );

• base-10 logarithmic function:

function log10 = ( ? dreal x; ! dreal y; );

• power function:

function pow = ( ? dreal x1; dreal x2; ! dreal y; );

• square root function:

function sqrt = ( ? dreal x; ! dreal y; );

• smallest integral value not less than x:

function ceil = ( ? dreal x; ! dreal y; );

• absolute value of an integer:

function abs = ( ? integer x; ! integer y; );

• absolute value of floating-point number:

function fabs = ( ? dreal x; ! dreal y; );

• largest integral value not greater than x:

function floor = ( ? dreal x; ! dreal y; );

• floating-point remainder function:

function fmod = ( ? dreal x1; dreal x2; ! dreal y; );

• convert floating-point number to fractional and integral components:

function frexp = ( ? dreal x; ! dreal y1; integer y2; );

• extract signed integral and fractional values from floating-point number:

function modf = ( ? dreal x; ! dreal y1; dreal y2; );

XIII–5 Complex functions
The following complex functions are defined as intrinsic process models.

• conjugate of a complex:

function conj = ( ? complex x; ! complex y; );

and

function conjd = ( ? dcomplex x; ! dcomplex y; );

• module of a complex:

function modu = ( ? complex x; ! real y; );

and

function modud = ( ? dcomplex x; ! dreal y; );



216 INTRINSIC PROCESSES

• argument of a complex:

function arg = ( ? complex x; ! real y; );

and

function argd = ( ? dcomplex x; ! dreal y; );

• real part of a complex:

function rpart = ( ? complex x; ! real y; );

and

function rpartd = ( ? dcomplex x; ! dreal y; );

• imaginary part of a complex:

function ipart = ( ? complex x; ! real y; );

and

function ipartd = ( ? dcomplex x; ! dreal y; );

XIII–6 Input-output functions
The following input-output functions are defined as intrinsic process models of the INRIA POLYCHRONY

environment. They allow to read and write signals of basic types on standard input and output.

The read and write processes below are described with no explicit type for the input or output

signal x: it means that they are polymorphic processes for which the effective type of the considered

argument is provided by the type of the corresponding signal in the call of the process.

• process read = ( ? string message; ! x )

spec (| message ^= x | message --> x |);

A message is displayed and a value is read for x.

A standard read function is used in the generated code for the following possible types of x:

boolean , short , integer , long , real , dreal , complex , dcomplex , character , string .

• process write = (? string message; x; ! )

spec (| message ^= x |);

A message is displayed and the value of x is written.

A standard write function is used in the generated code for the following possible types of x:

boolean , short , integer , long , real , dreal , complex , dcomplex , character , string .

• process writeString = ( ? string message; ! );

A message is displayed on the standard output.



Part F

ANNEX





Chapter XIV

Grammar of the SIGNAL language

XIV–1 Lexical units

XIV–1.1 Characters

Character ::= character | CharacterCode

Sets of characters

character ::= name-char | mark | delimitor | separator | other-character

name-char ::= letter-char | numeral-char | _

letter-char ::=

upper-case-letter-char | lower-case-letter-char | other-letter-char

upper-case-letter-char ::=

A | B | C | D | E | F | G | H | I

| J | K | L | M | N | O | P | Q | R

| S | T | U | V | W | X | Y | Z

lower-case-letter-char ::=

a | b | c | d | e | f | g | h | i

| j | k | l | m | n | o | p | q | r

| s | t | u | v | w | x | y | z



220 GRAMMAR OF THE SIGNAL LANGUAGE

other-letter-char ::=

À | Á | Â | Ã | Ä | Å | Æ | Ç | È

| É | Ê | Ë | Ì | Í | Î | Ï | Ð | Ñ

| Ò | Ó | Ô | Õ | Ö | Ø | Ù | Ú | Û

| Ü | Ý | Þ | ß | à | á | â | ã | ä

| å | æ | ç | è | é | ê | ë | ì | í

| î | ï | ð | ñ | ò | ó | ô | õ | ö

| ø | ù | ú | û | ü | ý | þ | ÿ

numeral-char ::=

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

mark ::= . | ’ | " | % | : | = | < | > | +

| − | ∗ | / | @ | $ | ̂ | # | | | \

delimitor ::= ( | ) | { | } | [ | ]

| ? | ! | , | ;

separator ::= \x20
| long-separator

long-separator ::= \x9

| \xA

| \xC

| \xD

Encodings of characters

CharacterCode ::= OctalCode | HexadecimalCode
| escape-code

OctalCode ::= \ octal-char [ octal-char [ octal-char ] ]



XIV–1. LEXICAL UNITS 221

octal-char ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

HexadecimalCode ::= \x hexadecimal-char [ hexadecimal-char ]

hexadecimal-char ::= numeral-char
| A | B | C | D | E | F

| a | b | c | d | e | f

escape-code ::= \a | \b | \f | \n | \r | \t

| \v | \\ | \" | \’ | \? | \%

XIV–1.2 Vocabulary

prefix-mark ::= \

Names

Name ::= begin-name-char [ { name-char }+ ]

begin-name-char ::= { name-char \ numeral-char }

Boolean constant values

Boolean-cst ::= true | false

Integer constant values

Integer-cst ::= { numeral-char }+



222 GRAMMAR OF THE SIGNAL LANGUAGE

Real constant values

Real-cst ::= Simple-precision-real-cst
| Double-precision-real-cst

Simple-precision-real-cst ::=

Integer-cst Simple-precision-exponent
| Integer-cst . Integer-cst [ Simple-precision-exponent ]

Double-precision-real-cst ::=

Integer-cst Double-precision-exponent
| Integer-cst . Integer-cst Double-precision-exponent

Simple-precision-exponent ::= e Relative-cst | E Relative-cst

Double-precision-exponent ::= d Relative-cst | D Relative-cst

Relative-cst ::= Integer-cst
| + Integer-cst

| − Integer-cst

Character constant values

Character-cst ::= ’ Character-cstCharacter ’

Character-cstCharacter ::= { Character \ character-spec-char }

character-spec-char ::= ’
| long-separator

String constant values

String-cst ::= " [ { String-cstCharacter }+ ] "

String-cstCharacter ::= { Character \ string-spec-char }

string-spec-char ::= "
| long-separator



XIV–2. DOMAINS OF VALUES OF THE SIGNALS 223

Comments

Comment ::= % [ { CommentCharacter }+ ] %

CommentCharacter ::= { Character \ comment-spec-char }

comment-spec-char ::= %

XIV–2 Domains of values of the signals

SIGNAL-TYPE ::= Scalar-type
| External-type
| ENUMERATED-TYPE
| ARRAY-TYPE
| TUPLE-TYPE

XIV–2.1 Scalar types

Scalar-type ::= Synchronization-type
| Numeric-type
| Alphabetic-type

Numeric-type ::= Integer-type
| Real-type
| Complex-type

Alphabetic-type ::= char

| string



224 GRAMMAR OF THE SIGNAL LANGUAGE

Synchronization types

Synchronization-type ::= event

| boolean

Integer types

Integer-type ::= short

| integer

| long

Real types

Real-type ::= real

| dreal

Complex types

Complex-type ::= complex

| dcomplex

XIV–2.2 External types

External-type ::= Name-type



XIV–2. DOMAINS OF VALUES OF THE SIGNALS 225

XIV–2.3 Enumerated types

ENUMERATED-TYPE ::=

enum ( Name-enum-value { , Name-enum-value }∗ )

ENUM-CST ::=

# Name-enum-value

| Name-type # Name-enum-value

XIV–2.4 Array types

ARRAY-TYPE ::=

[ S-EXPR { , S-EXPR }∗ ] SIGNAL-TYPE

XIV–2.5 Tuple types

TUPLE-TYPE ::=

struct ( NAMED-FIELDS )

| bundle ( NAMED-FIELDS )
[ SPECIFICATION-OF-PROPERTIES ]

NAMED-FIELDS ::=

{ S-DECLARATION }+



226 GRAMMAR OF THE SIGNAL LANGUAGE

XIV–2.6 Denotation of types

SIGNAL-TYPE ::=

Name-type

DECLARATION-OF-TYPES ::=

type DEFINITION-OF-TYPE { , DEFINITION-OF-TYPE }∗ ;

DEFINITION-OF-TYPE ::=

Name-type

| Name-type = DESCRIPTION-OF-TYPE

DESCRIPTION-OF-TYPE ::=

SIGNAL-TYPE
| EXTERNAL-NOTATION [ TYPE-INITIAL-VALUE ]

XIV–2.7 Declarations of constant identifiers

DECLARATION-OF-CONSTANTS ::=

constant SIGNAL-TYPE

DEFINITION-OF-CONSTANT { , DEFINITION-OF-CONSTANT }∗ ;

DEFINITION-OF-CONSTANT ::=

Name-constant
| Name-constant = DESCRIPTION-OF-CONSTANT

DESCRIPTION-OF-CONSTANT ::=

S-EXPR
| EXTERNAL-NOTATION

XIV–2.8 Declarations of sequence identifiers



XIV–3. EXPRESSIONS ON SIGNALS 227

S-DECLARATION ::=

SIGNAL-TYPE
DEFINITION-OF-SEQUENCE { , DEFINITION-OF-SEQUENCE }∗ ;

DEFINITION-OF-SEQUENCE ::=

Name-signal

| Name-signal init S-EXPR

XIV–2.9 Declarations of shared variables

DECLARATION-OF-SHARED-VARIABLES ::=

shared SIGNAL-TYPE

DEFINITION-OF-SEQUENCE { , DEFINITION-OF-SEQUENCE }∗ ;

XIV–2.10 Declarations of state variables

DECLARATION-OF-STATE-VARIABLES ::=

statevar SIGNAL-TYPE

DEFINITION-OF-SEQUENCE { , DEFINITION-OF-SEQUENCE }∗ ;

XIV–3 Expressions on signals

XIV–3.1 Systems of equations on signals

Elementary equations

ELEMENTARY-PROCESS ::=

DEFINITION-OF-SIGNALS



228 GRAMMAR OF THE SIGNAL LANGUAGE

DEFINITION-OF-SIGNALS ::=

Name-signal := S-EXPR

DEFINITION-OF-SIGNALS ::=

( Name-signal { , Name-signal }∗ ) := S-EXPR

DEFINITION-OF-SIGNALS ::=

Name-signal ::= S-EXPR

| Name-signal ::= defaultvalue S-EXPR

DEFINITION-OF-SIGNALS ::=

( Name-signal { , Name-signal }∗ ) ::= S-EXPR

| ( Name-signal { , Name-signal }∗ ) ::= defaultvalue S-EXPR

Invocation of a model

ELEMENTARY-PROCESS ::=

INSTANCE-OF-PROCESS

INSTANCE-OF-PROCESS ::=

EXPANSION
| Name-model ( )

EXPANSION ::=

Name-model
{ [ S-EXPR-PARAMETER { , S-EXPR-PARAMETER }∗ ] }

S-EXPR-PARAMETER ::=

S-EXPR
| SIGNAL-TYPE



XIV–3. EXPRESSIONS ON SIGNALS 229

INSTANCE-OF-PROCESS ::=

PRODUCTION

PRODUCTION ::=

MODEL-REFERENCE ( S-EXPR { , S-EXPR }∗ )

MODEL-REFERENCE ::=

EXPANSION
| Name-model

S-EXPR ::=

INSTANCE-OF-PROCESS

S-EXPR ::=

CONVERSION

CONVERSION ::=

Type-conversion ( S-EXPR )

Type-conversion ::=

Scalar-type
| Name-type

Nesting of expressions on signals

S-EXPR ::=

( S-EXPR )

XIV–3.2 Elementary expressions



230 GRAMMAR OF THE SIGNAL LANGUAGE

S-EXPR-ELEMENTARY ::=

CONSTANT
| Name-signal

| Label
| Name-state-variable ?

Constant expressions

CONSTANT ::=

Boolean-cst
| Integer-cst
| Real-cst
| Character-cst
| String-cst
| ENUM-CST

XIV–3.3 Dynamic expressions

S-EXPR-DYNAMIC ::=

SIMPLE-DELAY
| WINDOW
| GENERALIZED-DELAY

Simple delay

SIMPLE-DELAY ::=

S-EXPR $ [ init S-EXPR ]

Sliding window

WINDOW ::=

S-EXPR window S-EXPR [ init S-EXPR ]



XIV–3. EXPRESSIONS ON SIGNALS 231

Generalized delay

GENERALIZED-DELAY ::=

S-EXPR $ S-EXPR [ init S-EXPR ]

XIV–3.4 Polychronous expressions

S-EXPR-TEMPORAL ::=

MERGING
| EXTRACTION
| MEMORIZATION
| VARIABLE
| COUNTER

Merging

MERGING ::=

S-EXPR default S-EXPR

Extraction

EXTRACTION ::=

S-EXPR when S-EXPR

Memorization

MEMORIZATION ::=

S-EXPR cell S-EXPR [ init S-EXPR ]



232 GRAMMAR OF THE SIGNAL LANGUAGE

Variable clock signal

VARIABLE ::=

var S-EXPR [ init S-EXPR ]

Counters

COUNTER ::=

S-EXPR after S-EXPR

| S-EXPR from S-EXPR

| S-EXPR count S-EXPR

XIV–3.5 Constraints and expressions on clocks

ELEMENTARY-PROCESS ::=

CONSTRAINT

Expressions on clock signals

S-EXPR-CLOCK ::=

SIGNAL-CLOCK

SIGNAL-CLOCK ::=

̂ S-EXPR

S-EXPR-CLOCK ::=

CLOCK-EXTRACTION



XIV–3. EXPRESSIONS ON SIGNALS 233

CLOCK-EXTRACTION ::=

when S-EXPR

| [: S-EXPR ]

| [/: S-EXPR ]

S-EXPR-CLOCK ::=

0̂

Operators of clock lattice

S-EXPR-CLOCK ::=

S-EXPR +̂ S-EXPR

| S-EXPR −̂ S-EXPR

| S-EXPR ∗̂ S-EXPR

Relations on clocks

CONSTRAINT ::=

S-EXPR { ̂= S-EXPR }∗

| S-EXPR { ̂< S-EXPR }∗

| S-EXPR { ̂> S-EXPR }∗

| S-EXPR { #̂ S-EXPR }∗

XIV–3.6 Constraints on signals

CONSTRAINT ::=

S-EXPR :=: S-EXPR



234 GRAMMAR OF THE SIGNAL LANGUAGE

XIV–3.7 Boolean synchronous expressions

Expressions on Booleans

S-EXPR-BOOLEAN ::=

not S-EXPR

S-EXPR-BOOLEAN ::=

S-EXPR or S-EXPR

| S-EXPR and S-EXPR

| S-EXPR xor S-EXPR

Boolean relations

S-EXPR-BOOLEAN ::=

RELATION

RELATION ::=

S-EXPR = S-EXPR

| S-EXPR / = S-EXPR

| S-EXPR > S-EXPR

| S-EXPR >= S-EXPR

| S-EXPR < S-EXPR

| S-EXPR <= S-EXPR

| S-EXPR == S-EXPR

| S-EXPR <<= S-EXPR

XIV–3.8 Synchronous expressions on numeric signals

Binary expressions on numeric signals



XIV–4. EXPRESSIONS ON PROCESSES 235

S-EXPR-ARITHMETIC ::=

S-EXPR + S-EXPR

| S-EXPR − S-EXPR

| S-EXPR ∗ S-EXPR

| S-EXPR / S-EXPR

| S-EXPR modulo S-EXPR

| S-EXPR ∗∗ S-EXPR
| DENOTATION-OF-COMPLEX

DENOTATION-OF-COMPLEX ::=

S-EXPR @ S-EXPR

Unary operators

S-EXPR-ARITHMETIC ::=

+ S-EXPR

| − S-EXPR

XIV–3.9 Synchronous condition

S-EXPR-CONDITION ::=

if S-EXPR then S-EXPR else S-EXPR

XIV–4 Expressions on processes



236 GRAMMAR OF THE SIGNAL LANGUAGE

P-EXPR ::=

ELEMENTARY-PROCESS
| HIDING
| LABELLED-PROCESS
| GUARDED-PROCESS
| GENERAL-PROCESS

GENERAL-PROCESS ::=

COMPOSITION
| CONFINED-PROCESS
| CHOICE-PROCESS
| ASSERTION-PROCESS

XIV–4.1 Composition

COMPOSITION ::=

(| [ P-EXPR { | P-EXPR }∗ ] |)

XIV–4.2 Hiding

HIDING ::=

GENERAL-PROCESS / Name-signal { , Name-signal }∗

| HIDING / Name-signal { , Name-signal }∗

XIV–4.3 Confining with local declarations

CONFINED-PROCESS ::=

GENERAL-PROCESS DECLARATION-BLOCK

DECLARATION-BLOCK ::=

where { DECLARATION }+ end



XIV–4. EXPRESSIONS ON PROCESSES 237

XIV–4.4 Labelled processes

LABELLED-PROCESS ::=

Label :: P-EXPR

Label ::=

Name

XIV–4.5 Guarded processes

GUARDED-PROCESS ::=

on S-EXPR :: P-EXPR

| on Label :: P-EXPR

XIV–4.6 Choice processes

CHOICE-PROCESS ::=

case S-EXPR in { CASE }+ [ ELSE-CASE ] end

CASE ::=

ENUMERATION-OF-VALUES : GENERAL-PROCESS

ELSE-CASE ::=

else GENERAL-PROCESS



238 GRAMMAR OF THE SIGNAL LANGUAGE

ENUMERATION-OF-VALUES ::=

{ S-EXPR { , S-EXPR }∗ }

| [. [ S-EXPR ] , [ S-EXPR ] .]

| [. [ S-EXPR ] , [ S-EXPR ] [.

| .] [ S-EXPR ] , [ S-EXPR ] .]

| .] [ S-EXPR ] , [ S-EXPR ] [.

XIV–4.7 Assertion processes

ASSERTION-PROCESS ::=

assert (| [ CONSTRAINT { | CONSTRAINT }∗ ] |)

Assertion on Boolean signal

INSTANCE-OF-PROCESS ::=

assert ( S-EXPR )

XIV–5 Tuples of signals

S-EXPR-TUPLE ::=

TUPLE-ENUMERATION
| TUPLE-FIELD

XIV–5.1 Enumeration of tuple elements

TUPLE-ENUMERATION ::=

( S-EXPR { , S-EXPR }∗ )



XIV–6. SPATIAL PROCESSING 239

XIV–5.2 Denotation of field

TUPLE-FIELD ::=

S-EXPR . Name-field

XIV–5.3 Equation of definition of tuple component

DEFINITION-OF-SIGNALS ::=

COMPONENT := S-EXPR

| COMPONENT ::= S-EXPR

| COMPONENT ::= defaultvalue S-EXPR

| ( COMPONENT { , COMPONENT }∗ ) := S-EXPR

| ( COMPONENT { , COMPONENT }∗ ) ::= S-EXPR

| ( COMPONENT { , COMPONENT }∗ ) ::= defaultvalue
S-EXPR

COMPONENT ::=

Name-signal

| Name-signal . COMPONENT

XIV–6 Spatial processing



240 GRAMMAR OF THE SIGNAL LANGUAGE

S-EXPR-ARRAY ::=

ARRAY-ENUMERATION
| CONCATENATION
| ITERATIVE-ENUMERATION
| INDEX
| ARRAY-ELEMENT
| SUB-ARRAY
| ARRAY-RESTRUCTURATION
| MULTI-INDEX
| SEQUENTIAL-DEFINITION
| TRANSPOSITION
| ARRAY-PRODUCT
| REFERENCE-SEQUENCE

XIV–6.1 Enumeration

ARRAY-ENUMERATION ::=

[ S-EXPR { , S-EXPR }∗ ]

XIV–6.2 Concatenation

CONCATENATION ::=

S-EXPR |+ S-EXPR

XIV–6.3 Repetition

ITERATIVE-ENUMERATION ::=

S-EXPR |∗ S-EXPR



XIV–6. SPATIAL PROCESSING 241

XIV–6.4 Definition of index

INDEX ::=

S-EXPR .. S-EXPR [ step S-EXPR ]

XIV–6.5 Array element

ARRAY-ELEMENT ::=

S-EXPR [ S-EXPR { , S-EXPR }∗ ]

| S-EXPR [ S-EXPR { , S-EXPR }∗ ] ARRAY-RECOVERY

ARRAY-RECOVERY ::=

\\ S-EXPR

XIV–6.6 Extraction of sub-array

SUB-ARRAY ::=

S-EXPR [ S-EXPR { , S-EXPR }∗ ]

XIV–6.7 Array restructuration

ARRAY-RESTRUCTURATION ::=

S-EXPR : S-EXPR



242 GRAMMAR OF THE SIGNAL LANGUAGE

XIV–6.8 Extended syntax of equations of definition

DEFINITION-OF-SIGNALS ::=

DEFINED-ELEMENT := S-EXPR

| DEFINED-ELEMENT ::= S-EXPR

| DEFINED-ELEMENT ::= defaultvalue S-EXPR

| ( DEFINED-ELEMENT { , DEFINED-ELEMENT }∗ )

:= S-EXPR

| ( DEFINED-ELEMENT { , DEFINED-ELEMENT }∗ )

::= S-EXPR

| ( DEFINED-ELEMENT { , DEFINED-ELEMENT }∗ )

::= defaultvalue S-EXPR

DEFINED-ELEMENT ::=

COMPONENT
| COMPONENT [ S-EXPR { , S-EXPR }∗ ]

XIV–6.9 Cartesian product

MULTI-INDEX ::=

<< S-EXPR { , S-EXPR }∗ >>

XIV–6.10 Iterations of processes

GENERAL-PROCESS ::=

ITERATION-OF-PROCESSES

ITERATION-OF-PROCESSES ::=

array ARRAY-INDEX of P-EXPR [ ITERATION-INIT ] end

| iterate ITERATION-INDEX of P-EXPR [ ITERATION-INIT ] end



XIV–6. SPATIAL PROCESSING 243

ARRAY-INDEX ::=

| Name to S-EXPR

ITERATION-INDEX ::=

DEFINED-ELEMENT
| ( DEFINED-ELEMENT { , DEFINED-ELEMENT }∗ )
| S-EXPR

ITERATION-INIT ::=

with P-EXPR

REFERENCE-SEQUENCE ::=

S-EXPR [ ? ]

XIV–6.11 Sequential definition

SEQUENTIAL-DEFINITION ::=

S-EXPR next S-EXPR

XIV–6.12 Sequential enumeration

ITERATIVE-ENUMERATION ::=

[ ITERATION { , PARTIAL-DEFINITION }∗ ]

PARTIAL-DEFINITION ::=

DEFINITION-OF-ELEMENT
| ITERATION

DEFINITION-OF-ELEMENT ::=

[ S-EXPR { , S-EXPR }∗ ] : S-EXPR



244 GRAMMAR OF THE SIGNAL LANGUAGE

ITERATION ::=

{ PARTIAL-ITERATION { , PARTIAL-ITERATION }∗

: DEFINITION-OF-ELEMENT

| { PARTIAL-ITERATION { , PARTIAL-ITERATION }∗

: S-EXPR

PARTIAL-ITERATION ::=

[ Name ] [ in S-EXPR ] [ to S-EXPR ] [ step S-EXPR ]

XIV–6.13 Operators on matrices

Transposition

TRANSPOSITION ::=

tr S-EXPR

Matrix products

ARRAY-PRODUCT ::=

S-EXPR ∗. S-EXPR

XIV–7 Models of processes

XIV–7.1 Classes of process models

MODEL ::=

PROCESS
| ACTION
| NODE
| FUNCTION



XIV–7. MODELS OF PROCESSES 245

PROCESS ::=

process Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

ACTION ::=

action Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

PROCEDURE ::=

procedure Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

NODE ::=

node Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

FUNCTION ::=

function Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

AUTOMATON ::=

automaton Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

BODY ::=

DESCRIPTION-OF-MODEL

DESCRIPTION-OF-MODEL ::=

GENERAL-PROCESS
| EXTERNAL-NOTATION

XIV–7.2 Local declarations of a process model



246 GRAMMAR OF THE SIGNAL LANGUAGE

DECLARATION ::=

S-DECLARATION
| DECLARATION-OF-SHARED-VARIABLES
| DECLARATION-OF-STATE-VARIABLES
| DECLARATION-OF-CONSTANTS
| DECLARATION-OF-TYPES
| DECLARATION-OF-LABELS
| REFERENCES
| MODEL

XIV–7.3 Declarations of labels

DECLARATION-OF-LABELS ::=

label Name-label { , Name-label }∗ ;

XIV–7.4 References to signals with extended visibility

REFERENCES ::=

ref Name-signal { , Name-signal }∗ ;

XIV–7.5 Interface of a model

DEFINITION-OF-INTERFACE ::=

INTERFACE

INTERFACE ::=

[ PARAMETERS ] ( INPUTS OUTPUTS ) EXTERNAL-GRAPH

PARAMETERS ::=

{ [ { FORMAL-PARAMETER }+ ] }



XIV–7. MODELS OF PROCESSES 247

FORMAL-PARAMETER ::=

S-DECLARATION
| DECLARATION-OF-TYPES

INPUTS ::=

? [ { S-DECLARATION }+ ]

OUTPUTS ::=

! [ { S-DECLARATION }+ ]

XIV–7.6 Graph of a model

EXTERNAL-GRAPH ::=

[ PROCESS-ATTRIBUTE ] [ SPECIFICATION-OF-PROPERTIES ]

PROCESS-ATTRIBUTE ::=

safe

| deterministic

| unsafe

SPECIFICATION-OF-PROPERTIES ::=

spec GENERAL-PROCESS

Dependences

ELEMENTARY-PROCESS ::=

DEPENDENCES

DEPENDENCES ::=

SIGNALS { −− > SIGNALS }∗

| { SIGNALS −− > SIGNALS } when S-EXPR

SIGNALS ::=

ELEMENTARY-SIGNAL
| { ELEMENTARY-SIGNAL { , ELEMENTARY-SIGNAL }∗ }

ELEMENTARY-SIGNAL ::=

DEFINED-ELEMENT
| Label



248 GRAMMAR OF THE SIGNAL LANGUAGE

XIV–7.7 Directives

DIRECTIVES ::=

pragmas { PRAGMA }+ end pragmas

PRAGMA ::=

Name-pragma [ { PRAGMA-OBJECT { , PRAGMA-OBJECT }∗ } ]
[ Pragma-statement ]

PRAGMA-OBJECT ::=

Label
| Name

Pragma-statement ::=

String-cst

XIV–7.8 Models as types and parameters

DEFINITION-OF-TYPE ::=

process Name-model-type = DEFINITION-OF-INTERFACE [ DIRECTIVES ]

| action Name-model-type = DEFINITION-OF-INTERFACE [ DIRECTIVES ]

| procedure Name-model-type = DEFINITION-OF-INTERFACE [ DIRECTIVES ]

| node Name-model-type = DEFINITION-OF-INTERFACE [ DIRECTIVES ]

| function Name-model-type = DEFINITION-OF-INTERFACE [ DIRECTIVES ]

| automaton Name-model-type = DEFINITION-OF-INTERFACE [ DIRECTIVES ]

DEFINITION-OF-INTERFACE ::=

Name-model-type

FORMAL-PARAMETER ::=

FORMAL-MODEL



XIV–8. MODULES 249

FORMAL-MODEL ::=

process Name-model-type Name-model

| action Name-model-type Name-model

| procedure Name-model-type Name-model

| node Name-model-type Name-model

| function Name-model-type Name-model

| automaton Name-model-type Name-model

S-EXPR-PARAMETER ::=

Name-model

XIV–8 Modules

XIV–8.1 Declaration and use of modules

MODULE ::=

module Name-module =

[ DIRECTIVES ] { DECLARATION }+ end ;

DECLARATION-OF-CONSTANTS ::=

private constant SIGNAL-TYPE

DEFINITION-OF-CONSTANT { , DEFINITION-OF-CONSTANT }∗ ;

DECLARATION-OF-TYPES ::=

private type

DEFINITION-OF-TYPE { , DEFINITION-OF-TYPE }∗ ;

PROCESS ::=

private process Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;



250 GRAMMAR OF THE SIGNAL LANGUAGE

ACTION ::=

private action Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

NODE ::=

private node Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

FUNCTION ::=

private function Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

EXTERNAL-NOTATION ::=

external [ String-cst ]

DECLARATION ::=

IMPORT-OF-MODULES

IMPORT-OF-MODULES ::=

use IMPORTED-OBJECTS { , IMPORTED-OBJECTS }∗ ;

IMPORTED-OBJECTS ::=

Name-module



List of figures

B–III.1 f1 ↑ T with f1(0) = 0, f1(1) = 3, f1(2) = 4, f1(3) = 5. . . . . . . . . . . . . . . 36

B–III.2 Two flows of the composition of P1 and P2 . . . . . . . . . . . . . . . . . . . . . . 44

B–IV.1 Formal meaning of the dependence statement . . . . . . . . . . . . . . . . . . . . . 62

B–IV.2 Micro automaton of x :=: y $ init v . . . . . . . . . . . . . . . . . . . . . . . . 67

C–V.1 Order and conversions on scalar and external types . . . . . . . . . . . . . . . . . . 82





List of tables

C–VI.1 Syntactic forms of an invocation of model . . . . . . . . . . . . . . . . . . . . . . . 99

C–VI.2 INSTANCE-OF-PROCESS E25 . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

C–VI.3 Expressions on signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

C–VI.4 Expressions on signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

C–VI.5 Types of the constants E27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

C–VI.6 S-EXPR-DYNAMIC E21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109





Index

Lexis

Alphabetic-type, 71, 223

def, 71, 223

begin-name-char, 25, 221

def, 25, 221

Boolean-cst, 107, 230

def, 25, 221

Character, 27, 222, 223

def, 21, 219

character, 21, 219

def, 21, 219

Character-cst, 107, 230

def, 27, 222

Character-cstCharacter, 27, 222

def, 27, 222

character-spec-char, 27, 222

def, 27, 222

CharacterCode, 21, 219

def, 24, 220

Comment

def, 27, 223

comment-spec-char, 27, 223

def, 27, 223

CommentCharacter, 27, 223

def, 27, 223

Complex-type, 71, 223

def, 74, 224

delimitor, 21, 219

def, 23, 220

Double-precision-exponent, 26, 222

def, 26, 222

Double-precision-real-cst, 26

def, 26, 222

ENUM-CST, 107

escape-code, 24, 220

def, 24, 221

External-type, 71, 223

def, 75, 224

hexadecimal-char, 24, 221

def, 24, 221

HexadecimalCode, 24, 220

def, 24, 221

Integer-cst, 26, 107, 222, 230

def, 26, 221

Integer-type, 71, 223

def, 72, 224

Label, 107, 138, 140, 196, 199, 230, 237, 247,

248

def, 139, 237

letter-char, 21, 219

def, 21, 219

long-separator, 23, 27, 220, 222

def, 23, 220

lower-case-letter-char, 21, 219

def, 22, 219

mark, 21, 219

def, 23, 220

Name, 25, 75–77, 81, 86–89, 94, 95, 97, 98,

100, 101, 103, 107, 136, 139, 154, 155,

169, 175, 185, 192, 199, 203–208, 224–

230, 236, 237, 239, 243–246, 248–250

def, 25, 221

name-char, 21, 25, 219, 221

def, 21, 219

numeral-char, 21, 24–26, 219, 221

def, 22, 220

Numeric-type, 71, 223

def, 71, 223

octal-char, 24, 220

def, 24, 221

OctalCode, 24, 220

def, 24, 220

Operator-name, 203

def, 203

Operator-symbol, 203

other-character, 21, 219

other-letter-char, 21, 219

def, 22, 220

Pragma-statement, 199, 248

def, 199, 248

255



256 INDEX

prefix-mark

def, 25, 221

Real-cst, 107, 230

def, 26, 222

Real-type, 71, 223

def, 73, 224

Relative-cst, 26, 222

def, 26, 222

Scalar-type, 71, 103, 223, 229

def, 71, 223

separator, 21, 219

def, 23, 220

signalkw

def, 28

Simple-precision-exponent, 26, 222

def, 26, 222

Simple-precision-real-cst, 26

def, 26, 222

String-cst, 107, 199, 208, 230, 248, 250

def, 27, 222

String-cstCharacter, 27, 222

def, 27, 222

string-spec-char, 27, 222

def, 27, 222

Synchronization-type, 71, 223

def, 72, 224

Type-conversion, 103, 229

def, 103, 229

upper-case-letter-char, 21, 219

def, 21, 219

Symbol

∗, 23, 130, 220, 235

∗∗, 130, 235

∗., 176, 244

+, 23, 26, 130, 131, 220, 222, 235

−, 23, 26, 73, 130, 131, 220, 222, 235

−− >, 196, 247

/, 23, 130, 220, 235

/ =, 128, 234

<, 23, 128, 220, 234

<<=, 128, 234

<=, 128, 234

=, 23, 128, 220, 234

==, 128, 234

>, 23, 128, 220, 234

>=, 128, 234

(, 23, 76, 79, 95, 98, 100, 101, 103, 104, 148,

153, 155, 167, 169, 193, 220, 225, 228,

229, 238, 239, 242, 243, 246

), 23, 76, 79, 95, 98, 100, 101, 103, 104, 148,

153, 155, 167, 169, 193, 220, 225, 228,

229, 238, 239, 242, 243, 246

., 23, 26, 154, 155, 220, 222, 239

.., 161, 241

.], 141, 238

/, 136, 236

:, 23, 141, 165, 175, 220, 237, 241, 243, 244

::, 138, 140, 237

::=, 97, 98, 155, 167, 228, 239, 242

:=, 94, 95, 155, 167, 228, 239, 242

:=:, 125, 233

;, 23, 87–91, 185, 192, 203, 207, 208, 220,

226, 227, 245, 246, 249, 250

=, 87, 88, 185, 203, 204, 207, 208, 226, 245,

248–250

?, 23, 107, 169, 193, 220, 230, 243, 247

[, 23, 78, 159, 162, 163, 167, 169, 175, 220,

225, 240–243

[., 141, 238

[/:, 121, 233

[:, 121, 233

#, 23, 77, 220, 225

$, 23, 110, 113, 220, 230, 231

%, 23, 27, 220, 223

\, 24, 25, 220, 221

\x, 24, 221

{, 23, 100, 141, 175, 193, 196, 199, 220, 228,

238, 244, 246–248

}, 23, 100, 141, 193, 196, 199, 220, 228, 238,

246–248

], 23, 78, 121, 159, 162, 163, 167, 169, 175,

220, 225, 233, 240–243

\\, 162, 241

∗̂, 122, 233

+̂, 122, 233

−̂, 122, 233

0̂, 122, 233

̂<, 123, 233

̂=, 123, 233

̂>, 123, 233

,̂ 23, 120, 220, 232

#̂, 123, 233

„ 23, 76, 78, 81, 87–91, 95, 98, 100, 101, 136,

141, 153, 155, 159, 162, 163, 167–169,



INDEX 257

175, 192, 196, 199, 207, 208, 220, 225–

229, 236, 238–244, 246–250

@, 23, 131, 220, 235

|+, 160, 240

D, 26, 222

d, 26, 222

", 23, 27, 220, 222

E, 26, 222

e, 26, 222

!, 23, 193, 220, 247

>>, 168, 242

<<, 168, 242

(|, 136, 145, 236, 238

|, 23, 136, 145, 220, 236, 238

|∗, 160, 240

|), 136, 145, 236, 238

’, 23, 27, 220, 222

_, 21, 219

Syntax

ACTION, 185, 244

def, 185, 208, 245, 250

ARRAY-ELEMENT, 157, 240

def, 162, 241

ARRAY-ENUMERATION, 157, 240

def, 159, 240

ARRAY-INDEX, 168, 242

def, 169, 243

ARRAY-PRODUCT, 157, 240

def, 176, 244

ARRAY-RECOVERY, 162, 241

def, 162, 241

ARRAY-RESTRUCTURATION, 157, 240

def, 165, 241

ARRAY-TYPE, 71, 223

def, 78, 225

ASSERTION-PROCESS, 135, 236

def, 145, 238

AUTOMATON, 185

def, 185, 245

BODY, 185, 203, 208, 245, 249, 250

def, 185, 245

CASE, 141, 237

def, 141, 237

CHOICE-PROCESS, 135, 236

def, 141, 237

CLOCK-EXTRACTION, 121, 232

def, 121, 233

COMPONENT, 155, 167, 239, 242

def, 155, 239

COMPOSITION, 135, 236

def, 136, 236

CONCATENATION, 157, 240

def, 160, 240

CONFINED-PROCESS, 135, 236

def, 137, 236

CONSTANT, 107, 230

def, 107, 230

CONSTRAINT, 120, 145, 232, 238

def, 123, 125, 233

CONVERSION, 103, 229

def, 103, 229

COUNTER, 114, 231

def, 118, 232

DECLARATION, 137, 207, 236, 249

def, 191, 208, 246, 250

DECLARATION-BLOCK, 137, 236

def, 137, 236

DECLARATION-OF-CONSTANTS, 191,

246

def, 88, 207, 226, 249

DECLARATION-OF-LABELS, 191, 246

def, 192, 246

DECLARATION-OF-SHARED-

VARIABLES, 191, 246

def, 90, 227

DECLARATION-OF-STATE-VARIABLES,

191, 246

def, 91, 227

DECLARATION-OF-TYPES, 191, 193, 246,

247

def, 87, 207, 226, 249

DEFINED-ELEMENT, 167, 169, 196, 242,

243, 247

def, 167, 242

DEFINITION-OF-CONSTANT, 88, 207, 226,

249

def, 88, 226

DEFINITION-OF-ELEMENT, 175, 244

def, 175, 243

DEFINITION-OF-INTERFACE, 185, 203,

204, 208, 245, 248–250

def, 193, 205, 246, 248

DEFINITION-OF-SEQUENCE, 89–91, 227

def, 89, 227

DEFINITION-OF-SIGNALS, 94, 227

def, 94, 95, 97, 98, 155, 167, 228, 239, 242



258 INDEX

DEFINITION-OF-TYPE, 87, 207, 226, 249

def, 87, 204, 226, 248

DENOTATION-OF-COMPLEX, 130, 235

def, 131, 235

DEPENDENCES

def, 196, 247

DESCRIPTION-OF-CONSTANT, 88, 226

def, 88, 226

DESCRIPTION-OF-MODEL, 185, 245

def, 185, 245

DESCRIPTION-OF-TYPE, 87, 226

def, 87, 226

DIRECTIVES, 185, 203, 204, 207, 208, 245,

248–250

def, 198, 248

ELEMENTARY-PROCESS, 135, 236

def, 94, 99, 120, 196, 227, 228, 232, 247

ELEMENTARY-SIGNAL, 196, 247

def, 196, 247

ELSE-CASE, 141, 237

def, 141, 237

ENUM-CST, 230

def, 77, 225

ENUMERATED-TYPE, 71, 223

def, 76, 225

ENUMERATION-OF-VALUES, 141, 237

def, 141, 238

EXPANSION, 100, 101, 228, 229

def, 100, 228

EXTERNAL-GRAPH, 193, 246

def, 195, 247

EXTERNAL-NOTATION, 87, 88, 185, 226,

245

def, 208, 250

EXTRACTION, 114, 231

def, 115, 231

FORMAL-MODEL

def, 206, 249

FORMAL-PARAMETER, 193, 246

def, 193, 205, 247, 248

FUNCTION, 185, 244

def, 185, 208, 245, 250

GENERAL-PROCESS, 135–137, 141, 185,

195, 236, 237, 245, 247

def, 135, 168, 236, 242

GENERALIZED-DELAY, 109, 230

def, 113, 231

GUARDED-PROCESS, 135, 236

def, 140, 237

HIDING, 135, 136, 236

def, 136, 236

IMPORT-OF-MODULES, 208, 250

def, 208, 250

IMPORTED-OBJECTS, 208, 250

def, 208, 250

INDEX, 157, 240

def, 161, 241

INPUTS, 193, 246

def, 193, 247

INSTANCE-OF-PROCESS, 99, 102, 228, 229

def, 100, 101, 148, 228, 229, 238

INTERFACE, 193, 246

def, 193, 246

ITERATION, 175, 243

def, 175, 244

ITERATION-INDEX, 168, 242

def, 169, 243

ITERATION-INIT, 168, 242

def, 169, 243

ITERATION-OF-PROCESSES, 168, 242

def, 168, 242

ITERATIVE-ENUMERATION, 157, 240

def, 160, 175, 240, 243

LABELLED-PROCESS, 135, 236

def, 138, 237

MEMORIZATION, 114, 231

def, 116, 231

MERGING, 114, 231

def, 114, 231

MODEL, 191, 246

def, 185, 203, 244

MODEL-REFERENCE, 101, 229

def, 101, 229

MODULE

def, 207, 249

MULTI-INDEX, 157, 240

def, 168, 242

NAMED-FIELDS, 79, 225

def, 79, 225

NODE, 185, 244

def, 185, 208, 245, 250

OPERATOR, 203

def, 203

OUTPUTS, 193, 246

def, 193, 247



INDEX 259

P-EXPR, 136, 138, 140, 168, 169, 236, 237,

242, 243

def, 135, 236

PARAMETERS, 193, 246

def, 193, 246

PARTIAL-DEFINITION, 175, 243

def, 175, 243

PARTIAL-ITERATION, 175, 244

def, 175, 244

PRAGMA, 198, 248

def, 199, 248

PRAGMA-OBJECT, 199, 248

def, 199, 248

PROCEDURE, 185

def, 185, 245

PROCESS, 185, 244

def, 185, 208, 245, 249

PROCESS-ATTRIBUTE, 195, 247

def, 195, 247

PRODUCTION, 101, 229

def, 101, 229

REFERENCE-SEQUENCE, 157, 240

def, 169, 243

REFERENCES, 191, 246

def, 192, 246

RELATION, 127, 234

def, 128, 234

S-DECLARATION, 79, 191, 193, 225, 246,

247

def, 89, 227

S-EXPR

def, 102–104, 229

S-EXPR-PARAMETER, 100, 228

def, 100, 206, 228, 249

S-EXPR-ARITHMETIC

def, 130, 131, 235

S-EXPR-ARRAY

def, 157, 240

S-EXPR-BOOLEAN

def, 126, 127, 234

S-EXPR-CLOCK

def, 120–122, 232, 233

S-EXPR-CONDITION

def, 132, 235

S-EXPR-DYNAMIC

def, 109, 230

S-EXPR-ELEMENTARY

def, 107, 230

S-EXPR-TEMPORAL

def, 114, 231

S-EXPR-TUPLE

def, 153, 238

S-EXPR, 78, 88, 89, 94, 95, 97, 98, 100, 101,

103, 104, 110, 111, 113–118, 120–123,

125, 126, 128, 130–132, 140, 141, 148,

153–155, 159–163, 165, 167–169, 174–

176, 196, 225–235, 237–244, 247

SEQUENTIAL-DEFINITION, 157, 240

def, 174, 243

SIGNAL-CLOCK, 120, 232

def, 120, 232

SIGNAL-TYPE, 78, 87–91, 100, 207, 225–

228, 249

def, 71, 86, 223, 226

SIGNALS, 196, 247

def, 196, 247

SIMPLE-DELAY, 109, 230

def, 110, 230

SPECIFICATION-OF-PROPERTIES, 79,

195, 225, 247

def, 195, 247

SUB-ARRAY, 157, 240

def, 163, 241

TRANSPOSITION, 157, 240

def, 176, 244

TUPLE-ENUMERATION, 153, 238

def, 153, 238

TUPLE-FIELD, 153, 238

def, 154, 239

TUPLE-TYPE, 71, 223

def, 79, 225

TYPE-INITIAL-VALUE, 87, 226

def, 87

VARIABLE, 114, 231

def, 117, 232

WINDOW, 109, 230

def, 111, 230

Terminal

action, 28, 185, 204, 206, 208, 245, 248–250

after, 28, 118, 232

and, 28, 126, 234

array, 28, 168, 242

assert, 28, 145, 148, 238

automaton, 185, 204, 206, 245, 248, 249

boolean, 28, 72, 224



260 INDEX

bundle, 28, 79, 225

case, 28, 141, 237

cell, 28, 116, 231

char, 28, 71, 223

@, 28, 74, 224

constant, 28, 88, 207, 226, 249

count, 28, 118, 232

dcomplex, 28, 74, 224

default, 28, 114, 231

defaultvalue, 28, 97, 98, 155, 167, 228, 239,

242

deterministic, 28, 195, 247

dreal, 28, 73, 224

else, 28, 132, 141, 235, 237

end, 28, 137, 141, 168, 198, 207, 236, 237,

242, 248, 249

enum, 28, 76, 225

event, 28, 72, 224

external, 28, 208, 250

false, 25, 28, 221

from, 28, 118, 232

function, 28, 185, 204, 206, 208, 245, 248–250

if, 28, 132, 235

in, 28, 141, 175, 237, 244

init, 28, 87, 89, 110, 111, 113, 116, 117, 227,

230–232

integer, 28, 72, 224

iterate, 28, 168, 242

label, 28, 192, 246

long, 28, 72, 224

module, 28, 207, 249

modulo, 28, 130, 235

next, 28, 174, 243

node, 28, 185, 204, 206, 208, 245, 248–250

not, 28, 126, 234

of, 28, 168, 242

on, 28, 140, 237

operator, 28, 203

or, 28, 126, 234

pragmas, 28, 198, 248

private, 28, 207, 208, 249, 250

procedure, 185, 204, 206, 245, 248, 249

process, 28, 185, 204, 206, 208, 245, 248, 249

real, 28, 73, 224

ref, 28, 192, 246

safe, 28, 195, 247

shared, 28, 90, 227

short, 28, 72, 224

spec, 28, 195, 247

statevar, 28, 91, 227

step, 28, 161, 175, 241, 244

string, 28, 71, 223

struct, 28, 79, 225

then, 28, 132, 235

to, 28, 169, 175, 243, 244

tr, 28, 176, 244

true, 25, 28, 221

type, 28, 87, 207, 226, 249

unsafe, 28, 195, 247

use, 28, 208, 250

var, 28, 117, 232

when, 28, 115, 121, 196, 231, 233, 247

where, 28, 137, 236

window, 28, 111, 230

with, 28, 169, 243

xor, 28, 126, 234


	A INTRODUCTION
	Introduction
	Main features of the language
	Signals
	Events
	Models
	Modules

	Model of sequences
	Static semantics
	Causality
	Explicit definitions

	Subject of the reference
	Form of the presentation

	Lexical units
	Characters
	Sets of characters
	Encodings of characters

	Vocabulary
	Names
	Boolean constant values
	Integer constant values
	Real constant values
	Character constant values
	String constant value
	Comments

	Reserved words


	B THE KERNEL LANGUAGE
	Semantic model of traces
	Syntax
	Configurations
	Traces
	Definition
	Partial observation of a trace
	Prefix order on traces
	Product of traces
	Reduced trace

	Flows
	Equivalence of traces
	Partial flow
	Flow-equivalence

	Processes
	Definition
	Partial observation of a process
	Composition of processes
	Order on processes

	Semantics of basic Signal terms
	Declarations
	Monochronous processes
	Static monochronous processes
	Dynamic monochronous processes: the delay

	Polychronous processes
	Sub-signals
	Merging of signals

	Composition of processes
	Restriction

	Composite signals
	Tuples
	Arrays

	Classes of processes
	Iterations of functions
	Endochronous processes
	Deterministic processes
	Reactive processes

	Composition properties
	Asynchronous composition of processes
	Flow-invariance
	Endo-isochrony

	Clock system and implementation relation
	Transformation of programs

	Calculus of synchronizations and dependences
	Clocks
	Clock homomorphism
	Monochronous definitions
	Polychronous definitions
	Hiding
	Composition

	Verification
	Clock calculus
	Monochronous definitions
	Polychronous definitions
	Hiding
	Composition
	Static and dynamic clock calculus


	Context clock
	Dependences
	Formal definition of dependences
	Implicit dependences
	Monochronous definitions
	Polychronous definitions

	Micro automata
	Definition of micro automata
	Construction of basic micro automata




	C THE SIGNALS
	Domains of values of the signals
	Scalar types
	Synchronization types
	Integer types
	Real types
	Complex types
	Character type
	String type

	External types
	Enumerated types
	Array types
	Tuple types
	Structure of the set of types
	Set of types
	Order on types
	Conversions
	Conversions between comparable types
	Conversions toward the domain ``Synchronization-type''
	Conversions toward the domain ``Integer-type''
	Conversions toward the domain ``Real-type''
	Conversions toward the domain ``Complex-type''
	Conversions toward the types character and string
	Conversions of arrays
	Conversions of tuples


	Denotation of types
	Declarations of constant identifiers
	Declarations of sequence identifiers
	Declarations of shared variables
	Declarations of state variables

	Expressions on signals
	Systems of equations on signals
	Elementary equations
	Equation of definition of a signal
	Equation of multiple definition of signals
	Equation of partial definition of a signal
	Equation of partial definition of a state variable
	Equation of partial multiple definition

	Invocation of a model
	Macro-expansion of a model
	Positional macro-expansion of a model
	Call of a model
	Expressions of type conversion

	Nesting of expressions on signals

	Elementary expressions
	Constant expressions
	Occurrence of signal or tuple identifier
	Occurrence of state variable

	Dynamic expressions
	Initialization expression
	Simple delay
	Sliding window
	Generalized delay

	Polychronous expressions
	Merging
	Extraction
	Memorization
	Variable clock signal
	Counters
	Other properties of polychronous expressions

	Constraints and expressions on clocks
	Expressions on clock signals
	Clock of a signal
	Clock extraction
	Empty clock

	Operators of clock lattice
	Relations on clocks

	Identity equations
	Boolean synchronous expressions
	Expressions on Booleans
	Negation
	Operators of Boolean lattice

	Boolean relations

	Synchronous expressions on numeric signals
	Binary expressions on numeric signals
	Unary operators

	Synchronous condition

	Expressions on processes
	Elementary processes
	Composition
	Hiding
	Confining with local declarations
	Labelled processes
	Guarded processes
	Choice processes
	Assertion processes
	Assertions of clock relations
	Assertions of identity equations
	Assertion on Boolean signal



	D THE COMPOSITE SIGNALS
	Tuples of signals
	Constant expressions
	Enumeration of tuple elements
	Denotation of field
	Destructuration of tuple
	Equation of definition of tuple component

	Spatial processing
	Dimensions of arrays and bounded values
	Constant expressions
	Enumeration
	Concatenation
	Repetition
	Definition of index
	Array element
	Access without recovery
	Access with recovery

	Extraction of sub-array
	Array restructuration
	Generalized indices
	Extended syntax of equations of definition
	Cartesian product
	Iterations of processes
	Sequential definition
	Sequential enumeration
	Operators on matrices
	Transposition
	Matrix products
	Product of matrices
	Matrix–vector product
	Vector–matrix product
	Scalar product



	Extensions of the operators
	Rules of extension
	Examples


	E THE MODULARITY
	Models of processes
	Classes of process models
	Processes
	Actions
	Procedures
	Nodes
	Functions
	Automata

	Local declarations of a process model
	Declarations of labels
	References to signals with extended visibility
	Interface of a model
	Graph of a model
	Specification of properties
	Dependences

	Directives
	Models as types and parameters

	Modules
	Declaration and use of modules

	Intrinsic processes
	Minimal clock
	Affine transformations
	``Left true'' process
	Mathematical functions
	Complex functions
	Input-output functions


	F ANNEX
	Grammar of the SIGNAL language
	Lexical units
	Characters
	Vocabulary

	Domains of values of the signals
	Scalar types
	External types
	Enumerated types
	Array types
	Tuple types
	Denotation of types
	Declarations of constant identifiers
	Declarations of sequence identifiers
	Declarations of shared variables
	Declarations of state variables

	Expressions on signals
	Systems of equations on signals
	Elementary expressions
	Dynamic expressions
	Polychronous expressions
	Constraints and expressions on clocks
	Constraints on signals
	Boolean synchronous expressions
	Synchronous expressions on numeric signals
	Synchronous condition

	Expressions on processes
	Composition
	Hiding
	Confining with local declarations
	Labelled processes
	Guarded processes
	Choice processes
	Assertion processes

	Tuples of signals
	Enumeration of tuple elements
	Denotation of field
	Equation of definition of tuple component

	Spatial processing
	Enumeration
	Concatenation
	Repetition
	Definition of index
	Array element
	Extraction of sub-array
	Array restructuration
	Extended syntax of equations of definition
	Cartesian product
	Iterations of processes
	Sequential definition
	Sequential enumeration
	Operators on matrices

	Models of processes
	Classes of process models
	Local declarations of a process model
	Declarations of labels
	References to signals with extended visibility
	Interface of a model
	Graph of a model
	Directives
	Models as types and parameters

	Modules
	Declaration and use of modules


	List of figures
	List of tables
	Index


